• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    伊拉克M油田白垩系Mishrif组潟湖环境碳酸盐岩储集层成因机理

    李峰峰 郭睿 刘立峰 宋世琦

    李峰峰, 郭睿, 刘立峰, 宋世琦, 2021. 伊拉克M油田白垩系Mishrif组潟湖环境碳酸盐岩储集层成因机理. 地球科学, 46(1): 228-241. doi: 10.3799/dqkx.2019.281
    引用本文: 李峰峰, 郭睿, 刘立峰, 宋世琦, 2021. 伊拉克M油田白垩系Mishrif组潟湖环境碳酸盐岩储集层成因机理. 地球科学, 46(1): 228-241. doi: 10.3799/dqkx.2019.281
    Li Fengfeng, Guo Rui, Liu Lifeng, Song Shiqi, 2021. Genesis of Reservoirs of Lagoon in the Mishrif Formation, M Oilfield, Iraq. Earth Science, 46(1): 228-241. doi: 10.3799/dqkx.2019.281
    Citation: Li Fengfeng, Guo Rui, Liu Lifeng, Song Shiqi, 2021. Genesis of Reservoirs of Lagoon in the Mishrif Formation, M Oilfield, Iraq. Earth Science, 46(1): 228-241. doi: 10.3799/dqkx.2019.281

    伊拉克M油田白垩系Mishrif组潟湖环境碳酸盐岩储集层成因机理

    doi: 10.3799/dqkx.2019.281
    基金项目: 

    国家科技重大专项“伊拉克大型生物碎屑灰岩油藏注水开发关键技术研究与应用” 2017ZX05030-001

    详细信息
      作者简介:

      李峰峰(1990-), 男, 博士研究生, 主要从事碳酸盐岩储层与沉积等方面的工作.ORCID:0000-0002-1171-3984.E-mail:18810853190@163.com

    • 中图分类号: P618.130

    Genesis of Reservoirs of Lagoon in the Mishrif Formation, M Oilfield, Iraq

    • 摘要: 为深化潟湖相碳酸盐岩储集层非均质性认识,以伊拉克M油田白垩系Mishrif组为例,基于岩心观察、物性分析数据、铸体薄片及压汞实验,对潟湖相储集层特征及成因机理开展研究.结果显示:研究区潟湖环境岩石类型复杂,生物碎屑具有多样性,储集层以低渗、特低渗为主,孔隙度分布范围宽,发育大量的基质微孔、铸模孔和晶间孔.储集层强非均质性是复杂沉积作用和差异成岩作用的结果.潟湖沉积物泥质含量高,发育大量基质微孔,与生物扰动作用相伴生的埋藏白云化作用可形成晶间孔,易溶型生物碎屑被选择性溶蚀形成大量的铸模孔.研究认为:潟湖沉积物原始物性较低,后期成岩作用可改善储集层物性.生物扰动期次、扰动强度、充填物类型、环境的封闭性及外来流体性质等因素控制了潜穴中充填物的改造趋势;生屑类型、成岩序列和成岩环境等影响了沉积物中铸模孔的发育和保存.综合潜穴充填物类型、生屑类型、成岩环境和成岩作用等因素,建立了生物扰动成因孔隙模式和铸模孔发育模式.

       

    • 图  1  伊拉克M油田构造地理位置和Mishrif组沉积模式

      据(Aqrawi et al., 2010

      Fig.  1.  Structure location of M oilfield in Iraq and depositional mode of the Mishrif Formation

      图  2  M油田Mishrif组地层综合柱状图

      Fig.  2.  Comprehensive column scheme of the Mishrif Formation of M oilfield in Iraq

      图  3  M油田Mishrif组潟湖相储集层特征

      Fig.  3.  Characteristics of lagoon reservoir in Mishrif Formation, M oilfield

      图  4  M油田Mishrif组潟湖相储层生物扰动特征

      Fig.  4.  Bioturbation characteristics of lagoon reservoir in Mishrif Formation, M oilfield

      图  5  M油田Mishrif组潟湖相地层生物扰动叠加示意图

      Fig.  5.  Bioturbation superposition diagram characteristics of lagoon in Mishrif Formation, M oilfield

