• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏日土早白垩世高镁流纹质岩石时代、地球化学特征及地质意义

    张建珍 高莲凤 张振国 李广栋 范建军 潘志龙 贠杰 李强 张涛

    张建珍, 高莲凤, 张振国, 李广栋, 范建军, 潘志龙, 贠杰, 李强, 张涛, 2020. 西藏日土早白垩世高镁流纹质岩石时代、地球化学特征及地质意义. 地球科学, 45(8): 2868-2881. doi: 10.3799/dqkx.2020.092
    引用本文: 张建珍, 高莲凤, 张振国, 李广栋, 范建军, 潘志龙, 贠杰, 李强, 张涛, 2020. 西藏日土早白垩世高镁流纹质岩石时代、地球化学特征及地质意义. 地球科学, 45(8): 2868-2881. doi: 10.3799/dqkx.2020.092
    Zhang Jianzhen, Gao Lianfeng, Zhang Zhenguo, Li Guangdong, Fan Jianjun, Pan Zhilong, Yun Jie, Li Qiang, Zhang Tao, 2020. Geochronology, Geochemical Characteristics and Significance of High-Mg Rhyolite Rocks in Early Cretaceous in Ritu, Tibet. Earth Science, 45(8): 2868-2881. doi: 10.3799/dqkx.2020.092
    Citation: Zhang Jianzhen, Gao Lianfeng, Zhang Zhenguo, Li Guangdong, Fan Jianjun, Pan Zhilong, Yun Jie, Li Qiang, Zhang Tao, 2020. Geochronology, Geochemical Characteristics and Significance of High-Mg Rhyolite Rocks in Early Cretaceous in Ritu, Tibet. Earth Science, 45(8): 2868-2881. doi: 10.3799/dqkx.2020.092

    西藏日土早白垩世高镁流纹质岩石时代、地球化学特征及地质意义

    doi: 10.3799/dqkx.2020.092
    基金项目: 

    国家自然科学基金项目 41972004

    中国地质调查局项目 1212011221084

    中国地质调查局项目 1212010711603

    河北省自然科学基金项目 E2019209339

    河北省自然科学基金项目 D2017209236

    详细信息
      作者简介:

      张建珍(1985-), 男, 工程师, 从事区域地质矿产调查与研究.ORCID:0000-0002-1427-4710.E-mail:710966914@qq.com

      通讯作者:

      高莲凤, E-mail:ytgaolf@163.com

    • 中图分类号: P736.22

    Geochronology, Geochemical Characteristics and Significance of High-Mg Rhyolite Rocks in Early Cretaceous in Ritu, Tibet

    • 摘要: 班公湖-怒江洋晚期的构造演化存在诸多争议.以在西藏日土东新发现的高镁流纹质岩石为研究对象,开展了年代学、地球化学等方面的研究.LA-ICP-MS锆石U-Pb测得样品113.69±0.82 Ma(MSWD=2.7)的谐和年龄,证明其为早白垩世晚期岩浆活动的产物.岩石地球化学分析显示,样品具有富硅(70.27%~75.72%)、高镁(3.50%~4.12%)、高Mg#(82.68~84.79)等特征.稀土元素呈现富集轻稀土、相对亏损重稀土(LaN/YbN=7.00~9.34),存在较为明显的Eu负异常(δEu=0.50~0.65);富集Th、U,亏损Ba、Sr、P和Ti等元素,微弱的Nb、Ta亏损.在构造环境判别图解上,样品落于陆缘弧区域,表明其形成于大洋岩石圈俯冲的构造背景.研究结果为沙木罗组海相地层的厘定提供了确切的同位素年龄,同时也为探讨班公湖-怒江洋白垩纪时期的构造演化提供了新的依据.

