Geochemical Characteristics of Rare Earth Elements and Their Geological Significance of Permian Shales in Lower Yangtze Area
-
摘要: 为探讨下扬子地区二叠系泥页岩的稀土元素特征、物质来源及其地质意义,对研究区昌桥剖面大隆组、龙潭组和孤峰组的泥页岩样品进行了微量和稀土元素地球化学测试.测试结果表明该地区稀土元素(∑REE)含量较高,∑REE平均值为259.15 μg/g,轻稀土元素富集,重稀土元素亏损.稀土元素的配分曲线整体表现为“右倾”,Eu呈明显的负异常,Ce有轻微的负异常.样品的Ceanom值(平均值为-0.07)和δCe值(平均值为0.90)反映了沉积时水体为缺氧的还原环境,有利于形成优质烃源岩,(La/Yb)N值的变化反映研究区在垂向上的沉积速率为:大隆组 < 孤峰组 < 龙潭组.稀土元素数据还表明研究区物源来自上地壳,母岩为长英质岩石,以花岗岩为主.利用La-Th-Sc、Th-Sc-Zr/10、Th-Co-Zr/10三角图版和La/Th-Hf图解,判断得到研究区的构造背景为被动大陆边缘.Abstract: In order to find out the characteristics, provenance and geological significance of rare earth elements (REEs) in Permian shale in Lower Yangtze area, 16 samples collected from Dalong Formation, Longtan Formation and Gufeng Formation were selected for the trace and REE analyses. The results show that the REE distribution in research area is similar with upper crust, which is characterized by obvious "right-leaning" distribution pattern, with enrichment in LREE and depletion in HREE. In addition, Eu shows negative anomaly in a distinct "V" shape and Ce generally shows a slight negative anomaly based on REE curve. The characteristics of Ceanom(-0.07) and δCe(0.90) indicate that the mudstone is deposited in an anoxic environment which is conductive to the formation of excellent source rock. The value of (La/Yb)N reflects the vertical sedimentation rate in the study area as follows:Longtan Formation < Gufeng Formation < Dalong Formation. In the diagrams of La/Th-Hf and La/Yb-∑REE, it can be found that the parent rock is feldspathic-quartz, mainly intermediate to granite. By the comparison of REE characteristic parameters from graywackes in different settings, combined with La-Th-Sc, Th-Sc-Zr/10, Th-Co-Zr/10 triangle diagram, a conclusion can be drawn that the tectonic setting of the study area is determined to be a passive continental margin.
-
Key words:
- Lower Yangtze area /
- Permian /
- rare earth element /
- provenance /
- tectonic setting /
- redox condition /
- geochemistry
-
图 1 研究区剖面位置
Fig. 1. Map showing the study area and locations of the section
图 4 二叠系稀土元素配分模式及La/Yb-∑REE图解
底图据Allegre and Minster(1978)修改
Fig. 4. REE distribution patterns of mudstone and La/Yb-∑REE diagram
图 5 研究区碎屑岩La-Th-Sc、Th-Sc-Zr/10和Th-Co-Zr/10构造背景判别图解
据Bhatia and Crook(1986)修改. OIA.大洋岛弧; CIA.大陆岛弧; ACM.活动大陆边缘; PM.被动大陆边缘
Fig. 5. The tectonic setting discrimination diagrams of clastic rocks according to La-Th-Sc、Th-Sc-Zr/10 and Th-Co-Zr/10 in the study area
图 6 昌桥剖面二叠系泥页岩物源性质判别图
Fig. 6. Discrimination diagram for provenance attribute of Permian mud shale from Changqiao Section
表 1 昌桥剖面稀土元素测试结果(μg/g)
Table 1. Rare earth element contents in Changqiao Section (μg/g)
