• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木盆地南缘浅层高碘地下水的分布及成因:以新疆民丰县平原区为例

    孙英 周金龙 梁杏 周殷竹 曾妍妍 林丽

    孙英, 周金龙, 梁杏, 周殷竹, 曾妍妍, 林丽, 2021. 塔里木盆地南缘浅层高碘地下水的分布及成因:以新疆民丰县平原区为例. 地球科学, 46(8): 2999-3011. doi: 10.3799/dqkx.2020.260
    引用本文: 孙英, 周金龙, 梁杏, 周殷竹, 曾妍妍, 林丽, 2021. 塔里木盆地南缘浅层高碘地下水的分布及成因:以新疆民丰县平原区为例. 地球科学, 46(8): 2999-3011. doi: 10.3799/dqkx.2020.260
    Sun Ying, Zhou Jinlong, Liang Xing, Zhou Yinzhu, Zeng Yanyan, Lin Li, 2021. Distribution and Genesis of Shallow High-Iodine Groundwater in Southern Margin of Tarim Basin: A Case Study of Plain Area in Minfeng County, Xinjiang. Earth Science, 46(8): 2999-3011. doi: 10.3799/dqkx.2020.260
    Citation: Sun Ying, Zhou Jinlong, Liang Xing, Zhou Yinzhu, Zeng Yanyan, Lin Li, 2021. Distribution and Genesis of Shallow High-Iodine Groundwater in Southern Margin of Tarim Basin: A Case Study of Plain Area in Minfeng County, Xinjiang. Earth Science, 46(8): 2999-3011. doi: 10.3799/dqkx.2020.260

    塔里木盆地南缘浅层高碘地下水的分布及成因:以新疆民丰县平原区为例

    doi: 10.3799/dqkx.2020.260
    基金项目: 

    国家自然科学基金项目 42067035

    新疆农业大学水利工程重点学科项目 SLXK2019-10

    新疆农业大学研究生科研创新项目 XJAUGRI2020006

    详细信息
      作者简介:

      孙英(1994-), 女, 博士研究生, 主要从事地下水资源评价与水质演化方面的研究.ORCID: 0000-0002-1737-8726.E-mail: 879986831@qq.com

      通讯作者:

      周金龙, ORCID: 0000-0001-5055-0252.E-mail: zjzhoujl@163.com

    • 中图分类号: P641

    Distribution and Genesis of Shallow High-Iodine Groundwater in Southern Margin of Tarim Basin: A Case Study of Plain Area in Minfeng County, Xinjiang

    • 摘要: 塔里木盆地位于欧亚大陆腹地,远离海洋,地下水是塔里木盆地南缘重要的供水水源,查明该区浅层地下水中碘(I-)的分布及成因至关重要.基于新疆塔里木盆地南缘的民丰县平原区44组浅层地下水水样,综合运用水化学图解法、数理统计法和GIS技术,分析潜水和浅层承压水水化学特征、碘的空间分布及高碘地下水的成因.结果表明:民丰县平原区浅层地下水中碘的富集和贫乏共存;潜水和浅层承压水I-含量范围分别为≤730 μg/L和≤183μg/L,潜水水样中缺碘水、适碘水、高碘水和超高碘水占比分别为19.4%、69.4%、5.6%和5.6%,浅层承压水水样中缺碘水、适碘水和高碘水占比分别为12.5%、75.0%和12.5%,潜水中缺碘水和超高碘水均高于承压水.从山前倾斜平原到细土平原,地下水中I-含量呈明显上升趋势.高碘水和超高碘水水化学类型主要为Cl·SO4-Na型和Cl-Na型.除水文地质条件和偏碱性的地下水环境外,研究区潜水碘主要受强烈的蒸发浓缩作用、第四系全新统沼泽堆积物和矿物溶解沉淀的影响,浅层承压水碘主要受矿物溶解沉淀及还原环境的影响.

