• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    多层等效源方法在地面与航空磁异常数据融合中的应用

    高宝龙 胡正旺 李端 杜劲松

    高宝龙, 胡正旺, 李端, 杜劲松, 2021. 多层等效源方法在地面与航空磁异常数据融合中的应用. 地球科学, 46(5): 1881-1895. doi: 10.3799/dqkx.2020.134
    引用本文: 高宝龙, 胡正旺, 李端, 杜劲松, 2021. 多层等效源方法在地面与航空磁异常数据融合中的应用. 地球科学, 46(5): 1881-1895. doi: 10.3799/dqkx.2020.134
    Gao Baolong, Hu Zhengwang, Li Duan, Du Jinsong, 2021. Fusion of Ground and Airborne Magnetic Data Using Multi-Layer Equivalent Source Method. Earth Science, 46(5): 1881-1895. doi: 10.3799/dqkx.2020.134
    Citation: Gao Baolong, Hu Zhengwang, Li Duan, Du Jinsong, 2021. Fusion of Ground and Airborne Magnetic Data Using Multi-Layer Equivalent Source Method. Earth Science, 46(5): 1881-1895. doi: 10.3799/dqkx.2020.134

    多层等效源方法在地面与航空磁异常数据融合中的应用

    doi: 10.3799/dqkx.2020.134
    基金项目: 

    湖北大冶金牛火山岩盆地1∶2.5万重磁调查项目 [2016]29

    湖北大冶金牛火山岩盆地1∶2.5万重磁调查项目 [2017]2

    湖北大冶金牛火山岩盆地1∶2.5万重磁调查项目 [2018]17

    湖北大冶金牛火山岩盆地重磁异常研究及深部找矿预测项目 [2018]17

    地质过程与矿产资源国家重点实验室自主研究课题 MSFGPMR01-4

    详细信息
      作者简介:

      高宝龙(1979-),男,博士研究生,主要从事应用地球物理技术与科研工作. ORCID: 0000-0002-4004-1291. E-mail:45371309@qq.com

      通讯作者:

      胡正旺, E-mail: hzw@cug.edu.cn

    • 中图分类号: P631

    Fusion of Ground and Airborne Magnetic Data Using Multi-Layer Equivalent Source Method

    • 摘要: 随着地磁场观测数据的不断积累,高效利用观测数据成为亟待解决的问题.以往研究表明,仅对单一观测手段获得的实测数据进行分析与解释,往往很难达到目前解决相关地质问题的精度要求.因为各观测方法获得的地磁场数据集通常在分辨率、精度、高程及覆盖范围方面存在局限性和差异性,造成单一数据集仅能有效表征地磁场某一频段信息的问题.而解决该问题的一种有效途径是数据间的融合.为此,基于等效源方法,提出一种多层等效源技术方案,应用于航空和地面磁测数据融合,提高地面数据插值补空、扩边及航空数据下延的精度.该方法针对观测信息的频谱特征,采用3个位于不同深度的等效源层模拟实测数据;较传统的单层等效源方法,减少了等效源设置的盲目性,增强了观测信息在等效源模型中分配的有序性和结构性.理论实验表明,多层等效源模型设置具有更高的计算精度,航空与地面磁测数据融合可以起到显著的相互丰富及改善的作用.最后,将该方法应用于湖北金牛火山岩盆地航空与地面磁测数据融合,获得了丰富的、平面上规则分布的地磁场数据.

       

    • 图  1  三层等效源模型示意图

      RLPS表示径向对数功率谱估算;zf, zs, zt分别表示3个等效源层中心埋深

      Fig.  1.  Three-layer equivalent source model

      图  2  理论模型及其地面上观测ΔT磁异常

      a.组合模型;b.地形高程(红框为地面观测范围);c.模拟地面观测ΔT磁异常

      Fig.  2.  Synthetic models and their theoretical ΔT anomaly on ground

      图  3  不同高度正演ΔT磁异常(a~c)和磁异常梯度正演结果(d~i)以及磁场分量正演结果(j~o)

      a,b,c分别为地面、350 m和500 m高度平面上ΔT计算结果;d~f为地面上磁异常梯度计算结果;g~i为350 m高度平面上相应计算结果;j~l为地面上磁场三分量计算结果;m~o为350 m高度平面上相应计算结果

