• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    蚀变洋壳和俯冲带变质流体的Fe-Mg同位素组成

    黄建 黄方 肖益林

    黄建, 黄方, 肖益林, 2019. 蚀变洋壳和俯冲带变质流体的Fe-Mg同位素组成. 地球科学, 44(12): 4050-4056. doi: 10.3799/dqkx.2019.234
    引用本文: 黄建, 黄方, 肖益林, 2019. 蚀变洋壳和俯冲带变质流体的Fe-Mg同位素组成. 地球科学, 44(12): 4050-4056. doi: 10.3799/dqkx.2019.234
    Huang Jian, Huang Fang, Xiao Yilin, 2019. Fe-Mg Isotopic Compositions of Altered Oceanic Crust and Subduction-Zone Fluids. Earth Science, 44(12): 4050-4056. doi: 10.3799/dqkx.2019.234
    Citation: Huang Jian, Huang Fang, Xiao Yilin, 2019. Fe-Mg Isotopic Compositions of Altered Oceanic Crust and Subduction-Zone Fluids. Earth Science, 44(12): 4050-4056. doi: 10.3799/dqkx.2019.234

    蚀变洋壳和俯冲带变质流体的Fe-Mg同位素组成

    doi: 10.3799/dqkx.2019.234
    基金项目: 

    国家重点基础研究发展计划项目 2015CB856102

    国家自然科学基金项目 41573018

    详细信息
      作者简介:

      黄建(1984-), 男, 博士, 副研究员, 从事金属稳定同位素和地幔地球化学研究

    • 中图分类号: P581

    Fe-Mg Isotopic Compositions of Altered Oceanic Crust and Subduction-Zone Fluids

    • 摘要: 贫碳酸盐的蚀变洋壳具有与新鲜洋中脊玄武岩一致的Mg同位素组成,说明低温和高温洋壳蚀变不会导致Mg同位素分馏.大别山港河和花凉亭的早期变质脉比榴辉岩具有偏高的δ56Fe-δ26Mg值,而且早期到晚期变质脉的δ56Fe-δ26Mg值逐渐降低.这些结果说明,在流体-岩石反应和流体演化过程中,Fe-Mg同位素发生了显著的分馏,且矿物溶解-再沉淀是同位素分馏的控制因素.相比洋中脊玄武岩,蚀变洋壳和变质脉具有相似或偏高的δ56Fe-δ26Mg值,说明蚀变洋壳脱水产生的流体富集重Fe-Mg同位素,不能解释弧岩浆岩的轻Fe/重Mg同位素组成.因此,弧岩浆岩异常的Fe-Mg同位素组成是熔体提取和富集54Fe-26Mg的蛇纹岩流体交代地幔楔两个过程共同作用的结果.

       

    • 图  1  IODP 1256钻孔洋壳的蚀变温度(a),δ18O(b)和δ26Mg(c)的空间变化

      蚀变温度、O和Mg同位素数据引自Alt et al.(2010)Gao et al.(2012)Huang et al.(2015).灰色条带表示新鲜洋中脊玄武岩的O和Mg同位素组成(Harmon and Hoefs, 1995Teng et al., 2010)

      Fig.  1.  Down-hole variations in alteration temperatures, δ18O, and δ26Mg of oceanic crust from IODP site 1256

      图  2  大别山港河和花凉亭榴辉岩和变质脉的Fe3+/ΣFe、δ26Mg和δ56Fe变化

      Huang et al.(2019).灰色条带表示新鲜洋中脊玄武岩的Fe-Mg同位素组成(Weyer and Ionov, 2007Teng et al., 2010Nebel et al., 2013)

      Fig.  2.  Fe3+/ΣFe、δ26Mg, and δ56Fe in ecoligites and veins at Ganghe and Hualiangting in the Dabie orogen

      图  3  大别山港河和花凉亭超高压榴辉岩和变质脉中矿物的Fe-Mg同位素组成

      Huang et al.(2019).黑色正方形表示新鲜洋中脊玄武岩的Fe-Mg同位素组成(Weyer and Ionov, 2007Teng et al., 2010Nebel et al., 2013)