       

    • 图  1  民丰县采样点分布及水文地质图

      地下水类型(200 mm管径降深5 m,涌水量单位为m3/d):Ⅰ. 松散岩类孔隙水潜水,①1 000~5 000水量丰富,②100~1 000水量中等,③10~100水量贫乏,④ < 10水量极其贫乏,⑤ < 250水量不均匀;Ⅱ. 松散岩类孔隙水承压水,⑥100~1000水量中等;Ⅲ. 碎屑岩类裂隙孔隙水,⑦ < 10;Ⅳ. 基岩裂隙水层状岩类或轻变质岩类裂隙水,⑧10~100;Ⅴ. 基岩裂隙水块状岩类裂隙水,⑨10~100;⑩冻结层水

      Fig.  1.  Distribution of sampling points and hydrogeological diagram of Minfeng County

      图  2  民丰县水文地质剖面图

      Fig.  2.  Hydrogeological profile of Minfeng County

      图  3  浅层地下水Piper三线图

      Fig.  3.  Piper diagrams of shallow groundwater

      图  4  浅层地下水中I-含量分布

      Fig.  4.  Distribution of I- content in shallow groundwater

      图  5  地下水I-含量与地下水位埋深关系

      Fig.  5.  Relationship between groundwater I- content and groundwater depth

      图  6  潜水(a)、浅层承压水(b)聚类分析树状图

      Fig.  6.  Parameters clustering analysis of unconfined groundwater (a) and shallow confined groundwater (b)

      图  7  潜水Gibbs图

      Fig.  7.  Gibbs map of unconfined groundwater

      图  8  浅层地下水中矿物相的饱和指数与TDS的关系

      Fig.  8.  The relationship between the saturation index of mineral phase and TDS in shallow groundwater

      图  9  浅层地下水中I含量与pH(a)、Eh(b)的关系

      Fig.  9.  The relationship between I content and pH(a) and Eh(b) of shallow groundwater

      图  10  地下水I含量与TDS(a)、HCO3(b)、Mn2+(c)、As(d)和F(e)的关系

      Fig.  10.  Correlation between I content and TDS (a), HCO3 (b), Mn2+ (c), As (d) and F (e) in groundwater

      表  1  研究区浅层地下水水化学指标统计分析结果

      Table  1.   Results of statistical analysis on hydrochemical index of shallow groundwater in the study area

      指标 潜水(n=36) 浅层承压水(n=8)
      最大值 最小值 均值 中值 最大值 最小值 均值 中值
      I- 734.00 ND. 85.94 50.00 183.00 ND. 64.13 50.00
      pH 8.90 7.12 8.09 8.21 8.48 7.29 8.09 8.25
      TDS 41 282.73 351.10 4 674.16 1 799.98 25 818.17 522.57 5 691.81 1 029.33
      TH 6 549.30 156.60 1 037.24 588.55 3 786.30 108.60 1 086.29 521.40
      K+ 776.41 3.19 74.52 21.21 710.01 8.37 127.96 12.73
      Na+ 13 582.08 35.99 1 214.60 418.41 8 848.90 65.26 1571.89 136.18
      Ca2+ 702.10 20.06 140.03 103.37 396.20 25.98 149.98 74.27
      Mg2+ 1 307.97 15.54 167.03 49.47 690.70 3.66 172.88 51.09
      Cl- 14 348.64 49.18 1 531.47 401.41 12 364.63 91.54 2 160.06 190.26
      SO42- 9 889.67 122.70 1 315.89 555.73 3 607.56 177.19 1 256.69 446.18
      HCO3- 3 954.03 36.62 415.99 219.30 1 933.05 85.45 460.55 164.88
      As 0.09 ND. 0.01 0.01 0.04 ND. 0.01 0.01
      F- 23.23 ND. 3.02 1.46 16.20 0.55 3.88 1.82
      Mn2+ 0.53 ND. 0.08 0.05 1.20 ND. 0.19 0.05
      注:ND.为未检出;I-单位为μg/L,其余单位为mg/L.
      下载: 导出CSV