       

    • 图  1  研究区地质简图及采样点位置

      图a:1.研究区位置;2.一级大地构造单元界线;3.二级构造单元界线;4.三级构造单元界线.图b:1.第四系;2.古近系纳丁错组;3.下白垩统欧利组;4.下白垩统沙木罗组;5.下-中侏罗统木嘎岗日岩群;6.白垩纪蛇绿混杂岩;7.侏罗纪蛇绿混杂岩;8.二叠系龙格组;9.一般界线/角度不整合界线;10.逆断层/性质不明断层;11.南羌塘弧盆系与班公湖-怒江结合带分界线/推测断层;12.同位素采样点位置及编号

      Fig.  1.  Geological map of the study area and the location of samples

      图  2  剖面及样品显微照片

      Fig.  2.  Field photograph and microphotograph of samples

      图  3  高镁流纹质岩石锆石CL图像和206Pb/238U年龄测点位置

      Fig.  3.  CL images and 206Pb/238U age dating spots of zircons from high-Mg rhyolitic rocks

      图  4  高镁流纹质岩石LA-ICP-MS锆石U-Pb谐和图(a)和加权平均年龄(b)

      Fig.  4.  LA-ICP-MS zircon U-Pb concordia diagram(a)and weighted average ages (b) of high-Mg rhyolitic rocks

      图  5  SiO2-FeOT/MgO(a)和K2O-SiO2(b)图解

      图a据邓晋福等(2010)修改;图b虚线据le Maitre (1984),阴影带据Rickwood(1989)

      Fig.  5.  SiO2 -FeOT/MgO diagram (a) and K2O-SiO2 diagram (b)

      图  6  球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)

      球粒陨石标准化数据引自Taylor and McLennan (1985);原始地幔标准化数据引自McDonough et al. (1992)

      Fig.  6.  Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace elements spider diagram (b)

      图  7  TAS图解(a)和SiO2-Zr/TiO2图解(b)

      图a据le Maitre (1984);图b据Winchester and Floyd (1977)

      Fig.  7.  TAS diagram(a)and SiO2-Zr/TiO2 diagram(b)

      图  8  源区组成判别图解(a)和Th/Ce-Th/Sm图解(b)

      图a据Altherr and Siebel(2002);图b据Martin(1999)

      Fig.  8.  Discrimination diagram for magma source(a)and Th/Ce-Th/Sm diagram(b)

      图  9  La-La/Sm图解(a)和Rb-Sr图解(b)

      图a据Allègre and Minster(1978);图b据Sami et al.(2018)修改

      Fig.  9.  La-La/Sm diagram(a)and Rb-Sr diagram(b)

      图  10  Rb-(Y+Nb)图解(a)和LaN/YbN-YbN图解(b)

      图a据Pearce(1996);图b据Defant and Drummond(1990)

      Fig.  10.  Rb-(Y+Nb) diagram(a)and LaN/YbN-YbN diagram(b)

      图  11  Th/Yb-Ta/Yb图解(a)和Th/Ta-Yb图解(b)

      图a据Pearce(1996); 图b据Defant and Drummond(1990)

      Fig.  11.  Th/Yb-Ta/Yb diagram (a) and Th/Ta-Yb diagram(b)