      Fig.  3.  δ26Mg and δ56Fe of minerals from ecoligites and veins at Ganghe and Hualiangting in the Dabie orogen

      图  4  大别山花凉亭三期变质脉全岩(a, b)和绿帘石(c, d)的Eu/Eu*δ26Mg和δ56Fe协变图解

      Huang et al.(2019)

      Fig.  4.  Eu/Eu*, δ26Mg, and δ56Fe in whole-rocks (a, b) and epidotes (c, d) of multi-stage veins at Hualiangting in the Dabie orogen

    • Alt, J.C., Laverne, C., Coggon, R.M., et al., 2010.Subsurface Structure of a Submarine Hydrothermal System in Ocean Crust Formed at the East Pacific Rise, ODP/IODP Site 1256.Geochemistry, Geophysics, Geosystems, 11(10): Q10010. https://doi.org/10.1029/2010gc003144
      Chen, Y.X., Schertl, H.P., Zheng, Y.F., et al., 2016.Mg-O Isotopes Trace the Origin of Mg-Rich Fluids in the Deeply Subducted Continental Crust of Western Alps.Earth and Planetary Science Letters, 456:157-167. https://doi.org/10.1016/j.epsl.2016.09.010
      Craddock, P.R., Warren, J.M., Dauphas, N., 2013.Abyssal Peridotites Reveal the Near-Chondritic Fe Isotopic Composition of the Earth.Earth and Planetary Science Letters, 365:63-76. https://doi.org/10.1016/j.epsl.2013.01.011
      Dauphas, N., Craddock, P.R., Asimow, P.D., et al., 2009.Iron Isotopes May Reveal the Redox Conditions of Mantle Melting from Archean to Present.Earth and Planetary Science Letters, 288(1-2):255-267. https://doi.org/10.1016/j.epsl.2009.09.029
      Dauphas, N., John, S.G., Rouxel, O., 2017.Iron Isotope Systematics.Reviews in Mineralogy and Geochemistry, 82(1):415-510. https://doi.org/10.2138/rmg.2017.82.11
      Debret, B., Bouilhol, P., Pons, L., et al., 2018.Carbonate Transfer during the Onset of Slab Devolatilization:New Insights from Fe and Zn Stable Isotopes.Journal of Petrology, 59(6):1145-1166. https://doi.org/10.1093/petrology/egy057v
      Debret, B., Millet, M.A., Pons, M.L., et al., 2016.Isotopic Evidence for Iron Mobility during Subduction.Geology, 44(3):215-218. https://doi.org/10.1130/g37565.1
      El Korh, A., Luais, B., Deloule, E., et al., 2017.Iron Isotope Fractionation in Subduction-Related High-Pressure Metabasites (Ile de Groix, France).Contributions to Mineralogy and Petrology, 172:41. https://doi.org/10.1007/s00410-017-1357-x
      Elliott, T., Plank, T., Zindler, A., et al., 1997.Element Transport from Slab to Volcanic Front at the Mariana Arc.Journal of Geophysical Research:Solid Earth, 102(B7):14991-15019. doi: 10.1029/97JB00788
      Feineman, M.D., Ryerson, F.J., DePaolo, D.J., et al., 2007.Zoisite-Aqueous Fluid Trace Element Partitioning with Implications for Subduction Zone Fluid Composition.Chemical Geology, 239(3-4):250-265. https://doi.org/10.1016/j.chemgeo.2007.01.008
      Foden, J., Sossi, P.A., Nebel, O., 2018.Controls on the Iron Isotopic Composition of Global Arc Magmas.Earth and Planetary Science Letters, 494:190-201. https://doi.org/10.1016/j.epsl.2018.04.039
      Gao, Y.J., Vils, F., Cooper, K.M., et al., 2012.Downhole Variation of Lithium and Oxygen Isotopic Compositions of Oceanic Crust at East Pacific Rise, ODP Site 1256. Geochemistry, Geophysics, Geosystems, 13(10): Q10001. https://doi.org/10.1029/2012gc004207
