Genesis of Late Cretaceous Qusang'gele Granitie in Central Lhasa Block, Tibet: Constraints by Geochemistry, Zircon U-Pb Geochronology, and Sr-Nd-Pb-Hf Isotopes
-
摘要: 目前关于班公湖-怒江缝合带的构造演化时限及俯冲方向仍存在较多争议.中拉萨地块北缘发育众多白垩纪岩浆岩,是认识拉萨地块白垩纪时期的岩浆成因机制和构造动力学过程的有效探针.在对尼玛县曲桑格勒花岗正长岩体详细的野外地质调查基础上,对其岩相学、地球化学、锆石U-Pb年代学及Sr-Nd-Pb-Hf同位素特征开展了综合研究.曲桑格勒花岗岩的地球化学特征显示其具有较高的SiO2(75.23%~77.66%)、总碱(K2O+Na2O)(8.41%~8.94%)含量,低A12O3(11.96%~12.38%)、CaO(0.18%~0.55%)含量,里特曼指数(σ43)为2.05~2.33,铝指数(A/CNK)为0.99~1.03;富集大离子亲石元素(LILE)如Rb、Th、U、K、Pb,亏损高场强元素(HFSE)如Nb、Ta、P、Ti;轻稀土元素(LREE)富集,重稀土元素(HREE)相对亏损,轻重稀土分异偏低(LREE/HREE=2.42~5.00),呈现典型的“海鸥型”配分模式,具有强烈的负Eu异常(δEu=0.048~0.078),无明显Ce异常(δCe=0.739~1.471).锆石饱和温度计算结果显示曲桑格勒花岗岩的结晶温度为763.50~850.65℃,平均795.2℃,这些特征与A型花岗岩相符.通过LA-ICP-MS方法测得正长花岗岩锆石206Pb/238U年龄加权平均值为101±1 Ma(MSWD=0.45),表明曲桑格勒花岗岩的岩浆作用发生在晚白垩世早期,具有正的εHf(t)值(4.44~5.85),一阶段、二阶段模式年龄分别为536~592 Ma、702~781 Ma;(87Sr/86Sr)t为0.706 2~0.710 6、(143Nd/144Nd)t为0.512 315~0.512 441、εNd(t)为-6.27~-3.82,(206Pb/204Pb)t为18.653~18.794、(207Pb/204Pb)t为15.709~15.731、(208Pb/204Pb)t为38.960~39.100;构造环境判别图解显示其具有拉萨地块与羌塘地块后碰撞阶段上地壳的变质泥质岩部分熔融的特点,因此曲桑格勒花岗岩应该是碰撞后伸展阶段岩浆活动的产物.结合区域构造演化历史认为曲桑格勒花岗岩源自加厚的拉萨地块中上地壳,受减薄减压效应影响深部前寒武纪变质基底发生部分深熔作用,形成具有以上地壳为主要岩浆源特点的A型花岗岩.Abstract: There are still many controversies about the tectonic evolution time and subduction direction of the Bangong Co-Nujiang suture zone. Many Early Cretaceous magmatic rocks lie in the north margin of the central Lhasa Block, it is helpful to understand the setting of magma activity and tectonic dynamics by researching the genesis and formation mechanism of the magma in the Cretaceous period of the Lhasa Block. Based on detailed field investigation upon the Qusang'gele granite, a comprehensive research of their petrography, geochemistry, zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotope was carried out. Qusang'gele granite has high contents of SiO2 (75.23%-77.66%), total (K2O+Na2O) (8.41%-8.94%), lower contents of A12O3 (11.96%-12.38%) and CaO (0.18%-0.55%), with Reitman index of 2.05-2.33, and A/CNK values of 0.99 to 1.03; it is enriched in LILE such as Rb, Th, U, K, Pb, and depleted in HFSE such as Nb, Ta, P, Ti; all samples are enriched in LREE and depleted in HREE, the LREE/HREE ratios is 2.42 to 5.00, with typical seagull-shaped distribution pattern, strong negative Eu anomalies of 0.048 to 0.075, without obvious negative Ce anomalies (δCe=0.739-1.471).Caculated zircon saturated temperatures of Qusang'gele granite range from 763.50 to 850.65℃, averaged at 795.2℃.Combined with the geochemical characteristics above, the Qusang'gele granite should be defined as A-type granite. The syenogranite has a weighted mean 206Pb/238U age of 101±1 Ma (MSWD=0.45) by LA-ICP-MS zircon U-Pb analysis, suggesting that the Qusang'gele magmatism took place during the Early Late Cretaceous. It has positive εHf(t) values of 4.44 to 5.85 and Hf model TDM1 ages of 536-592 Ma and TDM2 ages of 702-781 Ma; Qusang'gele granite is characterized with the (87Sr/86Sr)t values of 0.706 2 to 0.710 6, (143Nd/144Nd)t values of 0.512 315 to 0.512 441, and εNd(t) values of -6.27 to -3.82; (206Pb/204Pb)t values of 18.653 to 18.794, (207Pb/204Pb)t values of 15.709 to 15.731, and (208Pb/204Pb)t values of 38.960 to 39.100. It is showed that the partial melting of metamorphic mud in the upper crust during the post-collision stage between the Lhasa Block and the Qiangtang Block in the discrimination diagrams of tectonic setting. Therefore, the Qusang'gele granite occurred in post-collision extension stage when the deep Precambrian metamorphic basement underwent partially deep-melting due to the effect of thinning and decompression, which resulted in the A-type granite originated from the middle-upper crust of the thickened Lhasa Block.