      表  2  浅层地下水旋转因子载荷矩阵

      Table  2.   Matrix of rotated factor loadings of shallow groundwater

      因子 潜水 承压水
      F1 F2 F3 F1 F2
      HCO3- 0.974 0.016 0.129 0.989 0.121
      As 0.970 0.061 0.035 0.881 0.029
      Na+ 0.933 0.311 0.136 0.961 0.184
      I- 0.923 0.311 0.149 0.973 0.022
      TDS 0.873 0.464 0.116 0.933 0.331
      Cl- 0.855 0.476 0.140 0.961 0.181
      SO42- 0.820 0.562 0.066 0.519 0.840
      Ca2+ 0.014 0.912 -0.195 -0.110 0.766
      Mg2+ 0.523 0.827 0.042 0.090 0.971
      F- 0.342 0.650 0.276 0.217 0.934
      Mn2+ 0.074 -0.055 -0.877 0.111 0.120
      pH 0.395 -0.067 0.758 0.214 -0.022
      下载: 导出CSV
    • Barikmo, I., Henjum, S., Dahl, L., et al., 2011. Environmental Implication of Iodine in Water, Milk and Other Foods Used in Saharawi Refugees Camps in Tindouf, Algeria. Journal of Food Composition and Analysis, 24(4-5): 637-641. https://doi.org/10.1016/j.jfca.2010.10.003
      Cai, K.Y., Zheng, A., 2013. Study on the Prevalence of Hypothyroidism during Early Pregnant Women in Excess and Sufficient Water Iodine Area in Xuzhou. Journal of Frontiers of Medicine, (11): 63-64 (in Chinese with English abstract).
      Cai, L., Hu, C., Chen, Z.H., et al., 2019. Distribution and Genesis of High Fe and Mn Groundwater in the Northeast of the Jianghan Plain. Hydrogeology & Engineering Geology, 46(4): 18-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201904004.htm
      Cao, F.X., Zhu, Q.J., 2006. Application Effect of EH-4 System in Groundwater Exploration in the Southern Edge of Tarim Basin. Site Investigation Science and Technology, (5): 61-64 (in Chinese with English abstract).
      Chen, J.L., Yang, H.X., Liu, W., 2017. Study on the Total Iodine and Iodine Speciation Characteristics in Xilingol League, Inner Mongolia and Tacheng Xinjiang High Iodine Area by High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry. Rock and Mineral Analysis, 36(6): 631-640 (in Chinese with English abstract).
      Cui, W.J., Meng, L., Yu, J., 2017. Investigation Analysis of Iodine Deficiency and Iodine Nutrition Related Thyroid Disease in Lli. Xinjiang Medical Journal, 47(6): 627-629 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XJYI201706018.htm
      Ding, C.H., 2008. The Structurally Feature and Petroleum Geologic Evaluation in the Southeast Region of Tarim Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Gao, C.R., Liu, W.B., Feng, C.E., et al., 2014. Research on the Formation Mechanism of High Arsenic Groundwater in Arid and Semi-Arid Regions: A Case Study of Hetao Plain in Inner Mongolia, China. Earth Science Frontiers, 21(4): 13-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201404003.htm
      Gibbs, R.J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088-1090. https://doi.org/10.1126/science.172.3985.870
      He, X.Q., 2015. Meta-Statistical Analysis. China Renmin University Press, Beijing (in Chinese).