      表  1  高镁流纹质岩石LA-IPC-MS锆石U-Pb同位素分析结果

      Table  1.   LA-ICP-MS U-Pb compositions of zircons from high-Mg rhyolitic rocks

      测点 Pb U 232Th/ 238U 同位素比值 年龄(Ma)
      (10-6) 206Pb/ 238U 1σ 207Pb/ 235U 1σ 207Pb/ 206Pb 1σ 208Pb/ 232Th 1σ 206Pb/ 238U 1σ 207Pb/ 235U 1σ 207Pb/ 206Pb 1σ
      1 7 415 0.50 0.017 4 1.23 0.123 3 9.85 0.048 5 9.73 0.005 0 6.53 112 1 118 12 123 229
      2 14 786 0.51 0.017 9 0.92 0.121 5 5.36 0.049 1 5.27 0.003 9 5.79 115 1 116 6 154 123
      3 17 945 0.66 0.017 3 0.88 0.142 6 4.57 0.061 5 4.43 0.004 2 5.26 110 1 135 6 658 95
      4 53 2712 0.99 0.018 1 0.82 0.124 0 2.47 0.049 7 2.41 0.003 7 4.72 116 1 119 3 181 56
      5 17 942 0.60 0.017 6 0.90 0.128 3 4.38 0.050 3 4.31 0.003 7 4.58 112 1 123 5 210 100
      6 17 899 0.43 0.018 0 0.89 0.134 6 6.92 0.052 8 6.86 0.005 5 4.68 115 1 128 9 319 156
      7 6 321 0.47 0.018 3 1.38 0.140 1 9.61 0.063 4 9.64 0.003 7 5.73 117 2 133 13 722 205
      8 20 1103 0.71 0.017 6 0.88 0.120 6 4.07 0.049 6 4.01 0.003 4 5.14 113 1 116 5 176 93
      9 10 494 0.71 0.018 2 1.40 0.129 1 21.12 0.051 4 52.78 0.004 5 5.86 116 2 123 26 257 1 213
      10 9 486 0.76 0.018 1 1.09 0.135 2 9.30 0.054 3 9.40 0.004 6 4.54 115 1 129 12 383 211
      11 8 434 0.75 0.018 0 1.13 0.116 0 10.59 0.046 6 10.76 0.004 2 4.27 115 1 111 12 31 258
      12 6 347 0.55 0.017 8 1.36 0.157 1 10.04 0.061 9 10.38 0.004 3 4.78 114 2 148 15 670 222
      13 21 1101 0.57 0.018 3 0.89 0.143 4 3.83 0.056 7 3.76 0.004 7 4.06 117 1 136 5 479 83
      14 11 595 0.47 0.018 0 1.07 0.122 4 10.37 0.047 1 10.32 0.005 2 4.62 115 1 117 12 57 246
      15 8 439 0.43 0.018 1 1.25 0.123 0 11.06 0.049 3 11.21 0.005 0 5.50 116 1 118 13 164 262
      16 7 399 0.48 0.017 9 1.40 0.123 9 13.93 0.050 2 14.49 0.005 7 5.71 114 2 119 17 203 336
      17 8 457 0.47 0.017 8 1.18 0.105 2 10.88 0.042 9 11.09 0.004 5 5.58 114 1 102 11 175 276
      18 21 1128 0.67 0.017 4 0.88 0.118 6 4.17 0.049 5 4.12 0.004 3 4.44 111 1 114 5 171 96
      19 12 742 0.06 0.017 8 1.32 0.127 3 7.28 0.051 7 7.46 0.004 5 4.64 114 2 122 9 274 171
      20 8 441 0.46 0.017 5 1.17 0.116 6 10.15 0.048 4 10.17 0.004 6 4.42 112 1 112 11 120 240
      21 16 922 0.48 0.017 5 0.91 0.116 3 5.54 0.048 1 5.53 0.004 2 3.65 112 1 112 6 106 131
      22 12 634 0.78 0.017 6 1.35 0.118 0 9.07 0.048 7 8.10 0.004 2 3.74 112 2 113 10 135 190
      23 9 535 0.45 0.017 8 1.06 0.120 3 8.33 0.049 1 8.36 0.004 0 3.73 114 1 115 10 151 196
      24 8 393 0.95 0.017 4 1.23 0.120 7 12.43 0.058 7 13.03 0.004 2 3.43 111 1 116 14 557 284
      25 6 340 0.48 0.017 9 1.42 0.132 9 11.61 0.053 7 11.99 0.004 2 4.68 115 2 127 15 360 270
      下载: 导出CSV

      表  2  样品主量(%)、微量(10-6)和稀土(10-6)元素测试结果

      Table  2.   Major elements (%), trace elements (10-6) and REEs (10-6) analytical results of samples