地层 样品号 岩性 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 大隆组 P2d-01 黑色泥岩 43.3 73.4 10.1 38.1 7.29 1.32 6.26 0.97 5.11 0.96 2.63 0.39 2.39 0.37 P2d-03 黑色泥岩 34.2 45.3 6.94 25.7 4.54 0.82 3.90 0.65 3.65 0.73 2.13 0.33 2.03 0.32 P2d-07 石煤 74.5 134 15.6 54.4 8.82 1.38 6.41 0.97 5.48 1.12 3.42 0.55 3.57 0.59 P2d-09 黑色泥岩 69.3 128 15.1 53.0 8.26 1.42 6.35 0.89 5.72 1.01 3.15 0.49 3.36 0.52 P2d-10 黑色泥岩 80.5 135 16.1 60.2 11.6 1.82 8.64 1.20 6.61 1.36 4.08 0.62 4.04 0.64 P2d-11 石煤 72.8 139 18.0 68.1 12.4 1.47 7.51 1.07 6.16 1.40 3.84 0.61 3.92 0.57 P2d-12 黑色泥岩 52.1 93.8 10.9 37.8 6.13 0.98 4.50 0.70 4.28 0.89 2.70 0.43 2.80 0.43 P2d-13 黑色泥岩 65.9 124 15.3 56.8 9.98 1.36 5.90 0.82 4.74 1.00 3.08 0.49 3.18 0.49 龙潭组 P2l-05 黑色页岩 72.0 135 17.0 64.4 13.0 2.38 13.1 2.01 11.3 2.18 6.31 0.92 5.81 0.97 P2l-06 黑色页岩 50.9 91.1 10.7 37.1 6.30 1.20 5.07 0.84 5.03 1.05 3.14 0.49 3.21 0.51 P2l-07 黑色页岩 27.6 54.7 7.65 35.0 8.35 1.50 5.31 0.78 4.21 0.85 2.47 0.39 2.43 0.39 孤峰组 P1g-04 灰黑色泥岩 56.5 106 12.6 46.1 8.59 1.66 7.38 1.11 5.91 1.17 3.38 0.52 3.32 0.55 P1g-06 灰黑色泥岩 58.2 110 13.1 48.6 9.19 1.78 7.78 1.17 6.45 1.27 3.69 0.57 3.63 0.59 P1g-08 灰黑色泥岩 59.0 111 13.2 48.9 9.24 1.81 7.90 1.21 6.66 1.31 3.79 0.57 3.70 0.61 P1g-10 灰黑色页岩 57.8 109 12.9 47.4 9.20 1.84 8.39 1.24 6.73 1.27 3.64 0.55 3.50 0.57 P1g-11 灰黑色页岩 58.8 110 13.2 49.0 9.03 1.69 7.43 1.12 6.20 1.24 3.61 0.56 3.58 0.59 表 2 昌桥剖面微量元素测试结果(μg/g)
Table 2. Trace element contents in Changqiao Section (μg/g)
地层 样品号 岩性 Sc Co Zr Th Hf 大隆组 P2d-01 黑色泥岩 10.6 8.97 104 15.4 3.46 P2d-03 黑色泥岩 8.01 6.23 73.9 9.62 2.49 P2d-07 石煤 13.6 4.67 222 19.2 7.00 P2d-09 黑色泥岩 13.0 3.09 223 16.5 6.60 P2d-10 黑色泥岩 15.4 2.61 284 20.2 7.84 P2d-11 石煤 13.1 3.87 220 19.3 6.99 P2d-12 黑色泥岩 9.71 2.15 223 18.0 7.05 P2d-13 黑色泥岩 10.5 1.38 219 19.4 6.81 龙潭组 P2l-05 黑色页岩 18.9 4.27 193 25.1 6.17 P2l-06 黑色页岩 16.9 16.8 224 25.6 6.97 P2l-07 黑色页岩 15.8 15.9 211 19.4 6.32 孤峰组 P1g-04 灰黑色泥岩 14.5 14.0 204 20.4 6.45 P1g-06 灰黑色泥岩 16.1 15.3 197 21.6 6.24 P1g-08 灰黑色泥岩 16.1 14.9 200 22.2 6.37 P1g-10 灰黑色页岩 15.4 15.0 200 21.8 6.45 P1g-11 灰黑色页岩 15.5 19.6 206 21.1 6.45 表 3 昌桥剖面稀土元素地球化学特征
Table 3. The REE geochemical characteristics in Changqiao Section
地层 样品号 TOC(%) ∑REE(mg/g) LREE(mg/g) HREE(mg/g) L/H LaN/ YbN LaN/ SmN GdN/ YbN δEu δCe Lan/ Ybn Ceanom 大隆组 P2d-01 0.15 192.59 173.51 19.08 9.09 12.24 3.74 2.12 0.60 0.82 1.76 -0.10 P2d-03 0.47 131.24 117.50 13.74 8.55 11.38 4.74 1.56 0.60 0.69 1.63 -0.19 P2d-07 3.86 310.81 288.70 22.11 13.06 14.10 5.32 1.46 0.56 0.92 2.02 -0.05 P2d-09 1.25 296.57 275.08 21.49 12.80 13.94 5.28 1.53 0.60 0.93 2.00 -0.05 P2d-10 0.95 332.41 305.22 27.19 11.23 13.46 4.37 1.73 0.56 0.88 1.93 -0.08 P2d-11 7.72 336.85 311.77 25.08 12.43 12.55 3.70 1.55 0.47 0.90 1.80 -0.06 P2d-12 1.23 218.44 201.71 16.73 12.06 12.57 5.35 1.30 0.57 0.92 1.80 -0.05 P2d-13 0.66 293.04 273.34 19.70 13.88 14.00 4.16 1.50 0.54 0.91 2.01 -0.05 龙潭组 P2l-05 1.28 346.38 303.78 42.60 7.13 8.37 3.49 1.83 0.56 0.90 1.20 -0.06 P2l-06 4.48 216.64 197.30 19.34 10.20 10.72 5.09 1.28 0.65 0.91 1.54 -0.05 P2l-07 1.06 151.63 134.80 16.83 8.01 7.68 2.08 1.77 0.69 0.88 1.10 -0.09 孤峰组 P1g-04 0.46 254.79 231.45 23.34 9.92 11.50 4.14 1.80 0.64 0.93 