      Kassim, I. A. R., Moloney, G., Busili, A., et al., 2014. Iodine Intake in Somalia is Excessive and Associated with the Source of Household Drinking Water. The Journal of Nutrition, 144(3): 375-381. https://doi.org/10.3945/jn.113.176693
      Li, J. X., Wang, Y. X., Guo, W., et al., 2014. Iodine Mobilization in Groundwater System at Datong Basin, China: Evidence from Hydrochemistry and Fluorescence Characteristics. Science of the Total Environment, 468-469: 738-745. https://doi.org/10.1016/j.scitotenv.2013.08.092
      Li, J. X., Wang, Y. X., Xie, X. J., et al., 2013. Hydrogeochemistry of High Iodine Groundwater: A Case Study at the Datong Basin, Northern China. Environmental Science: Processes & Impacts, 15(4): 848-859. https://doi.org/10.1039/c3em30841c
      Li, J. X., Wang, Y. X., Xie, X. J., et al., 2016. Effects of Water-Sediment Interaction and Irrigation Practices on Iodine Enrichment in Shallow Groundwater. Journal of Hydrology, 543: 293-304. https://doi.org/10.1016/j.jhydrol.2016.10.002
      Li, L., Zhou, J.L., Qi, W.Q., et al., 2018. Hydrochemical Characteristics and Formation Reasons of Shallow Groundwater in Oasis Area of Hotan River Basin, Xinjiang. Journal of Water Resources and Water Engineering, 29(3): 14-20 (in Chinese with English abstract).
      Liu, M., 2007. Study on Groundwater Spatiotemporal Distribution Law and Its Environmental Effects in Hotan Oasis (Dissertation). Xi'an University of Technology, Xi'an (in Chinese with English abstract).
      Lu, X.Y., 2018. The Main Control Factors Coal Accumulation and Favorable Area Selection of Middle and Lower Jurassic in Southeastern Xinjiang (Dissertation). Xinjiang University, Urumqi (in Chinese with English abstract).
      Lü, M.J., Ren, J.F., Wang, M.J., 2007. Investigation on Goiter in Children Aged 8-10 Years in High Iodide Areas in Binzhou, Shandong. Journal of Environment and Health, 24(8): 614-615 (in Chinese with English abstract).
      Lü, S.M., Xu, D., Zhong, Z.S., et al., 2007. Research on Factors Affecting Children's Iodine Nutrition and Thyroid Goiter in Iodine Excessive Regions. Chinese Journal of Control of Endemic Diseases, 22(2): 136-138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DYBF200702025.htm
      Ma, J.Z., 2001. Groundwater Vulnerability Assessement for the South Rim of Tarim Basin. Journal of Desert Research, 21(2): 170-174 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGSS200102012.htm
      Qian, H., Ma, Z.Y., Li, P.Y., 2012. Hydrogeochemistry. Geological Publishing House, Beijing (in Chinese).
      Qian, K., Li, J. X., Xie, X. J., et al., 2017. Organic and Inorganic Colloids Impacting Total Iodine Behavior in Groundwater from the Datong Basin, China. Science of the Total Environment, 601-602: 380-390. https://doi.org/10.1016/j.scitotenv.2017.05.127
      Shen, H.M., 2019. Prevention and Practice of Water-Based High Iodine Hazard in China. People's Medical Publishing House, Beijing (in Chinese).