      图  6  M油田Mishrif组潟湖相储层生物扰动充填物特征

      Fig.  6.  Infill materials characteristics in burrow of lagoon reservoir in Mishrif Formation, M oilfield

      图  7  M油田Mishrif组潟湖相渗流通道特征

      Fig.  7.  Seepage channel characteristics of lagoon reservoir in Mishrif Formation, M oilfield

      图  8  M油田Mishrif组潟湖相储层生物扰动成因孔隙发育模式

      Fig.  8.  Bioturbation cause pore development model of lagoon reservoir in Mishrif Formation, M oilfield

      图  9  M油田Mishrif组潟湖相储层铸模孔类型

      Fig.  9.  Mold pore of lagoon reservoir in Mishrif Formation, M oilfield

      图  10  M油田Mishrif组潟湖相储层铸模孔发育模式

      Fig.  10.  Mold pore development mode of lagoon reservoir in Mishrif Formation, M oilfield

    • Aqrawi, A.A.M., Goff, J.C., Horbury, A.D., et al., 2010. The Petroleum Geology of Iraq. Scientific Press, London.
      Bąbel, M., 2007. Depositional Environments of a Salina-Type Evaporite Basin Recorded in the Badenian Gypsum Facies in the Northern Carpathian Foredeep. Geological Society, London, Special Publications, 285(1):107-142. https://doi.org/10.1144/sp285.7
      Baniak, G. M., Amskold, L., Konhauser, K. O., et al., 2014a. Sabkha and Burrow-Mediated Dolomitization in the Mississippian Debolt Formation, Northwestern Alberta, Canada. Ichnos, 21(3):158-174. https://doi.org/10.1080/10420940.2014.930036
      Baniak, G. M., Gingras, M. K., Burns, B. A., et al., 2014b. An Example of a Highly Bioturbated, Storm-Influenced Shoreface Deposit:Upper Jurassic Ula Formation, Norwegian North Sea. Sedimentology, 61(5):1261-1285. https://doi.org/10.1111/sed.12100
      Baniak, G. M., Gingras, M. K., Pemberton, S. G., 2013. Reservoir Characterization of Burrow-Associated Dolomites in the Upper Devonian Wabamun Group, Pine Creek Gas Field, Central Alberta, Canada. Marine and Petroleum Geology, 48:275-292. https://doi.org/10.1016/j.marpetgeo.2013.08.020
      Bi, Y.Q., Tian, H.Q., Zhao, Y.S., et al., 2001. On the Micrite Envelope to Restoration of Primary Texture Character of Secondary Dolomites and Its Significance. Acta Petrologica Sinica, 17(3):491-496 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB200103018.htm
      Choquette, P.W., Pray, L.C., 1970. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. AAPG Bulletin, 54(2):207-250. https://doi.org/10.1306/5d25c98b-16c1-11d7-8645000102c1865d
      Corlett, H. J., Jones, B., 2012. Petrographic and Geochemical Contrasts between Calcite- and Dolomite-Filled Burrows in the Middle Devonian Lonely Bay Formation, Northwest Territories, Canada:Implications for Dolomite Formation in Paleozoic Burrows. Journal of Sedimentary Research, 82(9):648-663. https://doi.org/10.2110/jsr.2012.57
      Gao, Z. Q., Ding, Q. N., Hu, X. L., 2015. Characteristics and Controlling Factors of Carbonate Intra-Platform Shoals in the Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 127:20-34. https://doi.org/10.1016/j.petrol.2015.01.027
      Gingras, M. K., Pemberton, S. G., Mendoza, C. A., et al., 1999. Assessing the Anisotropic Permeability of Glossifungites Surfaces. Petroleum Geoscience, 5(4):349-357. https://doi.org/10.1144/petgeo.5.4.349
      Gingras, M. K., Pemberton, S. G., Muelenbachs, K., et al., 2004. Conceptual Models for Burrow-Related, Selective Dolomitization with Textural and Isotopic Evidence from the Tyndall Stone, Canada. Geobiology, 2(1):21-30. https://doi.org/10.1111/j.1472-4677.2004.00022.x