1.65 -0.05 P1g-06 0.03 266.02 240.87 25.15 9.58 10.83 3.99 1.74 0.64 0.93 1.55 -0.05 P1g-08 0.63 268.90 243.15 25.75 9.44 10.78 4.02 1.73 0.65 0.93 1.54 -0.05 P1g-10 0.86 264.03 238.14 25.89 9.20 11.16 3.95 1.94 0.64 0.94 1.60 -0.05 P1g-11 0.72 266.05 241.72 24.33 9.94 11.10 4.10 1.68 0.63 0.93 1.59 -0.05 注:稀土元素总量∑REE=La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;轻稀土元素总量LREE=La+Ce+ Pr +Nd+Sm+Eu;重稀土元素含量HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;L/H为轻稀土含量与重稀土含量之比;LaN/YbN、LaN/SmN和GdN/YbN均为经过球粒陨石标准化后的比值;δEu=EuN/(SmN×GdN)1/2;δCe=CeN/(LaN×PrN)1/2;Lan/Ybn为北美页岩标准化后的比值;Ceanom(铈异常指数)=lg[3Cen/(2Lan+Ndn)]. 表 4 研究区样品与不同构造背景沉积盆地杂砂岩的REE特征对比
Table 4. The comparison of REE characteristic parameters with those from graywackes in different settings
构造背景 La(μg/g) Ce(μg/g) ∑REE(μg/g) La/Yb LREE/HREE LaN/YbN δEu 大洋岛弧 8±1.7 19±3.7 58±10 4.2±1.3 3.8±0.9 2.8±0.9 1.04±0.11 大陆岛弧 27±4.5 59±8.2 146±20 11.0±3.6 7.7±1.7 7.5±2.5 0.79±0.13 活动大陆边缘 37.00 78.00 186.00 12.50 9.10 8.50 0.60 被动大陆边缘 39.00 85.00 210.00 15.90 8.50 10.80 0.56 研究区平均值 58.34 106.21 259.15 17.24 10.41 11.65 0.60 校正后 48.62 88.51 215.96 17.24 10.41 11.65 0.60 注:参考数据引自文献(Bhatia,1985),校正值=平均值/1.2. -
Allègre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1):1-25. https://doi.org/10.1016/0012-821x(78)90123-1 Berry, W. B. N., Wilde, P., 1978. Progressive Ventilation of the Oceans:An Explanation for the Distribution of the Lower Paleozoic Black Shales. American Journal of Science, 278(3):257-275. https://doi.org/10.2475/ajs.278.3.257 Bhatia, M. R., 1985. Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks:Provenance and Tectonic Control. Sedimentary Geology, 45(1/2):97-113. https://doi.org/10.1016/0037-0738(85)90025-9 Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2):181-193. https://doi.org/10.1007/BF00375292 Cai, Z.R., Xia, B., Huang, Q.T., et al., 2015. Comparative Study of the Tectonic Setting on the Formation and Preservation of Paleozoic Shale Gas between the Upper Yangtze and the Lower Yangtze Platforms. Natural Gas Geoscience, 26(8):1446-1454 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TDKX201508003.htm Chen, P., Zhang, M.Q., Xu, Y.Z., et al., 2013. The Shale Reservoir Characteristic of Dalong Formation, Upper Permian in Chaohu-Jingxian, Lower Yangtze Area. Acta Petrologica Sinica, 29(8):2925-2935 (in Chinese with English abstract). http://www.researchgate.net/publication/279584275_The_shale_reservoir_characteristic_of_Dalong_Formation_Upper_Permian_in_Chaohu-Jingxian_Lower_Yangtze_area Condie, K. C., 1993. Chemical Composition and Evolution of the Upper Continental Crust:Contrasting Results from Surface Samples and Shales. Chemical Geology, 104:1-37. https://doi.org/10.1016/0009-2541(93)90140-E Deng, Y.N., Guo, Q.J., Zhu, M.Y., et al., 2014. Black Rock Series in Western Hunan. Earth Science, 39(3):283-292 (in Chinese with English abstract). Dong, D.Z., Cheng, K.M., Wang, Y.M., et al., 2010. Forming