-
Key words:
- Tibet /
- Bangong Co-Nujiang suture zone /
- central Lhasa Block /
- Qusang'gele /
- A-type granite /
- geochemistry /
- geochronology
-
图 1 西藏大地构造图(a)和班公湖-怒江成矿带中段地质简图(据Liu et al., 2018修改)
1. 拉嘎组:碎屑岩、灰岩;2. 下拉组:灰岩;3. 日干配错群:灰岩、砂岩;4. 确哈拉群:砂岩、灰岩、大理岩;5. 木噶岗日群:碎屑岩、灰岩;6. 色哇组:砂岩、板岩;7. 布曲组:灰岩、白云质灰岩;8. 沙木罗组:砂岩、钙质板岩;9. 则弄群:安山岩、玄武岩;10. 郎山组:灰岩;11. 多尼组:砂岩、灰岩;12. 去申拉组:安山岩、玄武岩;13. 竞柱山组:砾岩、砂岩;14. 康托组:砂岩、泥岩;15. 花岗闪长岩;16. 石英闪长岩;17. 正长花岗岩;18. 二长花岗岩;19. 主断裂;20. 金矿床;21. 缝合带;22. 地名. F1. 康托-安多断裂;F2. 改则-尼玛断裂;F3. 狮泉河-纳木错断裂;BNSZ. 班公湖-怒江缝合带;SNMZ. 狮泉河-纳木错断裂带;GLCF. 噶尔-隆格尔-措麦断裂带;LMF. 洛巴堆-米拉山断裂带;YZSZ. 雅鲁藏布缝合带;QT. 羌塘地块;NL. 北拉萨地块;ML. 中拉萨地块;SL. 南拉萨地块;GRUB. 冈底斯弧背断隆带;XMLY. 喜马拉雅地块
Fig. 1. Tectonic map of Tibet (a) and geological sketch map of the middle part in Bangong Co-Nujiang metallogenic belt (b) (modified from Liu et al., 2018)
图 5 曲桑格勒花岗岩成因类型判别图解(底图据Whalen et al., 1987)
Fig. 5. Discimination diagram of genetic types of the rocks in Qusang'gele(modified from Whalen et al., 1987)
图 6 曲桑格勒花岗岩构造环境判别图解(据Hou et al., 2015)
Fig. 6. Structural environment diagram of the rocks in Qusang'gele(modified from Hou et al., 2015)
图 7 曲桑格勒构造环境判别图解(据Harris et al., 1986)
Fig. 7. Structural environment diagram of the rocks in Qusang'gele(modified from Harris et al., 1986)
表 1 曲桑格勒花岗岩主量元素(%)组成
Table 1. Major element (%) compositions of the rocks in Qusang'gele
样品 SGL01 SGL02 SGL04 SGL05 SGL06 SGL07 SGL08 SiO2 76.54 75.23 77.03 76.50 77.66 76.92 76.08 TiO2 0.12 0.24 0.11 0.12 0.08 0.11 0.07 Al2O3 11.96 12.38 12.18 11.94 12.04 12.35 12.15 Fe2O3 0.65 1.19 0.82 0.65 0.62 0.84 0.83 FeO 0.52 0.96 0.20 0.54 0.08 0.08 0.08 MnO 0.026 0.042 0.011 0.023 0.006 0.008 0.007 MgO 0.16 0.32 0.14 0.16 0.07 0.12 0.09 CaO 0.45 0.55 0.40 0.44 0.18 0.22 0.37 Na2O 3.63 3.71 3.72 3.66 3.90 3.82 3.25 K2O 4.82 4.64 4.86 4.80 4.54 4.92 5.55 P2O5 0.024 0.048 0.019 0.020 0.016 0.022 0.013 LOI 0.38 0.56 0.48 0.42 0.45 0.56 0.54 Total 99.28 99.87 99.97 99.27 99.64 99.97 99.02 K2O+Na2O 8.54 8.41 8.62 8.56 8.51 8.79 8.94 FeOT 1.12 2.04 0.94 1.14 0.64 0.84 0.83 FeOT/MgO 6.90 6.35 6.70 7.03 