      Fig.  3.  Theoretical ΔT anomaly at different elevations (a-c), theoretical magnetic gradients (d-i) and theoretical components (j-o) on ground and plane at 350 m

      图  4  理论模拟地面与航空磁异常对数功率谱曲线

      图中红色与蓝色直线为对数功率谱曲线分段拟合线;a,b分别为地面与航空磁测数据计算曲线

      Fig.  4.  Radial logarithmic power spectrum of observed magnetic data

      图  5  等效源单元磁场响应随埋深变化的衰减曲线

      a.对应200 m×200 m×600 m等效源单元;b.对应2 000 m×2 000 m×6 000 m等效源单元

      Fig.  5.  Magnetic attenuation with depths of equivalent source cells

      图  6  三种方法计算ΔT磁异常与理论值绝对误差

      a~c分别为单层、三层等效源方法与傅里叶‒克里金方法在地面上的计算结果与理论值差值;d~f分别为350 m高度平面上对应差值

      Fig.  6.  Distribution of absolute errors between the computational ΔT and theoretical values

      图  7  单层与三层等效源方法计算磁异常梯度与理论值绝对误差

      a~c与d~f分别为单层与三层等效源方法在地面上计算(ΔTx, ΔTy, ΔTz)与理论值差值;g~i与j~l分别是单层和三层等效源方法在350 m高度平面上对应差值

      Fig.  7.  Distribution of absolute errors between the computational magnetic gradients and theoretical values

      图  8  单层与三层等效源方法计算磁场分量与理论值绝对误差

      a~c与d~f分别为单层与三层等效源方法在地面上计算(Hax, Hay, Za)与理论值差值;g~i与j~l分别是单层和三层等效源方法在350 m高度平面上对应差值

      Fig.  8.  Distribution of absolute errors between the computational components and theoretical values

      图  9  实测地面及航空ΔT磁异常

      a.地形高程;b.地面实测ΔT磁异常;c.航空测量ΔT磁异常

      Fig.  9.  Measured ΔT anomaly and elevation

      图  10  实测地面与航空磁异常对数功率谱曲线

      图中红色与蓝色直线为对数功率谱曲线分段拟合线;a,b分别为地面与航空磁测数据计算曲线

      Fig.  10.  Radial logarithmic power spectrum of observed magnetic data

      图  11  计算结果与观测数据拟合差以及288 m高度平面上ΔT计算结果

      a.恢复地面磁测数据拟合差;b.恢复航空磁测数据拟合差;c.计算ΔT

      Fig.  11.  Difference between calculation ΔT and observation values and computational ΔT on the plane at 288 m

      图  12  288 m高度平面上磁异常梯度及磁场分量转换结果

      a~c分别为转换ΔTx,ΔTy与ΔTz;d~f分别为转换HaxHayZa

      Fig.  12.  Transformations on the plane at 288 m

      表  1  理论模型参数

      Table  1.   Parameters of synthetic models

      模型体 中心埋深
      (m)
      磁化强度
      A·m-1
      磁化方向
      1 1 000 1.5 倾角I=45°
      偏角A=5°
      2 900 2
      3 1 600 2.5
      4 4 000 4
      5 5 500 3
      6 6 500 5
      下载: 导出CSV

      表  2  理论模型试验等效源层参数

      Table  2.   Parameters of equivalent source layers of the theoretical model

      层号 单元体几何参数
      (长×宽×高)(m)
      等效层顶面深度 展布形态
      1 200×200×200 距地表600 m 随地形起伏
      2 200×200×600 距0 m平面2 500 m 水平
      3 2 000×2 000×6 000 距0 m平面5 500 m 水平
      下载: 导出CSV