      样号 YQ1 YQ2 YQ3 YQ4 YQ5
      SiO2 71.21 75.72 72.69 73.63 70.27
      TiO2 0.24 0.27 0.29 0.26 0.31
      Al2O3 11.04 11.10 12.29 10.58 12.38
      Fe2O3 1.04 1.21 1.73 1.30 1.66
      FeO 1.01 0.64 0.78 0.82 0.69
      MnO 0.08 0.02 0.04 0.03 0.04
      MgO 3.92 3.50 4.12 3.57 3.98
      CaO 2.08 0.72 1.18 1.51 2.76
      Na2O 3.05 2.82 3.23 2.72 3.18
      K2O 3.51 2.65 1.59 2.51 2.31
      P2O5 0.05 0.06 0.06 0.06 0.07
      烧失量 2.66 1.16 1.93 2.96 2.29
      合计 99.9 99.87 99.93 99.95 99.94
      DI 79.14 82.94 77.12 79.73 73.32
      A/CNK 0.876 1.259 1.339 1.065 0.971
      SI 31.28 32.43 36.16 32.77 33.83
      A.R 3 2.72 2.11 2.52 2.14
      σ 1.49 0.91 0.78 0.88 1.09
      ALK 6.56 5.47 4.82 5.23 5.49
      Mg# 83.14 84.79 83.36 82.68 84.02
      La 28.26 33.35 30.94 28.9 35.11
      Ce 56.64 69.06 64.96 57.95 68.34
      Pr 6.70 7.95 7.67 6.58 7.93
      Nd 24.45 29.23 28.47 24.25 29.94
      Sm 4.57 4.79 4.72 3.88 5.67
      Eu 0.94 1 1.01 0.7 0.89
      Gd 4.24 5.1 4.73 4.1 4.97
      Tb 0.75 0.75 0.7 0.68 0.73
      Dy 4.73 4.04 3.67 3.54 3.93
      Ho 0.89 0.8 0.76 0.73 0.84
      Er 2.57 2.34 2.05 1.97 2.3
      Tm 0.45 0.42 0.4 0.32 0.41
      Yb 2.73 2.94 2.35 2.42 2.54
      Lu 0.53 0.51 0.47 0.47 0.44
      Y 22.15 25.09 21.05 20.72 22.09
      ΣREE 138.45 162.28 152.90 136.49 164.04
      LREE 121.56 145.38 137.77 122.26 147.88
      HREE 16.89 16.90 15.13 14.23 16.16
      LR/HR 7.20 8.60 9.11 8.59 9.15
      δEu 0.64 0.61 0.65 0.53 0.50
      δCe 0.94 0.97 0.97 0.96 0.93
      (La/Yb)N 7.00 7.67 8.90 8.07 9.34
      (La/Sm)N 3.89 4.38 4.13 4.69 3.9
      (Gd/Yb)N 1.26 1.41 1.63 1.37 1.59
      Ba 437.7 678 166.1 67.7 92.9
      Rb 21.7 30.02 28.79 20.63 22.31
      Th 12.18 14.46 15.95 10.4 16.64
      K 29 138 21 999 13 199 20 837 19 176
      Nb 11.94 16.21 17.01 13.55 18.08
      Ta 1.13 1.2 1.26 0.95 1.34
      Sr 77 44.1 25.7 29.4 37.1
      P 218 262 262 262 305
      Zr 168.8 187.5 216.8 178.2 197.1
      Hf 5.61 6.12 7.01 5.65 6.44
      Ti 1439 1619 1739 1559 1858
      Cr 9.1 17.4 18.3 18 18.9
      Ni 7.8 6 5.3 7.9 6.4
      V 20.8 41.8 47.1 34.8 44.8
      U 2.87 3.14 3.43 2.5 3.42
      Th/U 4.24 4.61 4.65 4.16 4.87
      Nb/Ta 10.6 13.5 13.5 14.3 13.5
      La/Ta 25 27.8 24.6 30.4 26.2
      下载: 导出CSV
    • Allègre, C. J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307(5946):17-22. https://doi.org/10.1038/307017a0
      Allègre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1):1-25. https://doi.org/10.1016/0012-821x(78)90123-1
      Altherr, R., Siebel, W., 2002. I-Type Plutonism in a Continental Back-Arc Setting:Miocene Granitoids and Monzonites from the Central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4):397-415. https://doi.org/10.1007/s00410-002-0352-y
      Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      Bao, P.S., Xiao, X.C., Su, L., et al., 2007. Tectonic Environment of the Dongcuo Ophiolite, Tibet:Petrology, Geochemistry and Geochronology Constraints. Scientia Sinica Terrae, 37(3):298-307 (in Chinese). http://www.researchgate.net/publication/307632192_Tectonic_Environment_of_Dong_Tso_Ophiolite_Petrology_Geochemistry_and_Chronology_Tibet
      Beard, J. S., Lofgren, G. E., 1991. Partial Melting of Basaltic and Andesite Greenstones and Amphibolites under Dehydration and Water-Saturated Conditions at 1.3 and 6.9 Kilobars. Journal of Petrology, 32(2):365-402. http://www.researchgate.net/publication/284378352_Partial_melting_of_basaltic_and_andesite_greenstones_and_amphibolites_under_dehydration_and_water-saturated_conditions_at_1_3_and_69_kilobars
      Chang, C. F., Chen, N. S., Coward, M. P., et al., 1986. Preliminary Conclusions of the Royal Society and Academia Sinica Geotraverse of Tibet. Nature, 323(6088):501-507. https://doi.org/10.1038/323501a0