8.85 6.93 9.23 A/NK 1.07 1.11 1.07 1.06 1.06 1.06 1.07 A/CNK 1.00 1.02 1.01 0.99 1.03 1.03 1.01 σ43 2.12 2.16 2.16 2.13 2.05 2.25 2.33 DI 96.47 94.04 96.70 96.42 97.60 97.07 R1 2 667 2 549 2 645 2 658 2 716 2 592 R2 293 318 289 291 260 272 TZr(C°) 788.41 850.65 763.50 791.58 780.48 796.61 注:A/CNK=Al2O3/(CaO+Na2O+K2O) (摩尔浓度); σ43=100(Na2O+K2O)2/(SiO2-43%). 表 2 曲桑格勒花岗岩微量元素和稀土元素组成(10-6)
Table 2. The trace element and rare earth element (10-6) compositions of the rocks in Qusang'gele
样品 SGL01 SGL02 SGL04 SGL05 SGL06 SGL07 La 28.5 39.5 20.2 42.6 14.8 20.8 Ce 69.0 89.7 38.9 65.2 28.8 65.3 Pr 7.51 9.88 5.90 10.30 3.88 5.44 Nd 24.6 32.1 22.8 35.4 15.1 20.2 Sm 6.13 7.25 6.45 8.57 3.95 5.62 Eu 0.16 0.14 0.10 0.16 0.07 0.13 Gd 5.96 7.27 6.80 8.84 4.32 5.85 Tb 1.17 1.35 1.21 1.49 0.90 1.22 Dy 8.27 9.49 7.93 9.66 7.05 8.75 Ho 1.79 2.11 1.73 2.10 1.63 1.87 Er 5.49 6.48 5.26 6.14 5.19 5.68 Tm 0.90 1.01 0.82 0.95 0.91 0.88 Yb 6.39 6.96 5.91 6.69 6.59 6.04 Lu 0.93 1.03 0.82 0.97 1.00 0.87 Y 53.9 67.9 52.7 66.1 47.7 54.1 Rb 420 422 386 418 382 397 Ba 39.39 28.69 23.65 33.55 14.66 36.50 Th 45.47 71.67 51.76 50.02 40.21 48.14 U 6.27 7.15 4.70 5.37 4.01 3.80 K 40 441.0 38 770.0 40 534.4 40 291.9 37 980.7 41 069.4 Nb 26.35 32.82 23.31 29.73 33.80 26.40 Ta 3.48 3.54 2.96 3.82 4.61 3.27 Pb 38.3 34.1 39.1 42.0 51.0 45.4 Sr 15.0 13.8 7.0 13.0 8.2 13.6 P 106 211 83 88 70 97 Zr 130 248 96 135 114 138 Hf 5.33 8.08 4.17 5.15 5.36 5.14 ΣREE 167 214 125 199 94 149 LREE/HREE 4.40 5.00 3.09 4.40 2.42 3.77 LaN/YbN 3.20 4.07 2.45 4.57 1.61 2.47 Nb/Ta 9.48 8.84 9.55 9.61 9.74 11.30 δEu 0.078 0.058 0.048 0.055 0.049 0.068 δCe 1.131 1.082 0.862 0.739 0.911 1.471 注:δEu = 2×EuN/(SmN+GdN),δCe= 2×CeN/(LaN+PrN); ΣREE不包括Y. 表 3 曲桑格勒花岗岩LA-ICP-MS锆石U-Pb年龄
Table 3. The LA-ICP-MS zircon U-Pb ages of the rocks in Qusang'gele