      表  3  实测数据应用等效源层参数

      Table  3.   Parameters of equivalent source layers of the actual application

      层号 单元体几何参数
      (长×宽×高)(m)
      等效层顶面深度 展布形态
      1 200×200×200 距地表200 m 随地形起伏
      2 200×200×600 距0 m平面2 600 m 水平
      3 2 000×2 000×6 000 距0 m平面6 000 m 水平
      下载: 导出CSV
    • An, Y.L., Chai, Y.P., Zhang, M.H., et al., 2013. An Optimal Model of the Equivalent Source for Reduction-to-Plane of Potential Field on Uneven Surface and the New Method to Deduce Unit Potential Field Expression of the Optimal Model. Chinese Journal of Geophysics, 56(7): 2473-2483 (in Chinese with English abstract). doi: 10.1002/cjg2.20045/full
      Andrews, S. B., Moore, P., King, M. A., 2015. Mass Change from GRACE: A Simulated Comparison of Level-1B Analysis Techniques. Geophysical Journal International, 200(1): 503-518. https://doi.org/10.1093/gji/ggu402
      Asgharzadeh, M. F., von Frese, R. R. B., Kim, H. R., 2008. Spherical Prism Magnetic Effects by Gauss-Legendre Quadrature Integration. Geophysical Journal International, 173(1): 315-333. https://doi.org/10.1111/j.1365-246X.2007.03692.x
      Barnes, G., Lumley, J., 2011. Processing Gravity Gradient Data. Geophysics, 76(2): I33-I47. https://doi.org/10.1190/1.3548548
      Barzaghi, R., Tselfes, N., Tziavos, I. N., et al., 2008. Geoid and High Resolution Sea Surface Topography Modelling in the Mediterranean from Gravimetry, Altimetry and GOCE Data: Evaluation by Simulation. Journal of Geodesy, 83(8): 751-772. https://doi.org/10.1007/s00190-008-0292-z
      Bhattacharyya, B.K., Chan, K.C., 1977. Reduction of Magnetic and Gravity Data on an Arbitrary Surface Acquired a Region of High Topographic. Geophysics, 42(42): 1411-1430. https://doi.org/10.1190/1.1440802 http://adsabs.harvard.edu/abs/1977Geop...42.1411B
      Clark, D.A., 2013. New Method for Interpretation of Magnetic Vector and Gradient Tensor Data Ⅱ: Application to the Mount Leyshon Anomaly, Queensland, Australia. Exploration Geophysics, 44(2): 114-127. https://doi.org/10.1071/EG12066
      Cordell, L., Grauch, V.J.S., 1982. Reconciliation of the Discrete and Integral Fourier Transforms. Geophysics, 47(2): 237-243. https://doi.org/10.1190/1.1441330
      Dampney, C. N. G., 1969. The Equivalent Source Technique. Geophysics, 34(1): 39-53. doi: 10.1190/1.1439996
      Du, J.S., Chen, C., 2015. Progress and Outlook in Global Lithospheric Magnetic Field Modelling by Satellite Magnetic Measurements. Progress in Geophysics, 30(3): 1017-1033 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201503005.htm
      Featherstone, W.E., 2003. Software for Computing Five Existing Types of Deterministically Modified Integration Kernel for Gravimetric Geoid Determination. Computer and Geosciences, 29(2): 183-193. https://doi.org/10.1016/S0098-3004(02)0074-2 doi: 10.1016/S0098-3004(02)00074-2
      Gao, X.B., Li, S.S., Li, H., et al., 2013. Application of Point Mass Model and Least Square Collocation in Multi-Source Gravity Data Fusion. Geodesy and Geodynamics, 33(1): 145-149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB201301034.htm
      Guo, Z.H., Guan, Z.N., Xiong, S.Q., 2004. Cuboid ΔT and Its Gradient Forward Theoretical Expressions without Analytic Odd Points. Chinese Journal of Geophysics, 47(6): 1131-1138 (in Chinese with English abstract)
      Kim, H. R., von Frese, R. R. B., Taylor, P. T., et al., 2007. Improved Magnetic Anomalies of the Antarctic Lithosphere from Satellite and Near-Surface Data. Geophysical Journal International, 171(1): 119-126. https://doi.org/10.1111/j.1365-246X.2007.03516.x
