• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海南沙海槽大型海底滑坡的发育特征及成因机制

    任金锋 孙鸣 韩冰

    任金锋, 孙鸣, 韩冰, 2021. 南海南沙海槽大型海底滑坡的发育特征及成因机制. 地球科学, 46(3): 1058-1071. doi: 10.3799/dqkx.2020.185
    引用本文: 任金锋, 孙鸣, 韩冰, 2021. 南海南沙海槽大型海底滑坡的发育特征及成因机制. 地球科学, 46(3): 1058-1071. doi: 10.3799/dqkx.2020.185
    Ren Jinfeng, Sun Ming, Han Bing, 2021. A Giant Submarine Landslide and Its Triggering Mechanisms on the Nansha Trough Margin, South China Sea. Earth Science, 46(3): 1058-1071. doi: 10.3799/dqkx.2020.185
    Citation: Ren Jinfeng, Sun Ming, Han Bing, 2021. A Giant Submarine Landslide and Its Triggering Mechanisms on the Nansha Trough Margin, South China Sea. Earth Science, 46(3): 1058-1071. doi: 10.3799/dqkx.2020.185

    南海南沙海槽大型海底滑坡的发育特征及成因机制

    doi: 10.3799/dqkx.2020.185
    基金项目: 

    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 GML2019AD0102

    中国地质调查局地质调查项目 DD20190230

    国土资源部海底矿产资源重点实验室开放基金 KLMMR-2017-A-05

    广州市科技计划项目 201909010002

    详细信息
      作者简介:

      任金锋(1987-), 男, 工程师, 博士, 主要从事海洋地质与天然气水合物研究. ORCID: 0000-0002-3567-5337. E-mail: jf_ren@163.com

      通讯作者:

      孙鸣, E-mail: 569811200@qq.com

    • 中图分类号: P737

    A Giant Submarine Landslide and Its Triggering Mechanisms on the Nansha Trough Margin, South China Sea

    • 摘要: 大型海底滑坡的研究对认识海底斜坡的稳定性具有重要意义.利用最新的高精度多波束数据和重处理的二维地震资料,识别了南海南沙海槽一处大型海底滑坡,描述了其发育特征,探讨了其可能的形成原因.该滑坡体覆盖面积达6 300 km2,横向最宽50 km,延伸最远140 km.上部源头区外形呈半环形,滑坡后壁的高度落差200~350 m,平均坡度0.7°,发育基底剪切面和掀斜断块.中部滑移区呈拱形,分布于1 600~2 400 m水深段,平均坡度1°~3°,发育基底侵蚀面和大量残余块体.下部堆积区呈扇形,分布于2 400~2 800 m水深段,平均坡度0.1°~1.0°,发育大型碎屑流朵体和逃逸块体.研究表明不断隆升的背斜脊对高供给率沉积物的阻挡是海底斜坡失稳的内在条件,而高通量流体的聚集以及天然气水合物的分解使其变得更加不稳定.

       

    • 图  1  研究区地理位置(a)、研究区区域地质简图(b)以及横跨南沙海槽至南海东南陆架的A-A’地质剖面(c)

      图a来自http://www.mnr.gov.cn/sj/sjfw/;图b底图据杨胜雄等(2015),剖面位置见图 1a;图c修改自Warren et al.(2010),剖面位置见图 1b

      Fig.  1.  Regional location map for the study area (a), geological map for the study area (b) and regional 2D geological cross-section of "Line A-A'" through Nansha trough and southeastern shelf of South China Sea (c)

      图  2  研究区海底地形

      图 2位置见图 1

      Fig.  2.  Sea-bottom bathymetric map of the study area

      图  3  研究区海底坡度(a)和海底坡向(b)

      位置见图 1

      Fig.  3.  Sea-bottom slope map (a) and aspect map (b) of the study area

      图  4  研究区与海底滑坡有关的地形剖面

      图内坡度数据中,蓝色为陡坡最大坡角值,红色为缓坡平均值,位置见图 3

      Fig.  4.  Topographic profile graghs related to submarine landslide in the study area