      Tang, Q. F., Xu, Q., Zhang, F. C., et al., 2013. Geochemistry of Iodine-Rich Groundwater in the Taiyuan Basin of Central Shanxi Province, North China. Journal of Geochemical Exploration, 135: 117-123. https://doi.org/10.1016/j.gexplo.2012.08.019
      Tao, Z.D., 1990. The Endemic of Xinjiang and the Concerned Hydrogeochemitry. Arid Environmental Monitoring, 4(2): 89-91, 83 (in Chinese with English abstract).
      Teng, W. P., Shan, Z. Y., Teng, X. C., et al., 2006. Effect of Iodine Intake on Thyroid Diseases in China. The New England Journal of Medicine, 354(26): 2783-2793. https://doi.org/10.1056/nejmoa054022
      Teng, W.P., Teng, X.C., 2006. Research Progress of Iodine and Thyroid Disease. Chinese Journal of Practical Internal Medicine, 26(20): 1569-1573 (in Chinese).
      Voutchkova, D. D., Ernstsen, V., Kristiansen, S. M., et al., 2017. Iodine in Major Danish Aquifers. Environmental Earth Sciences, 76(13): 447-463. https://doi.org/10.1007/s12665-017-6775-6
      Wang, H.T., Zhou, J.L., Zeng, Y.Y., et al., 2019. Spatial Distribution and Enrichment Factors of Iodine in Drinking Groundwater in Kashgar Prefecture of Xinjiang. Journal of Xinjiang Agricultural University, 42(2): 145-150 (in Chinese with English abstract).
      Wang, Y.T., Li, J.X., Xue, X.B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320 (in Chinese with English abstract).
      Wang, Y.X., Su, C.L., Xie, X.J., et al., 2010. The Genesis of High Arsenic Groundwater: A Case Study in Datong Basin. Geology in China, 37(3): 771-780 (in Chinese with English abstract). http://www.researchgate.net/publication/285107958_The_genesis_of_high_arsenic_groundwater_a_case_study_in_Datong_basin
      Wu, C., Wu, X., Zhang, Y.S., et al., 2018. Distribution Characteristics and Genesis of High-Fluoride Groundwater in the Niuxin Mountain, Qinhuangdao. Earth Science Frontiers, 25(4): 307-315 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201804032.htm
      Xiong, H.G., Zhou, Z., 2007. The Selection and Practice of Eco-Environment Index in Typical Arid Region's PRED System-Take the Minfeng County in Xinjiang for Example. Journal of Arid Land Resources and Environment, 21(8): 2-6 (in Chinese with English abstract).
      Xue, X.B., Li, J.X., Qian, K., et al., 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain: Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3): 910-921 (in Chinese with English abstract). http://www.researchgate.net/publication/325083892_Spatial_Distribution_and_Mobilization_of_Iodine_in_Groundwater_System_of_North_China_Plain_Taking_Hydrogeological_Section_from_Shijiazhuang_Hengshui_to_Cangzhou_as_an_Example
      Zhang, E. Y., Wang, Y. Y., Qian, Y., et al., 2013. Iodine in Groundwater of the North China Plain: Spatial Patterns and Hydrogeochemical Processes of Enrichment. Journal of Geochemical Exploration, 135: 40-53. https://doi.org/10.1016/j.gexplo.2012.11.016