Conditions and Characteristics of Shale Gas in the Lower Paleozoic of the Upper Yangtze Region, China. Oil & Gas Geology, 31(3):288-299, 308 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201003008.htm Du, X. B., Song, X. D., Zhang, M. Q., et al., 2015. Shale Gas Potential of the Lower Permian Gufeng Formation in the Western Area of the Lower Yangtze Platform, China. Marine and Petroleum Geology, 67(67):526-543. https://doi.org/10.1016/j.marpetgeo.2015.05.031 Du, Y.L., Li, S.Y., Wang, B., et al., 2011. Diagenesis of the Lower-Middle Permian Carbonate in the Wuwei-Chaohui Area, Anhui Province. Acta Geologica Sinica, 85(4):543-556 (in Chinese with English abstract). http://www.cqvip.com/QK/95080X/20114/38280140.html Elderfield, H., Greaves, M. J., 1982. The Rare Earth Elements in Seawater. Nature, 296(5854):214-219. https://doi.org/10.1038/296214a0 Floyd, P. A., Leveridge, B. E., 1987. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall:Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society, 144(4):531-542. https://doi.org/10.1144/gsjgs.144.4.0531 Haskin, L. A., Wildeman, T. R., Frey, F. A., et al., 1966. Rare Earths in Sediments. Journal of Geophysical Research Atmospheres, 71(24):6091-6105. https://doi.org/10.1029/jz071i024p06091 Huang, B.J., Shi, R.F., Zhao, X.B., et al., 2013. Geological Conditions of Paleozoic Shale Gas Formation and Its Exploration Potential in the South Anhui, Lower Yangtze Area. Journal of China Coal Society, 38(5):877-882 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000005/art00026 Lan, X.H., Li, R.H., Mi, B.B., et al., 2016. Distribution Characteristics of Rare Earth Elements in Surface Sediment and Their Provenance Discrimination in the Eastern Bohai and Northern Yellow Seas. Earth Science, 41(3):463-474 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603012.htm Liang, C., Jiang, Z. X., Zhang, C. M., et al., 2014. The Shale Characteristics and Shale Gas Exploration Prospects of the Lower Silurian Longmaxi Shale, Sichuan Basin, South China. Journal of Natural Gas Science and Engineering, 21:636-648. https://doi.org/10.1016/j.jngse.2014.09.034 Liu, J.G., Chen, Z., Yan, W., et al., 2010. Geochemical Characteristics of Rare Earth Elements in the Fine-Grained Fraction of Surface Sediment from South China Sea. Earth Science, 35(4):563-571 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201004010.htm Liu, Y.J., Cao, L.M., Li, Z.L., et al., 1984. Elemental Geochemistry. Science Press, Beijing (in Chinese) Pan, J.P., Qiao, D.W., Li, S.Z., et al., 2011. Shale-Gas Geological Conditions and Exploration Prospect of the Paleozoic Marine Strata in Lower Yangtze Area, China. Geologcal Bulletin of China, 30(2):337-343 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2011Z1020.htm Pan, L., Chen, G.H., Xu, Q., et al., 2013.Pore Structure Characteristics of Permian Organic-Rich Shale in Lower Yangtze Area.Journal of China Coal Society, 