      图  5  海底滑坡的三维地貌单元特征

      图 5a的位置与图 2相同

      Fig.  5.  3D topographic characteristics of the submarine landslide

      图  6  海底滑坡上部源区的地震反射特征

      剖面位置见图 5a

      Fig.  6.  Seismic expresion of the upper source area

      图  7  海底滑坡中部滑移区的地震反射特征

      剖面位置见图 5a

      Fig.  7.  Seismic expresion of the middle slip area

      图  8  研究区陆架边缘三角洲的演化

      剖面位置见图 5a

      Fig.  8.  The evolution of shelf-edge deltas in the study area

      图  9  受滑移体影响的3类背斜发育特征

      图a、c和e的位置见图 5a;图b、d和f的位置见图 2;其地震剖面来自Morley(2009)并做重新解释

      Fig.  9.  The three growth patterns of anticlines affected by slides

      图  10  背斜生长演化与海底滑坡发生的模式

      a. 背斜形成;b. 软弱层形成;c背斜被破坏;d. 软弱层扩大;e滑坡体形成;图中实线BSR为同时期的BSR,虚线BSR为古BSR

      Fig.  10.  A schematic model of the growth of anticlines ridge and the formation of submarine landslide

      表  1  陆架边缘三角洲的演化阶段及其增长样式

      Table  1.   The evolution stage and its growth styles of shelf-edge deltas in the study area.