      Huang, Z.S., Yang, X.F., Wang, X.Z., et al., 2019.Sedimentary Facies and the Reservoir of the Lower Cambrian Longwangmiao Formation in Northern Sichuan Basin, China. Marine Origin Petroleum Geology, 24(1):1-8(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HXYQ201901001.htm
      Jin, Z.K., Shi, L., Gao, B.S., et al., 2013. Carbonate Facies and Facies Models. Acta Sedimentologica Sinica, 31(6):965-979 (in Chinese with English abstract).
      Johnson, C.C., 2002. The Rise and Fall of Rudist Reefs:Reefs of the Dinosaur Era Were Dominated Not by Corals But by Odd Mollusks, Which Died off at the End of the Cretaceous From Causes Yet to be Discovered. American Scientist, 90(2):148-153. https://doi.org/10.2307/27857629.
      Kang, Y.Z., 2013. Status of World Hydrocarbon Resource Potential and Strategic Thinking of Overseas Oil and Gas Projects for China. Natural Gas Industry, 33(3):1-4 (in Chinese with English abstract). http://www.researchgate.net/publication/298289497_Status_of_world_hydrocarbon_resource_potential_and_strategic_thinking_of_overseas_oil_and_gas_projects_for_China
      La Croix, A. D., Gingras, M. K., Pemberton, S. G., et al., 2013. Biogenically Enhanced Reservoir Properties in the Medicine Hat Gas Field, Alberta, Canada. Marine and Petroleum Geology, 43:464-477. https://doi.org/10.1016/j.marpetgeo.2012.12.002
      Mahdi, T. A., Aqrawi, A. A., Horbury, A. D., et al., 2013.Sedimentological Characterization of the Mid-Cretaceous Mishrif Reservoir in Southern Mesopotamian Basin, Iraq. Geo Arabia, 18(1):139-174.
      Mu, L.X., Pan, X.H., Tian, Z.J., et al., 2013. The Overseas Hydrocarbon Resources Strategy of Chinese Oil-Gas Companies. Acta Petroleum Sinica, 34(5):1023-1030 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201305029.htm
      Ni, X.F., Huang, L.L., Chen, Y.Q., et al., 2017.Characteristics and Main Controlling Factors of the Cambrian Pre-salt Dolomite Reservoirs in Tazhong Block, Tarim Basin. Oil & Gas Geology, 38(3):489-498 (in Chinese with English abstract). http://www.researchgate.net/publication/319345942_Characteristics_and_main_controlling_factors_of_the_Cambrian_pre-salt_dolomite_reservoirs_in_Tazhong_Block_Tarim_Basin
      Niu, Y.B., Cui, S.L., Hu, Y.Z., et al., 2018.Three-Dimensional Reconstruction of the Ordovician Bio-Disturbing Reservoir in Tahe Oilfield and Its Enlightenment Significance. Journal of Palaeogeography, 20(4):691-702 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201804013.htm
      Ortí, F., Rosell, L., Anadón, P., 2010. Diagenetic Gypsum Related to Sulfur Deposits in Evaporites (Libros Gypsum, Miocene, NE Spain). Sedimentary Geology, 228(3/4):304-318. https://doi.org/10.1016/j.sedgeo.2010.05.005
      Rao, X., Anderson, A., Skelton, P. W., et al., 2015. Mid-Cretaceous Rudists (Bivalvia:Hippuritida) from the Langshan Formation, Lhasa Block, Tibet. Papers in Palaeontology, 1(4):401-424. https://doi.org/10.1002/spp2.1019
      Sadooni, F. N., 1996. Stratigraphic and Lithological Characteristics of Upper Cretaceous Carbonates in Central Iraq. Journal of Petroleum Geology, 19(3):271-288. https://doi.org/10.1111/j.1747-5457.1996.tb00434.x.