38(5):787-793 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000005/art00011 Pu, B.L., Jiang, Y.L., Wang, Y., et al., 2010. Reservoir-Forming Conditions and Favorable Exploration Zones of Shale Gas in Lower Silurian Longmaxi Formation of Sichuan Basin. Acta Petrolei Sinica, 31(2):225-230 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201002009.htm Tang, K., Wang, X.Q., Chi, Q.H., et al., 2018. Concentration and Spatial Distribution of REE in Geochemical Transect of Xingmeng Orogenic Belt-North China Craton.Earth Science, 43(3):655-671 (in Chinese with English abstract). http://www.researchgate.net/publication/325084067_Concentration_and_Spatial_Distribution_of_REE_in_Geochemical_Transect_of_Xingmeng_Orogenic_Belt-North_China_Craton Wang, Z.G., Yu, X.Y., Zhao, Z.H., et al., 1989.Rare Earth Element Geochemistry.Science Press, Beijing (in Chinese). Wu, H., Yao, S.P., Jiao, K., et al., 2013. Shale-Gas Exploration Prospect of Longtan Formation in the Lower Yangtze Area of China. Journal of China Coal Society, 38(5):870-876 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000005/art00025 Wu, S.H., Feng, Z.Z., He, Y.B., 1994. Study on Anoxic Environments of Permian in the Middle and Lower Yangtze Region. Acta Sedimentologica Sinica, 12(2):29-36 (in Chinese with English abstract). http://www.cqvip.com/QK/95994X/19942/1301318.html Xu, Z.J., Cheng, R.H., Wang, L.L., et al., 2013. Mineralogical and Element Geochemical Characteristics of the LateTriassic-Middle Jurassic Sedimentary Rocks in Southwestern Fujian Province:Constraints on Changes of Basin Tectonic Settings. Acta Petrologica Sinica, 29(8):2913-2924 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201308027.htm Yan, D.Y., Huang, W.H., Lu, X.X., et al., 2016. Contrast of Reservoir-Forming Conditions of Marine-Continental Transitional Shale Gas in Different Sedimentary Environments in the Lower Yangtze Area of China. Journal of China Coal Society, 41(7):1778-1787 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB201607024.htm Yan, J. F., Men, Y. P., Sun, Y. Y., et al., 2016. Geochemical and Geological Characteristics of the Lower Cambrian Shales in the Middle-Upper Yangtze Area of South China and Their Implication for the Shale Gas Exploration. Marine and Petroleum Geology, 70:1-13. https://doi.org/10.1016/j.marpetgeo.2015.11.010 Yang, S.Y., Li, C.X., 1999. Research Progress in REE Tracer for Sediment Source. Advances in Earth Science, 14(2):164-167 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ902.009.htm Zhang, J. Z., Li, X. Q., Zhang, X. Q., et al., 2018. Geochemical and Geological Characterization of Marine-Continental Transitional Shales from Longtan Formation in Yangtze Area, South China. Marine and Petroleum Geology, 96:1-15. https://doi.org/10.1016/j.marpetgeo.2018.05.020 Zhao, M., Shao, L., Liang, J.S., et al., 2013. REE Character of Sediment from the Paleo-Red River and Its Implication of