      Chen, G.R., Liu, H.F., Jiang, G.W., et al., 2004. Discovery of the Shamuluo Formation in the Central Segment of the Bangong Co-Nujiang River Suture Zone, Tibet. Geological Bulletin of China, 23(2):193-194 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200402015
      Chen, Y.L., Zhang, K.Z., Yang, Z.M., et al., 2006. Discovery of a Complete Ophiolite Section in the Jueweng Area, Nagqu County, in the Central Segment of the Bangong Co-Nujiang Junction Zone, Qinghai-Tibet Plateau. Geological Bulletin of China, 25(6):694-699 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200606007.htm
      Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3-4):173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
      Dai, Z.W., Li, G.M., Ding, J., et al., 2018. Late Cretaceous Adakite in Nuri Area, Tibet:Products of Ridge Subduction. Earth Science, 43(8):2727-2741 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808015.htm
      Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0
      Deng, J.F., Feng, Y.F., Di, Y.J., et al., 2015. Magmatic Arc and Ocean-Continent Transition:Discussion. Geological Review, 61(3):473-484 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201503001.htm
      Deng, J.F., Liu, C., Feng, Y.F., et al., 2010. High Magnesian Andesitic/Dioritic Rocks(HMA) and Magnesian Andesitic/Dioritic Rocks (MA):Two Igneous Rock Types Related to Oceanic Subduction. Geology in China, 37(4):1112-1118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004027.htm
      Deng, J.F., Xiao, Q.H., Su, S.G., et al., 2007. Igneous Petrotectonic Assemblages and Tectonic Settings:A Discussion. Geological Journal of China Universities, 13(3):392-402 (in Chinese with English abstract). https://www.researchgate.net/publication/288033539_Igneous_petrotectonic_assemblages_and_tectonic_settings_A_discussion
      Ding, S., Tang, J.X., Zheng, W.B., et al., 2017. Geochronology and Geochemistry of Naruo Porphyry Cu (Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance. Earth Science, 42(1):1-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201701001
      Fan, J. J., Li, C., Liu, Y. M., et al., 2015a. Age and Nature of the Late Early Cretaceous Zhaga Formation, Northern Tibet:Constraints on When the Bangong-Nujiang Neo-Tethys Ocean Closed. International Geology Review, 57(3):342-353. https://doi.org/10.1080/00206814.2015.1006695
      Fan, J. J., Li, C., Xie, C. M., et al., 2015b. Petrology and U-Pb Zircon Geochronology of Bimodal Volcanic Rocks from the Maierze Group, Northern Tibet:Constraints on the Timing of Closure of the Banggong-Nujiang Ocean. Lithos, 227:148-160. https://doi.org/10.1016/j.lithos.2015.03.021
      Fan, J. J., Li, C., Xie, C. M., et al., 2014. Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet:Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of the Neo-Tethys. International Geology Review, 56(12):1504-1520. https://doi.org/10.1080/00206814.2014.947639
      Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs:A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5):1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065
      Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1-2):47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
      Kapp, P., Murphy, M. A., Yin, A., et al., 2003. Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet. Tectonics, 22(4):1029. https://doi.org/10.1029/2001tc001332
      le Maitre, R. W., 1984. A Proposal by the IUGS Subcommission on the Systematics of Igneous Rocks for a Chemical Classification of Volcanic Rocks Based on the Total Alkali Silica (TAS) Diagram. Australian Journal of Earth Sciences, 31(2):243-255. https://doi.org/10.1080/08120098408729295
