FIB-TEM Study of Mineral Inclusions in Chromite
-
摘要: 铬铁矿矿物包裹体可以记录其成岩成矿时物理化学条件(温度、压力等)、化学成分演化、熔/流体富集活动规律等关键信息.然而传统的二维分析方法无法全面获取形态微小、成分复杂的包裹体信息.通过聚焦离子束-透射电镜(FIB-TEM)联用对华北克拉通遵化豆荚状铬铁矿中矿物包裹体进行观察测试,在三维空间上发现包裹体的矿物种类丰富(硅酸盐、铂族、碳酸盐等),矿物形态复杂多变,且包裹体矿物中发育位错、部分开放晶界/相界、熔流体痕迹等显微-超显微结构.因此综合矿物种类、形态、显微结构等信息推断遵化铬铁矿具有复杂的形成条件和演化过程.Abstract: Mineral inclusions in chromite can record key information of physicochemical conditions (pressure, temperature, etc.), evolution of chemical composition, mechanics of fluid enrichment activities when chromite and its host rock form. However, traditional two-dimensional analytical methods cannot fully reveal the information in tiny and complex inclusions. In this paper, mineral inclusions in the Zunhua podiform chromite from the North China craton were observed and tested by the focused ion beam combined with transmission electron microscopy (FIB-TEM). The mineral types of inclusions are various and mainly include silicate, platinum group mineral, carbonate, and so on. The morphology of these mineral inclusions is also various and complex. Many microstructures and ultra-microstructures are developed in these mineral inclusions such as dislocations, partially open grain/phase boundaries, fluid- or melt-present marks. Therefore, it can be inferred that the Zunhua chromite has complex formation conditions and evolution processes based on the information of mineral types, morphology, and microstructures.
-
图 1 华北克拉通构造简图(a);研究区详细地质图(b)
a图改自Kusky et al.(2016),图中红框代表研究区所在的位置;豆荚状铬铁矿产出在图b的超镁铁质岩石中
Fig. 1. (a) Tectonic units of the North China Craton and the location of the study area (red square), (b) detailed geological map of the study area
图 2 图 2遵化蛇绿混杂岩中豆荚状铬铁矿的豆状、环状和浸染状结构照片
a.豆状、环状铬铁矿的手标本照片;b.豆状、浸染状结构的岩片抛光图;c.豆状、环状结构铬铁矿的镜下照片(单偏光);d.豆状、环状结构铬铁矿的镜下照片(反射光)
Fig. 2. Images of disseminated, nodular and orbicular textures of podiform chromitite from the Zunhua ophiolitic mélange
图 4 FIB制备TEM观察薄膜的主要步骤
图改自Wirth(2009);a.样品表面的背散射图像,显示了待制样的位置;b.两个“×”以及之间的铂沉积保护层;c.图像显示样品已被切割,待取出;d.配备显微操作器的光学显微镜;e.将FIB制作的样品放置在已喷碳的TEM标准样品铜网载片上
Fig. 4. Major steps of TEM foil prepared by FIB
图 6 遵化蛇绿混杂岩豆荚状铬铁矿中不同类型矿物包裹体的典型背散射电子图像(BSE)
a.橄榄石(Ol);b.角闪石(Amp);c.铂族矿物(PGM);d.菱镁矿(Mgs);e.金红石(Rt);f.两矿物相-角闪石(Amp)+磷灰石(Ap);g.三矿物相-单斜辉石(Cpx)+黑云母(Bt)+磷灰石(Ap);h.四矿物相-黑云母(Bt)+单斜辉石(Cpx)+磷灰石(Ap)+白云石(Dol);i.五矿物相-单斜辉石(Cpx)+黑云母(Bt)+硬石膏(Anh)+角闪石(Amp)+白云石(Dol)
Fig. 6. Typical backscattered electron (BSE) images of different kinds of mineral inclusions in podiform chromite from Zunhua ophiolitic mélange
图 7 铬铁矿中顽火辉石等硅酸盐矿物的光学显微镜照片(a),扫描电镜下的背散射照片(b)以及透射电镜下的高角度环形暗场(HAADF)照片(c)
图b中白线为聚焦离子束(FIB)的切样位置.图c中上部发亮部分为FIB制样过程中保留的铂保护层
Fig. 7. Photomicrograph (a), BSE under scanning electron microscopy (b) and high angle annular dark field (HAADF) image under transmission electron microscopy (c) of silicate minerals such as pyroxene in chromite
图 8 铬铁矿中PGM包体扫描电镜下的背散射照片(a),透射电镜下的高角度环形暗场(HAADF)照片(b)以及PGM包裹体的EDS分析数据(c)
图a中白线代表聚焦离子束(FIB)的切样位置.EDS的分析位置标记在图b
Fig. 8. BSE under scanning electron microscopy(a), high angle annular dark field (HAADF) image under transmission electron microscopy (b) and EDS analyses data (c) of PGM inclusion in chromite
图 9 铬铁矿中贱金属硫化物及其他矿物的光学显微镜照片(a),扫描电镜下的背散射照片(b)以及透射电镜下的高角度环形暗场(HAADF)照片(c)
图b中白线为聚焦离子束(FIB)的切样位置
Fig. 9. Photomicrograph (a), BSE under scanning electron microscopy (b) and high angle annular dark field (HAADF) image under transmission electron microscopy (c) of base metal minerals and other mineral in chromite
-