      Li, D., 2018. Reconstruction Method of Gravity and Magnetic Fields by Equivalent Sources (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Li, D., Chen, C., Liang, Q., et al., 2018. Reconstruction of Discrete Data Using Three-Tier Equivalent Source with Variable Size. Earth Science, 43(3): 873-886 (in Chinese with English abstract).
      Li, D., Liang, Q., Du, J., et al., 2020. Transforming Total-Field Magnetic Anomalies into Three Components Using Dual-Layer Equivalent Source. Geophysical Research Letters, 47(3): e2019GL084607. https://doi.org/10.1029/2019GL084607 doi: 10.1029/2019GL084607
      Li, J.C., Chao, D.B., Ning, J.S., 1995. Spherical Cap Harmonic Expansion for Local Gravity Field Representation. Manuscripta Geodaetica, 20: 265-277. http://www.ingentaconnect.com/content/ssam/03408825/1995/00000020/00000004/art00004
      Li, Y., Nabighian, M., Oldenburg, D.W., 2014. Using an Equivalent Source with Positivity for Low-Latitude Reduction to the Pole without Striation. Geophysics, 79(6): J81-J90. https://doi.org/10.1190/GEO2014-0134.1 doi: 10.1190/geo2014-0134.1
      Li, Y., Oldenburg, D.W., 1996. 3-D Inversion of Magnetic Data. Geophysics, 61(2): 394-408. https://doi.org/10.1190/1.1443968
      MacLennan, C.A., Li, Y.G., 2013. Denoising Multicomponent CSEM Data with Equivalent Source Processing Techniques. Geophysics, 78(3): 125-135. https://doi.org/10.1190/GEO2012-0226.1 http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SEGEAB000029000001000774000001&idtype=cvips&gifs=Yes
      Maus, S., Barckhausen, U., Berkenbosch, H., et al., 2009. EMAG2: A 2-Arc Min Resolution Earth Magnetic Anomaly Grid Compiled from Satellite, Airborne, and Marine Magnetic Measurements. Geochemistry, Geophysics, Geosystems, 10(8): Q08005. https://doi.org/10.1029/2009GC002471 doi: 10.1029/2009GC002471/abstract
      Oliveira Jr, V.C., Barbosa, V.C.F., Uieda, L., 2013. Polynomial Equivalent Layer. Geophysics, 78(1): 1-13. https://doi.org/10.1190/geo2012-0196.1 http://adsabs.harvard.edu/abs/2013Geop...78G...1O
      Ou, J. M., Du, A. M., Thébault, E., et al., 2013. A High Resolution Lithospheric Magnetic Field Model over China. Science China Earth Sciences, 56(10): 1759-1768. https://doi.org/10.1007/s11430-013-4580-y
      Pang, X.L., 2012. Research on Reduction of Aeromagnetic Anomalies by Means of Equivalent Source Technology (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract), .
      Pilkington, M., 1997. 3-D Magnetic Imaging Using Conjugate Gradients. Geophysics, 62(4): 1132-1142. https://doi.org/10.1190/1.1444214
      Purucker, M.E., 1990. The Computation of Vector Magnetic Anomalies: A Comparison of Techniques and Errors. Physics of the Earth and Planetary Interiors, 62: 231-245. https://doi.org/10.1016/0031-9201(90)90168-W
      Purucker, M.E., Ravat, D., Prey, H., et al., 2000. An Altitude-Normalized Magnetic Map of Mars and Its Interpretation. Geophysical Research Letters, 27(16): 2449-2452. doi: 10.1029/2000GL000072
      Ravat, D., Langel, R.A., Purucker, M., et al., 1995. Global Vector and Scalar Magsat Magnetic Anomaly Maps. Journal of Geophysical Research, 100: 20111-20136. doi: 10.1029/95JB01237
      Silva, J.B.C., Santos, D.F., Garabito, G., 2014. Harmonic and Biharmonic Biases in Potential Field Inversion. Geophysics, 79(1): G15-G25. https://doi.org/10.1190/GEO2013-0137.1 doi: 10.1190/geo2013-0137.1