      Sadooni, F. N., 2005. The Nature and Origin of Upper Cretaceous Basin-Margin Rudist Buildups of the Mesopotamian Basin, Southern Iraq, with Consideration of Possible Hydrocarbon Stratigraphic Entrapment. Cretaceous Research, 26(2):213-224. https://doi.org/10.1016/j.cretres.2004.11.016
      Saller, A.H., Henderson, N., 2001. Distribution of Porosity and Permeability in Platform Dolomites:Insight from the Permian of West Texas:Reply. AAPG Bulletin, 85(3):530-532. https://doi.org/10.1016/S0377-0273(98)00026-2
      Stanley, G. D. Jr., 2003. The Evolution of Modern Corals and their Early History. Earth-Science Reviews, 60(3/4):195-225. https://doi.org/10.1016/s0012-8252(02)00104-6
      Tian, Y., Xu, H., Zhang, X.Y., et al., 2017. Sedimentary Characteristics, Distribution Regularities and Main Controlling Factors of Carbonate Intra-Platform Shoal Reservoir:A Case Study of Intra-Platform Shoal Gas Field in the Amu Darya Basin. Earth Science Frontiers, 24(6):312-321 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201706027.htm
      Wagner, C.W., van der Togt, C., 1973. Holocene Sediment Types and Their Distribution in the Southern Persian Gulf. In: Purser, B.H., ed., The Persian Gulf: Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea. Springer, New York, 471.
      Wang, Y.W., Chen, H.H., Cao, Z.C., et al., 2019.Forming Mechanism of Ordovician Microbial Carbonate Reservoir in Northern Slope of Tazhong Uplift, Tarim Basin. Earth Sicence, 44(2):559-571 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201902019.htm
      Weber, J. N., Woodhead, P. M. J., 1972. Carbonate Lagoon and Beach Sediments of Tarawa Atoll, Gilbert Islands. Atoll Research Bulletin, 157:1-21. https://doi.org/10.5479/si.00775630.157.1
      Wei, D., Gao, Z. Q., Fan, T. L., et al., 2017. Experimental Hydraulic Fracture Propagation on Naturally Tight Intra-Platform Shoal Carbonate. Journal of Petroleum Science and Engineering, 157:980-989. https://doi.org/10.1016/j.petrol.2017.08.016
      Wu, H.Y., Wang, J.G., Wang, P.X., et al., 2018.Genesis of Dolomite Reservoir of Middle-Lower Cambrian in Nanpu Sag, Bohai Bay Basin. Acta Petrolei Sinica, 39(4):416-426 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201804005.htm
      Xing, F.C., Hu, H.R., Hou, M.C., et al., 2018. Carbonate Reservoirs Cycles and Assemblages under the Tectonic and Palaeogeography Control:A Case Study from Sichuan Basin. Earth Science, 43(10):3540-3552 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810017.htm
      Yang, S.P., Zhang, J.P., Yang, M.F., 2004. Chinese Ichnofossil. Science Press, Beijing (in Chinese).
      Zhang, X.F., Liu, B., Cai, Z.X., et al., 2010. Dolomiteization and Physical Properties of Carbonate Reservoirs. Geological Science and Technology Information, 29(3):79-85 (in Chinese with English abstract).
      Zhang, Y. F., Tan, F., Sun, Y. B., et al., 2018. Differences between Reservoirs in the Intra-Platform and Platform Margin Reef-Shoal Complexes of the Upper Ordovician Lianglitag Formation in the Tazhong Oil Field, NW China, and Corresponding Exploration Strategies. Marine and Petroleum Geology, 98:66-78. https://doi.org/10.1016/j.marpetgeo.2018.07.013