Ahmed, A.H., Arai, S., Attia, A.K., 2001.Petrological Characteristics of Podiform Chromitites and Associated Peridotites of the Pan African Proterozoic Ophiolite Complexes of Egypt.Mineralium Deposita, 36(1):72-84. https://doi.org/10.1007/s001260050287 Al-Boghdady, A., Economou-Eliopoulos, M., 2005.Fluid Inclusions in Chromite from a Pyroxenite Dike of the Pindos Ophiolite Complex.Geochemistry, 65(2):191-202. https://doi.org/10.1016/j.chemer.2003.07.001 Arai, S., 1997.Origin of Podiform Chromitites.Journal of Asian Earth Sciences, 15(2-3):303-310. https://doi.org/10.1016/s0743-9547(97)00015-9 Arai, S., Ahmed, A.H., 2018.Secular Change of Chromite Concentration Processes from the Archean to the Phanerozoic.Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time.Elsevier, Amsterdam, 139-157. https://doi.org/10.1016/b978-0-12-811159-8.00006-8 Bai, W.J., Shi, N.C., Yang, J.S., et al., 2007.An Assemblage of Simple Oxide Minerals from Ophiolitic Podiform Chromitites in Tibet and Their Ultrahigh Pressure Origin.Acta Geologica Sinica, 81(11):1538-1549(in Chinese with English abstract). Bai, W.J., Yang, J.S., Fang, Q.S., et al., 2001.Study on a Storehouse of Ultrahigh Pressure Mantle Minerals-Podiform Chromite Deposits.Earth Science Frontiers, 8(3):111-121(in Chinese with English abstract). Bukovská, Z., Wirth, R., Morales, L.F.G., 2015.Pressure Solution in Rocks:Focused Ion Beam/Transmission Electron Microscopy Study on Orthogneiss from South Armorican Shear Zone, France.Contributions to Mineralogy & Petrology, 170(3):31. https://doi.org/10.1007/s00410-015-1186-8 Chen, J., Xu, J., Chen, W.X., 2003.A New Technology for Micron-Nanometer Mineral Research:FIB.Geological Bulletin of China, 22(5):371-373(in Chinese with English abstract). Chen, Y.H., Yang, J.S., 2018.Formation of Podiform Chromitite Deposits:Review and Prospects.Earth Science, 43(4):991-1010(in Chinese with English abstract). Chen, Z., Li, J.H., Huang, X.N., et al., 2004.Research on the Formation Mechanism of the Nodular Texture of Archean Podiform Chromitite:Evidence from Podiform Chromitite in Zunhua, North China.Earth Science Frontiers, 11(1):215-223(in Chinese with English abstract). Coleman, R.G., 1977.Ophiolites:Ancient Oceanic Lithosphere? Springer, Heidelberg. El Ghorfi, M., Melcher, F., Oberthür, T., et al., 2008.Platinum Group Minerals in Podiform Chromitites of the Bou Azzer Ophiolite, Anti Atlas, Central Morocco.Mineralogy and Petrology, 92(1-2):59-80. https://doi.org/10.1007/s00710-007-0208-2 Fang, Q.S., Bai, W.J., Yang, J.S., et al., 2013.Titanium, Ti, a New Mineral Species from Luobusha, Tibet, China.Acta Geologica Sinica (English Edition), 87(5):1275-1280. https://doi.org/10.1111/1755-6724.12128 Godel, B., Barnes, S.J., Barnes, S.J., et al., 2010.Platinum Ore in Three Dimensions:Insights from High-Resolution X-Ray Computed Tomography.Geology, 38(12):1127-1130. https://doi.org/10.1130/g31265.1 Han, W., Xiao, S.Q., 2013.Focused Ion Beam (FIB) and Its Applications.Materials China, 32(12):716-727(in Chinese with English abstract). Huang, X.N., Li, J.H., Niu, X.L., et al., 2002.Structural Characteristics of Podiform Chromites in Zunhua Archaean Ophiolite Melange Belt.Mineral Deposits, 21(Suppl.1):330-333(in Chinese with English abstract).. Huang, Y., 2018.Fingerprinting and Geodynamical Significance of Precambrian Podiform Chromite in Zunhua and Miaowan Areas (Dissertation).China University of Geoscieneces, Wuhan(in Chinese with English abstract). Huang, Y., Wang, L., Kusky, T.M., et al., 2017.High-Cr Chromites from the Late Proterozoic Miaowan Ophiolite Complex, South China:Implications for Its Tectonic Environment of Formation.Lithos, 288-289:35-54. https://doi.org/10.1016/j.lithos.2017.07.014 Hull, D., Bacon, D.J., 2011.Introduction to