      Lei, C.Y., Wu, J.L., Yin, X.K., et al., 2018. New Discovery of the Diorite Porphyry Dyke in the Shamuluo Formation in Western Segment of the Bangongco-Nujiang Suture Zone and Its Geological Significance. Bulletin of Mineralogy, Petrology and Geochemistry, 37(2):250-259 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201802010.htm
      Li, F.Q., Liu, Z.B., Tang, J.X., et al., 2018. Petrogenesis of Granite Porphyry in Mariaicuo Area, Shuanghu County, Tibet, and Constraints on the Evolution in the Middle Section of Bangonghu-Nujiang Suture Zone. Earth Science, 43(4):1051-1069 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201804009
      Li, H.F., Liu, Z.B., Chen, W., et al., 2019. The Discovery of High-Mg Rhyolitic Rocks in Peng Tso Area, Tibet and Its Significance for Evolution of Bangong-Nujiang Ocean. Acta Petrologica Sinica, 35(3):799-815 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.11
      Li, H.L., 2014. Signs and Time of Continent-Ocean Transform of the Western Part of Bangong-Nujiang Suture Zone (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Li, J. X., Qin, K. Z., Li, G. M., et al., 2014. Geochronology, Geochemistry, and Zircon Hf Isotopic Compositions of Mesozoic Intermediate-Felsic Intrusions in Central Tibet:Petrogenetic and Tectonic Implications. Lithos, 198-199:77-91. https://doi.org/10.1016/j.lithos.2014.03.025
      Liu, W., Yin, X.K., Wu, J.L., et al., 2019. The Discovery of Qushenla Formation Argillaceous Cherts in the Western Part of the Bangong Co-Nujiang Suture Zone, Tibet and Its Significance. Geological Bulletin of China, 38(4):484-493 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201904002
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      Ludwig, K.R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley.
      Luo, A.B., Fan, J.J., Wang, M., et al., 2019. Age of Flysch in Bangong-Nujiang Ocean:Constraints of Detrital Zircon from Yaduo Village of Gerze County. Earth Science, 44(7):2426-2444 (in Chinese with English abstract).
      Ma, L.T., Zhang, Z.C., Dong, S.Y., et al., 2010. Geology and Geochemistry of the Yingmailai Granitic Intrusion in the Southern Tianshan and Its Implications. Earth Science, 35(6):908-920 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201006003
      Martin, H., 1999. Adakitic Magmas:Modern Analogues of Archaean Granitoids. Lithos, 46(3):411-429. https://doi.org/10.1016/s0024-4937(98)00076-0
      McDonough, W. F., Sun, S. S., Ringwood, A. E., et al., 1992. Potassium, Rubidium, and Cesium in the Earth and Moon and the Evolution of the Mantle of the Earth. Geochimica et Cosmochimica Acta, 56(3):1001-1012. https://doi.org/10.1016/0016-7037(92)90043-i
      Pan, G.T., Mo, X.X., Hou, Z. Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4):120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      Qu, X.M., Wang, R.J., Dai, J.J., et al., 2012. Discovery of Xiongmei Porphyry Copper Deposit in Middle Segment of Bangonghu-Nujiang Suture Zone and Its Significance. Mineral Deposits, 31(1):1-12 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201201001
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4):247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust. Elsevier, Oxford.
      Sami, M., Ntaflos, T., Farahat, E. S., et al., 2018. Petrogenesis and Geodynamic Implications of Ediacaran Highly Fractionated A-Type Granitoids in the North Arabian-Nubian Shield (Egypt):Constraints from Whole-Rock Geochemistry and Sr-Nd Isotopes. Lithos, 304-307:329-346. https://doi.org/10.1016/j.lithos.2018.02.015
      Sun, L.X., 2005. Late Jurassic-Cretaceous Sedimentary Response to Collision Process in Middle Bangonghu-Nujiang Suture (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4):29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
      Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford.
      Wang, L.Q., Pan, G.T., Ding, J., et al., 2013. The Geological Map and Instruction of the Qinghai-Tibet Plateau and Its Adjacent Areas (1: 1 500 000). Geological Publishing House, Beijing (in Chinese).
      Wang, X., Chen, J., Luo, D., 2008. Study on Petrogenesis of Zircons from the Danzhu Granodiorite and Its Geological Implications. Geological Review, 54(3):387-398 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200803012
      Wei, S.G., 2017. Study on the Early Cretaceous Magmatism and Tectonic Dynamic Setting of the Duolong Cu Mining District in the Bangong-Nujiang Metallogenic Belt, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Wu, Y., Chen, S.Y., Qin, M.K., et al., 2018. Zircon U-Pb Ages of Dongcuo Ophiolite in Western Bangonghu-Nujiang Suture Zone and Their Geological Significance. Earth Science, 43(4):1070-1087 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804010
      Wu, Y.B., Zheng, Y.F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xu, W., Li, C., Xu, M. J., et al., 2015. Petrology, Geochemistry, and Geochronology of Boninitic Dikes from the Kangqiong Ophiolite:Implications for the Early Cretaceous Evolution of Bangong-Nujiang Neo-Tethys Ocean in Tibet. International Geology Review, 57(16):2028-2043. https://doi.org/10.1080/00206814.2015.1050464
      Xu, Z.Q., Yang, J.S., Hou, Z.Q., et al., 2016. The Progress in the Study of Continental Dynamics of the Tibetan Plateau. Geology in China, 43(1):1-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201601001.htm
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Yin, T., Li, W., Yin, X.K., et al., 2019. The Early Cretaceous Granodiorites in the Aweng Co Area, Tibet:Evidence for the Subduction of the Bangong Co-Nujiang River Oceanic Crust to the South. Geology in China, 46(5):1105-1115 (in Chinese with English abstract). http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190511&flag=1
      Zhang, S.Q., Qi, X.X., Wei, C., et al., 2018. Geochemistry, Zircon U-Pb Dating and Hf Isotope Compositions of Early Cretaceous Magmatic Rocks in Yongzhu Area, Northern Lhasa Terrane, Tibet, and Its Geological Significance. Earth Science, 43(4):1085-1109 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201804011
      Zhang, Z., Fang, X., Tang, J.X., et al., 2017. Chronology, Geochemical Characteristics of the Gaerqin Porphyry Copper Deposit in the Duolong Ore Concentration Area in Tibet and Discussion about the Identification of the Lithoscaps and the Possible Epithermal Deposit. Acta Petrologica Sinica, 33(2):476-494 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201702011
      Zhao, Y.Y., Liu, X.F., Liu, Y.C., et al., 2018. Zircon U-Pb Ages and Geochemical Characteristics of Youqiumi Porphyry Pluton in Cimabanshuo Area, Tibet. Earth Science, 43(12):4551-4565 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201812021
      Zhou, J.S., Meng, X.J., Zang, W.S., et al., 2013. Zircon U-Pb Geochronology and Trace Element Geochemistry of the Ore-bearing Porphyry in Qingcaoshan Porphyry Cu-Au Deposit, Tibet, and Its Geological Significance. Acta Petrologica Sinica, 29(11):3755-3766 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201311009
      Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006. Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau:Geochronology, Geochemistry and Their Tectonic Setting. Acta Geologica Sinica, 80(9):1312-1328 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200609008.htm
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      鲍佩声, 肖序常, 苏犁, 等, 2007.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约.中国科学:地球科学, 37(3):298-307. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200703001.htm