      期次 定量参数 陆架边缘三角洲类型 相对海平面变化
      加积距离(m) 进积距离(km) 轨迹角度(°) 轨迹类型 增长样式
      3 129.46 0.98 7.52 高角度上升型 加积型 快速上升
      2 93.78 2.42 2.22 低角度上升型 进积与加积混合型 轻微上升
      1 37.25 4.29 0.49 平缓或轻微上升型 快速进积型 降低
      注:依据重处理地震资料得到的速度谱计算出的层速度和平均速度,进而通过深度(D)和时间(T)散点图得到拟合公式,D=736.8×T+301.5×T2—20.0×T3(考虑水深对速度的影响),其中D的单位是m,T的单位是s.
      下载: 导出CSV
    • [1] Alves, T. M., 2015. Submarine Slide Blocks and Associated Soft-Sediment Deformation in Deep-Water Basins: A Review. Marine and Petroleum Geology, 67: 262-285. https://doi.org/10.1016/j.marpetgeo.2015.05.010
      [2] Bull, S., Cartwright, J., Huuse, M., 2009. A Review of Kinematic Indicators from Mass-Transport Complexes Using 3D Seismic Data. Marine and Petroleum Geology, 26(7): 1132-1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
      [3] Chai, M. F., Lau, T. L., Majid, T. A., 2014. Potential Impacts of the Brunei Slide Tsunami over East Malaysia and Brunei Darussalam. Ocean Engineering, 81: 69-76. https://doi.org/10.1016/j.oceaneng.2014.02.028
      [4] Curiale, J., Morelos, J., Lambiase, J., et al., 2000. Brunei Darussalam: Characteristics of Selected Petroleums and Source Rocks. Organic Geochemistry, 31(12): 1475-1493. https://doi.org/10.1016/S0146-6380(00)00084-X
      [5] Gee, M. J. R., Uy, H. S., Warren, J., et al., 2007. The Brunei Slide: A Giant Submarine Landslide on the North West Borneo Margin Revealed by 3D Seismic Data. Marine Geology, 246(1): 9-23. https://doi.org/10.1016/j.margeo.2007.07.009
      [6] Han, B., Zhu, B. D., Wan, L., et al., 2015. Deep-Water Fold and Thrust Tectonics in Southeastern Nansha Trough. Geological Review, 61(5): 1061-1067 (in Chinese with English abstract).
      [7] He, Y., Zhong, G. F., 2015. Current Status of Submarine Landslides and Their Seismic Recognition. Marine Sciences, 39(1): 116-125 (in Chinese with English abstract).
      [8] Hesse, S., Back, S., Franke, D., 2009. The Deep-Water Fold-and-Thrust Belt Offshore NW Borneo: Gravity-Driven Versus Basement-Driven Shortening. Geological Society of America Bulletin, 121(5-6): 939-953. https://doi.org/10.1130/b26411.1
      [9] Hesse, S., Back, S., Franke, D., 2010. The Structural Evolution of Folds in a Deepwater Fold and Thrust Belt-A Case Study from the Sabah Continental Margin Offshore NW Borneo, SE Asia. Marine and Petroleum Geology, 27(2): 442-454. https://doi.org/10.1016/j.marpetgeo.2009.09.004
      [10] Huang, Y., Wang, S. H., Yan, W., et al., 2018. Gas Hydrate Dissociation Event and Its Relationship with Submarine Slide in Dongsha Area of Northern South China Sea. Journal of Tropical Oceanography, 37(4): 61-69 (in Chinese with English abstract).
      [11] Huhn, K., Arroyo, M., Cattaneo, A., et al., 2020. Modern Submarine Landslide Complexes: A Short Review. In: Ogata, K., Festa, A., Pini, G. A., eds., Submarine Landslides Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles. The American Geophysical Union and John Wiley and Sons, Inc. Washington, D.C. and Hoboken.
      [12] Ingram, G. M., Chisholm, T. J., Grant, C. J., et al., 2004. Deepwater North West Borneo: Hydrocarbon Accumulation in an Active Fold and Thrust Belt. Marine and Petroleum Geology, 21(7): 879-887. https://doi.org/10.1016/j.marpetgeo.2003.12.007
      [13] King, R. C., Hillis, R. R., Tingay, M. R. P., et al., 2009. Present-Day Stress and Neotectonic Provinces of the Baram Delta and Deep-Water Fold-Thrust Belt. Journal of the Geological Society, 166(2): 197-200. https://doi.org/10.1144/0016-76492008-062r
      [14] Le Bouteiller, P., Lafuerza, S., Charléty, J., et al., 2019. A New Conceptual Methodology for Interpretation of Mass Transport Processes from Seismic Data. Marine and Petroleum Geology, 103: 438-455. https://doi.org/10.1016/j.marpetgeo.2018.12.027