Dislocations.Elsevier, Amsterdam. Institute of Geology, Chinese Academy of Geological Sciences, 1981.The Discovery of Alpine-Type Diamond Bearing Ultrabasic Intrusions in Xizang (Tibet).Geological Review, 27(5):455-475(in Chinese with English abstract). Kiseleva, O.N., Zhmodik, S.M., Damdinov, B.B., et al., 2014.Composition and Evolution of PGE Mineralization in Chromite Ores from the Il'chir Ophiolite Complex (Ospa-Kitoi and Khara-Nur Areas, East Sayan).Russian Geology and Geophysics, 55(2):259-272. https://doi.org/10.1016/j.rgg.2014.01.010 Kruhl, J.H., Wirth, R., Morales, L.F.G., 2013.Quartz Grain Boundaries as Fluid Pathways in Metamorphic Rocks.Journal of Geophysical Research:Solid Earth, 118(5):1957-1967. https://doi.org/10.1002/jgrb.50099 Kusky, T.M., Polat, A., Windley, B.F., et al., 2016.Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis:A Record of Outward Growth of Precambrian Continents.Earth-Science Reviews, 162:387-432. https://doi.org/10.1016/j.earscirev.2016.09.002 Li, J.H., Kusky, T.M., Huang, X.N., 2002.Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton:A Record of Early Oceanic Mantle Processes.GSA Today, 12(7):4-11. doi: 10.1130/1052-5173(2002)012<0004:APCAMT>2.0.CO;2 Li, J.H., Niu, X.L., Huang, X.N., et al., 2002.Podiform Chromitites:A Key to Identify the Ancient Oceanic Lithospheric Relicts.Earth Science Frontiers, 9(4):235-246(in Chinese with English abstract). Li, J.H., Pan, Y.X., 2015.Applications of Transmission Electron Microscopy in the Earth Science.Scientia Sinica Terrae, 45(9):1359-1382(in Chinese). doi: 10.1360/zd2015-45-9-1359 Liu, X., Su, B.X., Bai, Y., et al., 2018.Ca-Enrichment Characteristics of Parental Magmas of Chromitite in Ophiolite:Inference from Mineral Inclusions.Earth Science, 43(4):1038-1050(in Chinese with English abstract). Polat, A., Herzberg, C., Munker, C., et al., 2006.Geochemical and Petrological Evidence for a Suprasubduction Zone Origin of Neoarchean (ca.2.5 Ga) Peridotites, Central Orogenic Belt, North China Craton.Geological Society of America Bulletin, 118(7-8):771-784. https://doi.org/10.1130/b25845.1 Robinson, P.T., Trumbull, R.B., Schmitt, A., et al., 2015.The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites.Gondwana Research, 27(2):486-506. https://doi.org/10.1016/j.gr.2014.06.003 Talkington, R.W., Watkinson, D.H., Whittaker, P.J., et al., 1984.Platinum-Group Minerals and Other Solid Inclusions in Chromite of Ophiolitic Complexes:Occurrence and Petrological Significance.Tschermaks Mineralogische und Petrographische Mitteilungen, 32(4):285-301. Thayer, T.P., 1964.Principal Features and Origin of Podiform Chromite Deposits, and Some Observations on the Guelman-Soridag District, Turkey.Economic Geology, 59(8):1497-1524. https://doi.org/10.2113/gsecongeo.59.8.1497 Tian, Y.Z., Yang, J.S., 2016.Study on the Mineral Inclusions in Sartohay Chromitites.Acta Geologica Sinica, 90(11):3114-3128(in Chinese with English abstract). Wirth, R., 2009.Focused Ion Beam (FIB) Combined with SEM and TEM:Advanced Analytical Tools for Studies of Chemical Composition, Microstructure and Crystal Structure in Geomaterials on a Nanometre Scale.Chemical Geology, 261(3-4):217-229. https://doi.org/10.1016/j.chemgeo.2008.05.019 Wirth, R., Dobrzhinetskaya, L., Harte, B., et al., 2014.High-Fe (Mg, Fe) O Inclusion in Diamond Apparently from the Lowermost Mantle.Earth and Planetary Science Letters, 404:365-375. https://doi.org/10.1016/j.epsl.2014.08.010 Wirth, R., Vollmer, C., Brenker, F., et al., 2007.Inclusions of Nanocrystalline Hydrous Aluminium Silicate "Phase Egg" in Superdeep Diamonds from Juina (Mato Grosso State, Brazil).Earth