      Zhao, H.X., Xu, C.H., Chen, G.S., et al., 2014. Investigation and Analysis of Iodine Content Distribution and Condition of Drinking Water in Shangqiu City. Contemporary Medicine, 20(5): 162-163 (in Chinese).
      蔡可英, 郑昂, 2013. 徐州高碘及碘适宜地区妊娠早期妇女甲状腺功能减退症发病率的调查. 医药前沿, (11): 63-64. doi: 10.3969/j.issn.2095-1752.2013.11.054
      蔡玲, 胡成, 陈植华, 等, 2019. 江汉平原东北部地区高铁锰地下水成因与分布规律. 水文地质工程地质, 46(4): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904004.htm
      曹福祥, 朱庆俊, 2006. 塔里木盆地南缘地下水勘查EH-4系统应用效果. 勘察科学技术, (5): 61-64. doi: 10.3969/j.issn.1001-3946.2006.05.017
      陈俊良, 杨红霞, 刘崴, 2017. 高效液相色谱-电感耦合等离子体质谱法测定内蒙古锡盟和新疆塔城高碘地区地下水的总碘及碘形态特征. 岩矿测试, 36(6): 631-640.
      崔维江, 孟柳, 郁进, 2017. 新疆伊犁碘缺乏区及碘充足区相关甲状腺疾病调查分析. 新疆医学, 47(6): 627-629. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYI201706018.htm
      丁长辉, 2008. 塔里木盆地塔东南地区构造特征与石油地质条件评价(硕士学位论文). 长春: 吉林大学.
      高存荣, 刘文波, 冯翠娥, 等, 2014. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例. 地学前缘, 21(4): 13-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404003.htm
      何晓群, 2015. 多元统计分析. 北京: 中国人民大学出版社.
      李玲, 周金龙, 齐万秋, 等, 2018. 新疆和田河流域绿洲区浅层地下水水化学特征及成因分析. 水资源与水工程学报, 29(3): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201803003.htm
      刘敏, 2007. 和田绿洲地下水时空分布规律及其生态环境效应研究(硕士学位论文). 西安: 西安理工大学.
      陆星宇, 2018. 新疆东南部中-下侏罗统聚煤主控因素分析与有利区优选(博士学位论文). 乌鲁木齐: 新疆大学.
      吕茂军, 任金凤, 王孟杰, 2007.2004年滨州市高碘地区8~10岁儿童的甲状腺肿大情况和尿碘水平. 环境与健康杂志, 24(8): 614-615. doi: 10.3969/j.issn.1001-5914.2007.08.019
      吕胜敏, 徐栋, 种振水, 等, 2007. 高碘地区儿童碘营养甲状腺肿影响因素的研究. 中国地方病防治杂志, 22(2): 136-138. doi: 10.3969/j.issn.1001-1889.2007.02.023
      马金珠, 2001. 塔里木盆地南缘地下水脆弱性评价. 中国沙漠, 21(2): 170-174. doi: 10.3321/j.issn:1000-694X.2001.02.012
      钱会, 马致远, 李培月, 2012. 水文地球化学. 北京: 地质出版社.
      申红梅, 2019. 中国水源型高碘危害防治与实践. 北京: 人民卫生出版社.
      陶振德, 1990. 新疆地方病及相关水文地球化学. 干旱环境监测, 4(2): 89-91, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-GHJC199002011.htm
      滕卫平, 滕晓春, 2006. 碘与甲状腺疾病的研究进展. 中国实用内科杂志, 26(20): 1569-1573. doi: 10.3969/j.issn.1005-2194.2006.20.001
      王红太, 周金龙, 曾妍妍, 等, 2019. 新疆喀什地区饮用地下水碘分布及其富集因素分析. 新疆农业大学学报, 42(2): 145-150. doi: 10.3969/j.issn.1007-8614.2019.02.011
      王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. doi: 10.3799/dqkx.2019.261
      王焰新, 苏春利, 谢先军, 等, 2010. 大同盆地地下水砷异常及其成因研究. 中国地质, 37(3): 771-780. doi: 10.3969/j.issn.1000-3657.2010.03.033
      吴初, 武雄, 张艳帅, 等, 2018. 秦皇岛牛心山高氟地下水分布特征及成因. 地学前缘, 25(4): 307-315. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804032.htm
      熊黑钢, 周哲, 2007. 典型干旱区PRED系统生态环境指标的选择与实践——以新疆民丰县为例. 干旱区资源与环境, 21(8): 2-6. doi: 10.3969/j.issn.1003-7578.2007.08.002
      薛肖斌, 李俊霞, 钱坤, 等, 2018. 华北平原原生富碘地下水系统中碘的迁移富集规律: 以石家庄-衡水-沧州剖面为例. 地球科学, 43(3): 910-921. doi: 10.3799/dqkx.2017.564
      赵海霞, 徐春华, 陈观升, 等, 2014. 商丘市生活饮用水碘含量分布及病情调查分析. 当代医学, 20(5): 162-163. doi: 10.3969/j.issn.1009-4393.2014.05.119
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  1222
    • HTML全文浏览量:  964
    • PDF下载量:  69
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-05-25
    • 网络出版日期:  2021-09-14
    • 刊出日期:  2021-08-15

    目录

      /

      返回文章
      返回