      陈国荣, 刘鸿飞, 蒋光武, 等, 2004.西藏班公湖-怒江结合带中段沙木罗组的发现.地质通报, 23(2):193-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200402015
      陈玉禄, 张宽忠, 杨志民, 等, 2006.青藏高原班公湖-怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面.地质通报, 25(6):694-699. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200606007
      代作文, 李光明, 丁俊, 等, 2018.西藏努日晚白垩世埃达克岩:洋脊俯冲的产物.地球科学, 43(8):2727-2741. doi: 10.3799/dqkx.2018.230
      邓晋福, 冯艳芳, 狄永军, 等, 2015.岩浆弧火成岩构造组合与洋陆转换.地质论评, 61(3):473-484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201503001
      邓晋福, 刘翠, 冯艳芳, 等, 2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类.中国地质, 37(4):1112-1118. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201004027.htm
      邓晋福, 肖庆辉, 苏尚国, 等, 2007.火成岩组合与构造环境:讨论.高校地质学报, 13(3):392-402. http://www.cnki.com.cn/Article/CJFDTotal-GXDX200703004.htm
      丁帅, 唐菊兴, 郑文宝, 等, 2017.西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义.地球科学, 42(1):1-23. doi: 10.3799/dqkx.2017.001
      雷传扬, 吴建亮, 尹显科, 等, 2018.班公湖-怒江缝合带西段沙木罗组地层中闪长玢岩脉的发现及其地质意义.矿物岩石地球化学通报, 37(2):250-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201802011
      李发桥, 刘治博, 唐菊兴, 等, 2018.西藏玛日埃错地区花岗斑岩岩石成因及其对班公湖-怒江缝合带中段演化的制约.地球科学, 43(4):1051-1069. doi: 10.3799/dqkx.2018.709
      李海峰, 刘治博, 陈伟, 等, 2019.西藏蓬错地区高镁流纹质岩石的发现及对班公湖-怒江洋演化的指示意义.岩石学报, 35(3):799-815. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201903011
      李华亮, 2014.班公湖-怒江缝合带西段洋陆转换的标志及时间(博士学位论文).武汉: 中国地质大学.
      刘文, 尹显科, 吴建亮, 等, 2019.西藏班公湖-怒江缝合带西段去申拉组泥质硅质岩的发现及其地质意义.地质通报, 38(4):484-493. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201904002
      罗安波, 范建军, 王明, 等, 2019.班公湖-怒江洋复理石沉积时代:来自改则县亚多村碎屑锆石的制约.地球科学, 44(7):2426-2444. doi: 10.3799/dqkx.2018.944
      马乐天, 张招崇, 董书云, 等, 2010.南天山英买来花岗岩的地质、地球化学特征及其地质意义.地球科学, 35(6):908-920. doi: 10.3799/dqkx.2010.106
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      曲晓明, 王瑞江, 代晶晶, 等, 2012.西藏班公湖-怒江缝合带中段雄梅斑岩铜矿的发现及意义.矿床地质, 31(1):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201201001
      孙立新. 2005.班公湖-怒江缝合带中段晚侏罗世-白垩纪碰撞作用的沉积响应(博士学位论文).北京: 中国地质大学.
      汪相, 陈洁, 罗丹, 2008.浙西南淡竹花岗闪长岩中锆石的成因研究及其地质意义.地质论评, 54(3):387-398. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200803012
      王立全, 潘桂棠, 丁俊, 等, 2013.青藏高原及邻区地质图及说明书(1:1 500 000).北京:地质出版社.
      韦少港. 2017.西藏班-怒成矿带多龙矿集区早白垩世岩浆作用及动力学背景(博士学位论文).北京: 中国地质大学.
      武勇, 陈松永, 秦明宽, 等, 2018.西藏班公湖-怒江缝合带西段洞错蛇绿岩中的辉长岩锆石U-Pb年代学及地质意义.地球科学, 43(4):1070-1087. doi: 10.3799/dqkx.2018.710
      吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200416002
      许志琴, 杨经绥, 侯增谦, 等, 2016.青藏高原大陆动力学研究若干进展.中国地质, 43(1):1-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201601001
      尹滔, 李威, 尹显科, 等, 2019.西藏阿翁错地区早白垩世花岗闪长岩:班公湖-怒江洋壳南向俯冲消减证据.中国地质, 46(5):1105-1115. http://geochina.cgs.gov.cn/html/2019/5/20190511.htm
      张诗启, 戚学祥, 韦诚, 等, 2018.拉萨地体北部永珠地区早白垩世岩浆岩地球化学、锆石U-Pb年代学、Hf同位素组成及其地质意义.地球科学, 43(4):1085-1109. doi: 10.3799/dqkx.2018.711
      张志, 方向, 唐菊兴, 等, 2017.西藏多龙矿集区尕尔勤斑岩铜矿床年代学及地球化学:兼论硅帽的识别与可能的浅成低温热液矿床.岩石学报, 33(2):476-494. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702011.htm
      赵亚云, 刘晓峰, 刘远超, 等, 2018.西藏次玛班硕地区由秋米斑岩体锆石U-Pb年龄、地球化学特征.地球科学, 43(12):4551-4565. doi: 10.3799/dqkx.2018.118
      周金胜, 孟祥金, 臧文栓, 等, 2013.西藏青草山斑岩铜金矿含矿斑岩锆石U-Pb年代学、微量元素地球化学及地质意义.岩石学报, 29(11):3755-3766. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201311009
      朱弟成, 潘桂棠, 莫宣学, 等, 2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报, 80(9):1312-1328. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200609008.htm
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  971
    • HTML全文浏览量:  526
    • PDF下载量:  74
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-02
    • 刊出日期:  2020-08-15

    目录

      /

      返回文章
      返回