      [15] Li, L. L., Shi, F. Y., Ma, G. F., et al., 2019. Tsunamigenic Potential of the Baiyun Slide Complex in the South China Sea. Journal of Geophysical Research: Solid Earth, 124(8): 7680-7698. https://doi.org/10.1029/2019JB018062
      [16] Mc Gilvery, T. A. M., Cook, D. L., 2003. The Influence of Local Gradients on Accommodation Space and Linked Depositional Elements across a Stepped Slope Profile, Offshore Brunei. In: Roberts, H., Rose, N., Fillon, R.H., et al., eds., Shelf Margin Deltas and Linked Down Slope Petroleum Systems: Global Significance and Future Exploration Potential. Gulf Coast Section Society of Economic Paleontologists and Sedimentologists, 23rd Annual Research Conference, Houston.
      [17] Morley, C. K., 2007. Interaction between Critical Wedge Geometry and Sediment Supply in a Deep-Water Fold Belt. Geology, 35(2): 139. https://doi.org/10.1130/g22921a.1
      [18] Morley, C. K., 2009. Growth of Folds in a Deep-Water Setting. Geosphere, 5(2): 59-89. https://doi.org/10.1130/ges00186.1
      [19] Moscardelli, L., Wood, L., Mann, P., 2006. Mass-Transport Complexes and Associated Processes in the Offshore Area of Trinidad and Venezuela. AAPG Bulletin, 90(7): 1059-1088. https://doi.org/10.1306/02210605052
      [20] Mosher, D. C., Shipp, R. C., Moscardelli, L., et al., 2010. Submarine Mass Movements and Their Consequences-4th International Symposium. Springer, Dordrecht.
      [21] Paganoni, M., Cartwright, J. A., Foschi, M., et al., 2018. Relationship between Fluid-Escape Pipes and Hydrate Distribution in Offshore Sabah (NW Borneo). Marine Geology, 395: 82-103. https://doi.org/10.1016/j.margeo.2017.09.010
      [22] Shanmugam, G., 2015. The Landslide Problem. Journal of Palaeogeography, 4(2): 109-166. https://doi.org/10.3724/SP.J.1261.2015.00071
      [23] Silva, P. F., Roque, C., Drago, T., et al., 2020. Multidisciplinary Characterization of Quaternary Mass Movement Deposits in the Portimão Bank (Gulf of Cadiz, SW Iberia). Marine Geology, 420: 106086. https://doi.org/10.1016/j.margeo.2019.106086
      [24] Sultan, N., Cochonat, P., Canals, M., et al., 2004. Triggering Mechanisms of Slope Instability Processes and Sediment Failures on Continental Margins: A Geotechnical Approach. Marine Geology, 213(1-4): 291-321. https://doi.org/10.1016/j.margeo.2004.10.011
      [25] Sun, Q. L., Alves, T. M., Lu, X. Y., et al., 2018a. True Volumes of Slope Failure Estimated from a Quaternary Mass-Transport Deposit in the Northern South China Sea. Geophysical Research Letters, 45(6): 2642-2651. https://doi.org/10.1002/2017GL076484
      [26] Sun, Q. L., Alves, T., Xie, X. N., et al., 2017. Free Gas Accumulations in Basal Shear Zones of Mass-Transport Deposits (Pearl River Mouth Basin, South China Sea): An Important Geohazard on Continental Slope Basins. Marine and Petroleum Geology, 81: 17-32. https://doi.org/10.1016/j.marpetgeo.2016.12.029
      [27] Sun, Q. L., Cartwright, J., Xie, X. N., et al., 2018b. Reconstruction of Repeated Quaternary Slope Failures in the Northern South China Sea. Marine Geology, 401: 17-35. https://doi.org/10.1016/j.margeo.2018.04.009
      [28] Sun, Q. L., Leslie, S., 2020. Tsunamigenic Potential of an Incipient Submarine Slope Failure in the Northern South China Sea. Marine and Petroleum Geology, 112: 104-111. https://doi.org/10.1016/j.marpetgeo.2019.104111
      [29] Terry, J. P., Winspear, N., Goff, J., et al., 2017. Past and Potential Tsunami Sources in the South China Sea: A Brief Synthesis. Earth-Science Reviews, 167: 47-61. https://doi.org/10.1016/j.earscirev.2017.02.007
      [30] Wang, D. W., Wu, S. G., Lü, F. L., et al., 2011. Mass Transport Deposits and Its Significance for Oil & Gas Exploration in Deep-Water Regions of South China Sea. Journal of China University of Petroleum (Edition of Natural Science), 35(5): 14-19 (in Chinese with English abstract).