and Planetary Science Letters, 259(3-4):384-399. https://doi.org/10.1016/j.epsl.2007.04.041 Xiong, F.H., Yang, J.S., Robinson, P.T., et al., 2015.Petrology and Geochemistry of High Cr# Podiform Chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania.Ore Geology Reviews, 70:188-207. https://doi.org/10.1016/j.oregeorev.2015.04.011 Xu, X.Z., Yang, J.S., Robinson, P.T., et al., 2015.Origin of Ultrahigh Pressure and Highly Reduced Minerals in Podiform Chromitites and Associated Mantle Peridotites of the Luobusa Ophiolite, Tibet.Gondwana Research, 27(2):686-700. https://doi.org/10.1016/j.gr.2014.05.010 Yamamoto, S., Komiya, T., Yamamoto, H., et al., 2013.Recycled Crustal Zircons from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet.Island Arc, 22(1):89-103. https://doi.org/10.1111/iar.12011 Yang, J.S., Bai, W.J., Fang, Q.S., et al., 2008.Ultrahigh-Pressure Minerals and New Minerals from the Luobusa Ophiolitic Chromitites in Tibet:A Review.Acta Geoscientica Sinica, 29(3):263-274(in Chinese with English abstract). Yang, J.S., Dobrzhinetskaya, L., Bai, W.J., et al., 2007.Diamond-and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet.Geology, 35(10):875-878. https://doi.org/10.1130/g23766a.1 Yang, J.S., Meng, F.C., Xu, X.Z., et al., 2015.Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals.Gondwana Research, 27(2):459-485. https://doi.org/10.1016/j.gr.2014.07.004 Zhou, M.F., Robinson, P.T., Su, B.X., et al., 2014.Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits:The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments.Gondwana Research, 26(1):262-283. https://doi.org/10.1016/j.gr.2013.12.011 Zhu, Y.F., 2017.Study on Podiform Chromitite and Related Platinum Group Mineral (PGM):Progress and Prospection.Mineral Deposits, 36(4):775-794(in Chinese with English abstract). 白文吉, 施倪承, 杨经绥, 等, 2007.西藏蛇绿岩豆荚状铬铁矿中简单氧化物矿物组合及其超高压成因.地质学报, 81(11):1538-1549. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200711010.htm 白文吉, 杨经绥, 方青松, 等, 2001.寻找超高压地幔矿物的储存库:豆荚状铬铁矿.地学前缘, 8(3):111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200103017.htm 陈晶, 徐军, 陈文雄, 2003.一种可用于微米-纳米级矿物研究的新技术:FIB.地质通报, 22(5):371-373. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200305013.htm 陈艳虹, 杨经绥, 2018.豆荚状铬铁矿床研究回顾与展望.地球科学, 43(4):991-1010. doi: 10.3799/dqkx.2018.704 陈征, 李江海, 黄雄南, 等, 2004.豆荚状铬铁矿豆状结构成因机制探讨:以遵化地区豆荚状铬铁矿为例.地学前缘, 11(1):215-223. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401027.htm 韩伟, 肖思群, 2013.聚焦离子束(FIB)及其应用.中国材料进展, 32(12):716-727. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201312004.htm 黄雄南, 李江海, 牛向龙, 等, 2002.遵化蛇绿混杂岩带中豆荚状铬铁矿的构造特征.矿床地质, 21(增刊1):330-333. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1092.htm 黄阳, 2018.冀东遵化和鄂西庙湾前寒武纪豆荚状铬铁矿的指示特征及地球动力学意义(博士学位论文).武汉: 中国地质大学. 李江海, 牛向龙, 黄雄南, 等, 2002.豆荚状铬铁矿:古大洋岩石圈残片的重要证据.地学前缘, 9(4):235-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200204003.htm 李金华, 潘永信, 2015.透射电子显微镜在地球科学研究中的应用.中国科学:地球科学, 45(9):1359-1382. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509010.htm 刘霞, 苏本勋, 白洋, 等, 2018.蛇绿岩中铬铁岩母岩浆的富Ca特征:矿物包裹体证据.地球科学, 43(4):1038-1050. doi: 10.3799/dqkx.2018.707 田亚洲, 杨经绥, 2016.萨尔托海铬铁矿中的矿物包体研究.地质学报, 90(11):3114-3128. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201611010.htm 杨经绥, 白文吉, 方青松, 等, 2008.西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物.地球学报, 29(3):263-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200803003.htm 中国地质科学院地质研究所金刚石组, 1981.西藏首次发现含金刚石的阿尔卑斯型岩体.地质论评, 27(5):455-457. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198105012.htm 朱永峰, 2017.豆荚状铬铁矿以及其中铂族元素矿物的成因问题:进展与展望.矿床地质, 36(4):775-794. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704001.htm