      Sjöberg, L. E., 2005. A Local Least-Squares Modification of Stokes' Formula. Studia Geophysica et Geodaetica, 49(1): 23-30. https://doi.org/10.1007/s11200-005-1623-7
      Stolz, R., Zakosarenko, V., Schulz, M., et al., 2006. Magnetic Full-Tensor SQUID Gradiometer System for Geophysical Application. The Leading Edge, 25(2): 178-180. https://doi.org/10.1190/1.2172308
      Syberg, F.J.R., 1972. A Fourier Method for the Regional-Residual Problem of Potential Fields. Geophysical Prospecting, (20): 47-75. https://doi.org/10.1111/j.1365-2478.1972.tb00619.x
      Tikhonov, A.N., Arsenin, V.Y., 1977. Solution of Ill-Posed Problem. Mathematics of Computation, 32(144): 491-491.
      Whaler, K.A., 1994. Downward Continuation of Magsat Lithospheric Anomalies to the Earth's Surface. Geophysical Journal International, 116: 267-278. https://doi.org/10.1111/j.1365-246X.1994.tb01797.x
      Wu, Y.H., Luo, Z.C., Zhou, B.Y., 2016. Regional Gravity Modeling Based on Heterogeneous Data Sets by Using Poisson Wavelets Radial Basis Functions. Chinese Journal of Geophysics, 59(3): 852-864 (in Chinese with English abstract). doi: 10.6038/cjg20160308
      Xia, J., Sprowl, D.R., 1991. Correction of Topographic Distortion in Gravity Data. Geophysics, 56(4): 537-541. https://doi.org/10.1190/1.1443070
      Xie, R.K., Wang, P., Duan, S.L., et al., 2015. Analysis of the Reduction of Aeromagnetic Gradients Data to a Horizontal Plane. Progress in Geophysics, 30(6): 2836-2840 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQWJ201506051&dbcode=CJFD&year=2015&dflag=pdfdown
      Zhang, W., Zhang, X.J., Tong, J., et al., 2018. Gravity and Magnetic Anomaly Characteristics and Its Geological Interpretation in Rizhao and Lianyungang Areas. Earth Science, 43(12): 4490-4497 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812017.htm
      Zhou, J., Meng, X., Guo, L., et al., 2015. Three-Dimensional Cross-Gradient Joint Inversion of Gravity and Normalized Magnetic Source Strength Data in the Presence of Remanent Magnetization. Journal of Applied Geophysics, 199: 51-60. https://doi.org/10.1016/j.jappgeo.2015.05.001 http://www.sciencedirect.com/science/article/pii/S0926985115001512
      安玉林, 柴玉普, 张明华, 等, 2013. 曲化平用最佳等效源模型及其单位位场表达式推导的新方法. 地球物理学报, 56(7): 2473-2483. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307032.htm
      杜劲松, 陈超, 2015. 基于卫星磁测数据的全球岩石圈磁场建模进展与展望. 地球物理学进展, 30(3): 1017-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503005.htm
      高新兵, 李珊珊, 李海, 等, 2013. 点质量模型与最小二乘配置在多源重力数据融合中的应用. 大地测量与地球动力学, 33(1): 145-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201301034.htm
      郭志宏, 管志宁, 熊盛青, 2004. 长方体ΔT场及其梯度场无解析奇异点理论表达式. 地球物理学报, 47(6): 1131-1138. doi: 10.3321/j.issn:0001-5733.2004.06.029
      李端, 2018. 基于等效源技术的重磁场重构方法(博士学位论文). 武汉: 中国地质大学.
      李端, 陈超, 梁青, 等, 2018. 基于三层变尺度等效源的离散重力数据重构. 地球科学, 43(3): 873-886. doi: 10.3799/dqkx.2017.513
      庞旭林, 2012. 航磁异常数据曲面延拓等效源法技术研究(硕士学位论文). 北京: 中国地质大学.
      吴怿昊, 罗志才, 周波阳, 2016. 基于泊松小波径向基函数融合多源数据的局部重力场建模. 地球物理学报, 59(3): 852-864. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603008.htm
      谢汝宽, 王平, 段树岭, 等, 2015. 航磁梯度数据曲化平分析. 地球物理学进展, 30(6): 2836-2840. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201506051.htm
      张婉, 张玄杰, 佟晶, 等, 2018. 日照-连云港地区重磁异常特征及其构造意义. 地球科学, 43(12): 4490-4497. doi: 10.3799/dqkx.2018.518
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  1285
    • HTML全文浏览量:  934
    • PDF下载量:  84
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-22
    • 刊出日期:  2021-05-15

    目录

      /

      返回文章
      返回