      [31] Wang, L. Z., Yao, Y. J., Lin, W. B., et al., 2018. Sediment Waves in the South of South China Sea: Soft Sediment Deformation and Its Triggering Mechanism. Earth Science, 43(10): 3462-3470 (in Chinese with English abstract).
      [32] Warren, J. K., Alwyn, C., Ian, C., 2010. Organic Geochemical, Isotopic, and Seismic Indicators of Fluid Flow in Pressurized Growth Anticlines and Mud Volcanoes in Modern Deep-Water Slope and Rise Sediments of Offshore Brunei Darussalam: Implications for Hydrocarbon Exploration in Other Mud- and Salt-Diapir Provinces. In: Wood, L., ed., Shale Tectonics. AAPG Memoir, 93: 163-196. https://doi.org/10.1306/13231314M933424
      [33] Wu, S. G., Chen, S. S., Wang, Z. J., et al., 2008. Submarine Landslide and Risk Evaluation on Its Instability in the Deepwater Continental Margin. Geoscience, 22(3): 430-437 (in Chinese with English abstract).
      [34] Yang, S. X., Qiu, Y., Zhu, B. D., 2015. Atlas of Geology and Geophysics of the South China Sea. China Navigation Publications Press, Tianjin (in Chinese).
      [35] Yao, Y. J., Yang, C. P., Li, X. J., et al., 2013. The Seismic Reflection Characteristics and Tectonic Significance of the Tectonic Revolutionary Surface of Mid-Miocene (T3 Seismic Interface) in the Southern South China Sea. Chinese Journal of Geophysics, 56(4): 1274-1286 (in Chinese with English abstract).
      [36] Zhang, B. K., Li, S. Z., Xia, Z., et al., 2014. Time Sequence of Submarine Landslides and Gas Hydrates in the Northern South China Sea. Geotectonica et Metallogenia, 38(2): 434-440 (in Chinese with English abstract).
      [37] Zhang, H. H., Liu, P., Liao, Z. B., et al., 2017. Distribution and Hydrocarbon Geological Characteristics of Large and Medium Fields in Nansha Sea Area. Offshore Oil, 37(4): 1-7, 20 (in Chinese with English abstract).
      [38] Zhu, C. Q., Cheng, S., Li, Q. P., et al., 2019. Giant Submarine Landslide in the South China Sea: Evidence, Causes, and Implications. Journal of Marine Science and Engineering, 7(5): 152. https://doi.org/10.3390/jmse7050152
      [39] Zhu, C. Q., Jia, Y. G., Liu, X. L., et al., 2015. Classification and Genetic Machanism of Submarine Landslide: A Review. Marine Geology & Quaternary Geology, 35(6): 153-163 (in Chinese with English abstract).
      [40] 韩冰, 朱本铎, 万玲, 等, 2015. 南沙海槽东南缘深水逆冲推覆构造. 地质论评, 61(5): 1061-1067. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201505009.htm
      [41] 何叶, 钟广法, 2015. 海底滑坡及其反射地震识别综述. 海洋科学, 39(1): 116-125. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201501017.htm
      [42] 黄怡, 王淑红, 颜文, 等, 2018. 南海北部东沙海域天然气水合物分解事件及其与海底滑塌的关系. 热带海洋学报, 37(4): 61-69. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201804009.htm
      [43] 王大伟, 吴时国, 吕福亮, 等, 2011. 南海深水块体搬运沉积体系及其油气勘探意义. 中国石油大学学报(自然科学版), 35(5): 14-19. doi: 10.3969/j.issn.1673-5005.2011.05.003
      [44] 王龙樟, 姚永坚, 林卫兵, 等, 2018. 南海南部沉积物波: 软变形及其触发机制. 地球科学, 43(10): 3462-3470. doi: 10.3799/dqkx.2018.303
      [45] 吴时国, 陈珊珊, 王志君, 等, 2008. 陆边缘深水区海底滑坡及其不稳定性风险评估. 现代地质, 22(3): 430-437. doi: 10.3969/j.issn.1000-8527.2008.03.013
      [46] 杨胜雄, 邱燕, 朱本铎, 2015. 南海地质地球物理图系. 天津: 中国航海图书出版社.
      [47] 姚永坚, 杨楚鹏, 李学杰, 等, 2013. 南海南部海域中中新世(T3界面)构造变革界面地震反射特征及构造含义. 地球物理学报, 56(4): 1274-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304024.htm
      [48] 张丙坤, 李三忠, 夏真, 等, 2014. 南海北部海底滑坡与天然气水合物形成与分解的时序性. 大地构造与成矿学, 38(2): 434-440. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402022.htm
      [49] 张厚和, 刘鹏, 廖宗宝, 等, 2017. 南沙海域大中型油气田分布与油气地质特征. 海洋石油, 37(4): 1-7, 20. doi: 10.3969/j.issn.1008-2336.2017.04.001
      [50] 朱超祁, 贾永刚, 刘晓磊, 等, 2015. 海底滑坡分类及成因机制研究进展. 海洋地质与第四纪地质, 35(6): 153-163. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201506023.htm
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  840
    • HTML全文浏览量:  107
    • PDF下载量:  79
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-04-24
    • 刊出日期:  2021-03-15

    目录

      /

      返回文章
      返回