      Zhang, Z.H., Qiao, Z.F., Pan, W.Q., et al., 2017. Formation and Development of Reef-Shoal Reservoir:Extending Knowledge From the Dissolution Experiment. Marine Origin Petroleum Geology, 22(03):57-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ201703007.htm
      Zhao, W.Z., Shen, A.J., Hu, A.P., et al., 2015.A Discussion on the Geological Background of Marine Carbonate Reservoirs Development in Tarim, Sichuan and Ordos Basin, China. Acta Petrologica Sinica, 31(11):3495-3508 (in Chinese with English abstract). http://www.researchgate.net/publication/290276073_A_Discussion_on_the_geological_background_of_marine_carbonate_reservoirs_development_in_Tarim_Sichuan_and_Ordos_Basin_China
      Zhou, J.G., Zhang, F., Guo, Q.X., et al., 2011.Barrier-Lagoon Sedimentary Model and Reservoir Distribution Regularity of Lower-Ordovician Majiagou Formation in Ordos Basin.Acta Sedimentologica Sinica, 29(1):64-71 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201101008.htm
      Zhu, X.M., 2008 Sedimentary Petrology (4th Edition). Petroleum Industry Press, Beijing(in Chinese).
      毕义泉, 田海芹, 赵勇生, 等, 2001.论泥晶套与次生白云岩原岩结构特征的恢复及意义.岩石学报, 17(3):491-496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103018.htm
      黄梓桑, 杨雪飞, 王兴志, 等, 2019.川北地区下寒武统龙王庙组沉积相及与储层的关系.海相油气地质, 24(1):1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201901001.htm
      金振奎, 石良, 高白水, 等, 2013.碳酸盐岩沉积相及相模式.沉积学报, 31(6):965-979. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306003.htm
      康玉柱, 2013.世界油气资源潜力及中国海外油气发展战略思考.天然气工业, 33(3):1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201303000.htm
      穆龙新, 潘校华, 田作基, 等, 2013.中国石油公司海外油气资源战略.石油学报, 34(5):1023-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305029.htm
      倪新锋, 黄理力, 陈永权, 等, 2017.塔中地区深层寒武系盐下白云岩储层特征及主控因素.石油与天然气地质, 38(3):489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703008.htm
      牛永斌, 崔胜利, 胡亚洲, 等, 2018.塔河油田奥陶系生物扰动型储集层的三维重构及启示意义.古地理学报, 20(04):691-702. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201804013.htm
      田雨, 徐洪, 张兴阳, 等, 2017.碳酸盐岩台内滩储层沉积特征, 分布规律及主控因素研究:以阿姆河盆地台内滩气田为例.地学前缘, 24(6):312-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706027.htm
      王玉伟, 陈红汉, 曹自成, 等, 2019.塔里木盆地塔中北坡奥陶系微生物碳酸盐岩储层形成机制与评价.地球科学, 44(02):559-571. doi: 10.3799/dqkx.2018.121
      吴和源, 汪建国, 王培玺, 等, 2018.渤海湾盆地南堡凹陷中-下寒武统白云岩成因及储层形成机理.石油学报, 39(4):416-426. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804005.htm
      邢凤存, 胡华蕊, 侯明才, 等, 2018.构造和古地理控制下的碳酸盐岩储集体旋回和集群性探讨:以四川盆地为例.地球科学, 43(10):3540-3552. doi: 10.3799/dqkx.2018.310
      杨式溥, 张建平, 杨美芳, 2004.中国遗迹化石.北京:科学出版社.
      张学丰, 刘波, 蔡忠贤, 等, 2010.白云岩化作用与碳酸盐岩储层物性.地质科技情报, 29(3):79-85. doi: 10.3969/j.issn.1000-7849.2010.03.012
      张正红, 乔占峰, 潘文庆, 等, 2017.碳酸盐岩礁滩储层的形成和发育规律-溶蚀模拟实验.海相油气地质, 22(03):57-66. doi: 10.3969/j.issn.1672-9854.2017.03.007
      赵文智, 沈安江, 胡安平, 等, 2015.塔里木, 四川和鄂尔多斯盆地海相碳酸盐岩规模储层发育地质背景初探.岩石学报, 31(11):3495-3508. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201511024.htm
      周进高, 张帆, 郭庆新, 等, 2011.鄂尔多斯盆地下奥陶统马家沟组障壁潟湖沉积相模式及有利储层分布规律.沉积学报, 29(1):64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201101008.htm
      朱筱敏, 2008.沉积岩石学(第四版).北京:石油工业出版社.
    • 加载中
    图(10)
    计量
    • 文章访问数:  1255
    • HTML全文浏览量:  1132
    • PDF下载量:  67
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-11-19
    • 刊出日期:  2021-01-15

    目录

      /

      返回文章
      返回