      Guo, S., Chen, Y., Ye, K., et al., 2015.Formation of Multiple High-Pressure Veins in Ultrahigh-Pressure Eclogite (Hualiangting, Dabie Terrane, China):Fluid Source, Element Transfer, and Closed-System Metamorphic Veining.Chemical Geology, 417:238-260. https://doi.org/10.1016/j.chemgeo.2015.10.006
      Guo, S., Ye, K., Chen, Y., et al., 2012.Fluid-Rock Interaction and Element Mobilization in UHP Metabasalt:Constraints from an Omphacite-Epidote Vein and Host Eclogites in the Dabie Orogen.Lithos, 136-139:145-167. https://doi.org/10.1016/j.lithos.2011.11.008
      Guo, S., Ye, K., Wu, T.F., et al., 2013.A Potential Method to Confirm the Previous Existence of Lawsonite in Eclogite:The Mass Imbalance of Sr and LREEs in Multistage Epidote (Ganghe, Dabie UHP Terrane).Journal of Metamorphic Geology, 31(4):415-435. https://doi.org/10.1111/jmg.12027
      Guo, S., Ye, K., Yang, Y.H., et al., 2014.In Situ Sr Isotopic Analyses of Epidote:Tracing the Sources of Multi-Stage Fluids in Ultrahigh-Pressure Eclogite (Ganghe, Dabie Terrane).Contributions to Mineralogy and Petrology, 167(2):975. https://doi.org/10.1007/s00410-014-0975-9
      Harmon, R.S., Hoefs, J., 1995.Oxygen Isotope Heterogeneity of the Mantle Deduced from Global 18O Systematics of Basalts from Different Geotectonic Settings.Contributions to Mineralogy and Petrology, 120(1):95-114. https://doi.org/10.1007/bf00311010
      Huang, J., Guo, S., Jin, Q.Z., et al., 2019.Iron and Magnesium Isotopic Compositions of Subduction-Zone Fluids and Implications for Arc Volcanism.Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2019.06.020
      Huang, J., Ke, S., Gao, Y.J., et al., 2015.Magnesium Isotopic Compositions of Altered Oceanic Basalts and Gabbros from IODP Site 1256 at the East Pacific Rise.Lithos, 231:53-61. https://doi.org/10.1016/j.lithos.2015.06.009
      Inglis, E.C., Debret, B., Burton, K.W., et al., 2017.The Behavior of Iron and Zinc Stable Isotopes Accompanying the Subduction of Mafic Oceanic Crust:A Case Study from Western Alpine Ophiolites.Geochemistry, Geophysics, Geosystems, 18(7):2562-2579. doi: 10.1002/2016GC006735
      Li, S.G., Yang, W., Ke, S., et al., 2017.Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China.National Science Review, 4(1):111-120. https://doi.org/10.1093/nsr/nww070
      Li, Y.L., Zheng, Y.F., Fu, B., 2005.Mössbauer Spectroscopy of Omphacite and Garnet Pairs from Eclogites:Application to Geothermobarometry.American Mineralogist, 90(1):90-100. https://doi.org/10.2138/am.2005.1400
      Martin, L.A.J., Wood, B.J., Turner, S., et al., 2011.Experimental Measurements of Trace Element Partitioning between Lawsonite, Zoisite and Fluid and Their Implication for the Composition of Arc Magmas.Journal of Petrology, 52(6):1049-1075. https://doi.org/10.1093/petrology/egr018
      Nebel, O., Arculus, R.J., Sossi, P.A., et al., 2013.Iron Isotopic Evidence for Convective Resurfacing of Recycled Arc-Front Mantle beneath Back-Arc Basins.Geophysical Research Letters, 40(22):5849-5853. https://doi.org/10.1002/2013gl057976
      Nebel, O., Sossi, P.A., Bénard, A., et al., 2015.Redox-Variability and Controls in Subduction Zones from an Iron-Isotope Perspective.Earth and Planetary Science Letters, 432:142-151. https://doi.org/10.1016/j.epsl.2015.09.036