Provenance. Earth Science, 38(Suppl.1):61-69 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX2013S1008.htm Zheng, T.L., Deng, Y.M., Lu, Z.J., et al., 2017. Geochemistry and Implications of Rare Earth Elements in Arsenic-Affected Shallow Aquifer from Jianghan Plain, Central China. Earth Science, 42(5):693-706 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705004.htm Zou, C. N., Dong, D. Z., Wang, S. J., et al., 2010. Geological Characteristics and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6):641-653. https://doi.org/10.1016/S1876-3804(11)60001-3 蔡周荣, 夏斌, 黄强太, 等, 2015.上、下扬子区古生界页岩气形成和保存的构造背景对比分析.天然气地球科学, 26(8):1446-1454. http://qikan.cqvip.com/Qikan/Article/Detail?id=666084682 陈平, 张敏强, 许永哲, 等, 2013.下扬子巢湖-泾县地区上二叠统大隆组泥页岩储层特征.岩石学报, 29(8):2925-2935. http://www.cqvip.com/QK/94579X/201308/46853941.html 邓义楠, 郭庆军, 朱茂炎, 等, 2014.湘西寒武纪早期黑色岩系中干酪根的稀土元素地球化学特征.地球科学, 39(3):283-292. doi: 10.3799/dqkx.2014.027 董大忠, 程克明, 王玉满, 等, 2010.中国上扬子区下古生界页岩气形成条件及特征.石油与天然气地质, 31(3):288-299, 308. http://www.cnki.com.cn/Article/CJFDTotal-SYYT201003008.htm 杜叶龙, 李双应, 王冰, 等, 2011.安徽无为-巢湖地区中下二叠统碳酸盐岩成岩作用.地质学报, 85(4):543-556. http://www.cqvip.com/QK/95080X/20114/38280140.html 黄保家, 施荣富, 赵幸滨, 等, 2013.下扬子皖南地区古生界页岩气形成条件及勘探潜力评价.煤炭学报, 38(5):877-882. http://d.wanfangdata.com.cn/Periodical/mtxb201305027 蓝先洪, 李日辉, 密蓓蓓, 等, 2016.渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别.地球科学, 41(3):463-474. doi: 10.3799/dqkx.2016.038 刘建国, 陈忠, 颜文, 等, 2010.南海表层沉积物中细粒组分的稀土元素地球化学特征.地球科学, 35(4):563-571. doi: 10.3799/dqkx.2010.072 刘英俊, 曹励明, 李兆麟, 等, 1984.元素地球化学.北京:科学出版社. 潘继平, 乔德武, 李世臻, 等, 2011.下扬子地区古生界页岩气地质条件与勘探前景.地质通报, 30(2-3):337-343. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD2011Z1020.htm 潘磊, 陈桂华, 徐强, 等, 2013.下扬子地区二叠系富有机质泥页岩孔隙结构特征.煤炭学报, 38(5):787-793. http://www.cqvip.com/QK/96550X/20135/46172582.html 蒲泊伶, 蒋有录, 王毅, 等, 2010.四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析.石油学报, 31(2):225-230. http://d.wanfangdata.com.cn/Periodical/syxb201002008 唐坤, 王学求, 迟清华, 等, 2018.兴蒙-华北地球化学走廊带稀土元素含量与空间分布.地球科学, 43(3):655-671. doi: 10.3799/dqkx.2018.901 王中刚, 于学元, 赵振华, 等, 1989.稀土元素地球化学.北京:科学出版社. 吴浩, 姚素平, 焦堃, 等, 2013.下扬子区上二叠统龙潭组页岩气勘探前景.煤炭学报, 38(5):870-876. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201305029.htm 吴胜和, 冯增昭, 何幼斌, 1994.中下扬子地区二叠纪缺氧环境研究.沉积学报, 12(2):29-36. http://qikan.cqvip.com/Qikan/Article/Detail?id=1301318 许中杰, 程日辉, 王嘹亮, 等, 2013.闽西南地区晚三叠-中侏罗世沉积岩矿物和元素地球化学特征:对盆地构造背景转变的约束.岩石学报, 29(8):2913-2924. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201308027.htm 闫德宇, 黄文辉, 陆小霞, 等, 2016.下扬子区海陆过渡相不同沉积环境页岩气成藏条件对比.煤炭学报, 41(7):1778-1787. http://d.wanfangdata.com.cn/Periodical/mtxb201607024 杨守业, 李从先, 1999.REE示踪沉积物物源研究进展.地球科学进展, 14(2):164-167. http://d.wanfangdata.com.cn/periodical/dqkxjz199902010 赵梦, 邵磊, 梁建设, 等, 2013.古红河沉积物稀土元素特征及其物源指示意义.地球科学, 38(增刊1):61-69. http://www.cnki.com.cn/Article/CJFDTotal-DQKX2013S1008.htm 郑天亮, 邓娅敏, 鲁宗杰, 等, 2017.江汉平原浅层含砷地下水稀土元素特征及其指示意义.地球科学, 42(5):693-706. doi: 10.3799/dqkx.2017.057