      Pogge von Strandmann, P.A.E., Elliott, T., Marschall, H.R., et al., 2011.Variations of Li and Mg Isotope Ratios in Bulk Chondrites and Mantle Xenoliths.Geochimica et Cosmochimica Acta, 75(18):5247-5268. https://doi.org/10.1016/j.gca.2011.06.026
      Schmidt, M.W., Poli, S., 1998.Experimentally Based Water Budgets for Dehydrating Slabs and Consequences for Arc Magma Generation.Earth and Planetary Science Letters, 163(1-4):361-379. https://doi.org/10.1016/s0012-821x(98)00142-3
      Scott, S.R., Sims, K.W.W., Frost, B.R., et al., 2017.On the Hydration of Olivine in Ultramafic Rocks:Implications from Fe Isotopes in Serpentinites.Geochimica et Cosmochimica Acta, 215:105-121. https://doi.org/10.1016/j.gca.2017.07.011
      Sossi, P.A., Nebel, O., Foden, J., 2016.Iron Isotope Systematics in Planetary Reservoirs.Earth and Planetary Science Letters, 452:295-308. https://doi.org/10.1016/j.epsl.2016.07.032
      Teng, F.Z., Dauphas, N., Huang, S.C., et al., 2013.Iron Isotopic Systematics of Oceanic Basalts.Geochimica et Cosmochimica Acta, 107:12-26. https://doi.org/10.1016/j.gca.2012.12.027
      Teng, F.Z., Hu, Y., Chauvel, C., 2016.Magnesium Isotope Geochemistry in Arc Volcanism.Proceedings of the National Academy of Sciences, 113(26):7082-7087. https://doi.org/10.1073/pnas.1518456113
      Teng, F.Z., Li, W.Y., Ke, S., et al., 2010.Magnesium Isotopic Composition of the Earth and Chondrites.Geochimica et Cosmochimica Acta, 74(14):4150-4166. https://doi.org/10.1016/j.gca.2010.04.019
      Turner, S., Williams, H., Piazolo, S., et al., 2018.Sub-Arc Xenolith Fe-Li-Pb Isotopes and Textures Tell Tales of Their Journey through the Mantle Wedge and Crust.Geology, 46(11):947-950. https://doi.org/10.1130/g45359.1
      Wang, S.J., Teng, F.Z., Li, S.G., et al., 2014.Magnesium Isotopic Systematics of Mafic Rocks during Continental Subduction.Geochimica et Cosmochimica Acta, 143:34-48. https://doi.org/10.1016/j.gca.2014.03.029
      Wang, S.J., Teng, F.Z., Li, S.G., et al., 2017.Tracing Subduction Zone Fluid-Rock Interactions Using Trace Element and Mg-Sr-Nd Isotopes.Lithos, 290/291:94-103. https://doi.org/10.1016/j.lithos.2017.08.004
      Weyer, S., Ionov, D.A., 2007.Partial Melting and Melt Percolation in the Mantle:The Message from Fe Isotopes.Earth and Planetary Science Letters, 259(1-2):119-133. https://doi.org/10.1016/j.epsl.2007.04.033
      Williams, H., Peslier, A., McCammon, C., et al., 2005.Systematic Iron Isotope Variations in Mantle Rocks and Minerals:The Effects of Partial Melting and Oxygen Fugacity.Earth and Planetary Science Letters, 235(1-2):435-452. https://doi.org/10.1016/j.epsl.2005.04.020
      Zheng, Y.F., Fu, B., Gong, B., et al., 2003.Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China:Implications for Geodynamics and Fluid Regime.Earth-Science Reviews, 62(1-2):105-161. https://doi.org/10.1016/s0012-8252(02)00133-2
    • 加载中
    图(4)
    计量
    • 文章访问数:  4469
    • HTML全文浏览量:  1534
    • PDF下载量:  153
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-16
    • 刊出日期:  2019-12-15

    目录

      /

      返回文章
      返回