点号 Pb(10-6) Th (10-6) U (10-6) Th/U 比值 年龄(Ma) 谐和度 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/235U 1σ 206Pb/238U 1σ (%) SGL07-1 62.0 805 1 554 0.52 0.047 8 0.001 8 0.104 1 0.003 8 0.015 8 0.000 2 0.005 6 0.000 1 101 4 101 1.2 99 SGL07-3 29.9 422 714 0.59 0.046 1 0.001 9 0.101 1 0.004 2 0.015 9 0.000 1 0.005 2 0.000 1 98 4 101 0.9 96 SGL07-4 75.0 1 062 1 754 0.61 0.048 6 0.001 3 0.105 5 0.002 9 0.015 7 0.000 2 0.005 3 0.000 1 102 3 101 1.1 98 SGL07-5 38.3 543 911 0.60 0.050 1 0.002 2 0.109 8 0.004 9 0.015 9 0.000 2 0.005 1 0.000 2 106 4 101 1.2 95 SGL07-6 14.2 207 280 0.74 0.050 3 0.003 0 0.107 7 0.006 1 0.015 8 0.000 2 0.005 4 0.000 2 104 6 101 1.3 97 SGL07-7 42.1 560 1 138 0.49 0.048 9 0.001 6 0.104 3 0.003 4 0.015 5 0.000 1 0.005 3 0.000 1 101 3 99 0.9 98 SGL07-11 16.6 229 404 0.57 0.048 1 0.003 6 0.105 3 0.008 0 0.015 8 0.000 2 0.005 1 0.000 2 102 7 101 1.4 99 SGL07-12 46.2 621 1 301 0.48 0.048 9 0.001 5 0.107 2 0.003 5 0.015 8 0.000 2 0.005 2 0.000 1 103 3 101 1.0 97 SGL07-13 17.4 252 358 0.70 0.056 2 0.002 8 0.120 6 0.006 1 0.015 8 0.000 2 0.005 3 0.000 2 116 5 101 1.2 86 SGL07-14 91.0 1 460 1 532 0.95 0.050 5 0.001 5 0.109 8 0.003 3 0.015 7 0.000 2 0.005 3 0.000 1 106 3 101 1.0 95 SGL07-16 20.9 313 358 0.88 0.050 8 0.004 2 0.111 5 0.009 3 0.015 8 0.000 2 0.005 4 0.000 2 107 8 101 1.3 94 SGL07-17 29.0 394 677 0.58 0.046 5 0.002 2 0.100 4 0.004 8 0.015 7 0.000 1 0.005 4 0.000 2 97 4 100 0.9 96 SGL07-18 47.5 646 1 299 0.50 0.047 3 0.001 4 0.102 3 0.003 1 0.015 6 0.000 1 0.005 1 0.000 1 99 3 100 0.8 98 SGL07-19 67.0 877 1 929 0.45 0.049 2 0.001 4 0.106 9 0.003 2 0.015 7 0.000 1 0.005 1 0.000 1 103 3 100 0.9 97 SGL07-20 37.6 499 938 0.53 0.047 8 0.001 8 0.104 7 0.003 8 0.015 9 0.000 1 0.005 3 0.000 1 101 4 101 0.9 99 SGL07-21 38.9 526 1 003 0.53 0.050 8 0.001 8 0.109 7 0.003 8 0.015 7 0.000 1 0.005 1 0.000 1 106 4 100 0.9 94 SGL07-22 29.3 396 652 0.61 0.051 4 0.002 2 0.112 0 0.004 5 0.015 9 0.000 2 0.005 4 0.000 1 108 4 102 1.3 94 SGL07-24 63.7 984 1 214 0.81 0.049 6 0.001 5 0.107 1 0.003 2 0.015 7 0.000 1 0.004 9 0.000 1 103 3 100 0.8 96 SGL07-25 72.6 882 2 070 0.43 0.050 4 0.003 0 0.109 1 0.006 5 0.015 7 0.000 2 0.005 2 0.000 1 105 6 100 1.0 95 SGL07-26 18.6 246 473 0.52 0.046 8 0.002 2 0.101 9 0.004 8 0.015 8 0.000 2 0.005 0 0.000 2 99 4 101 1.2 97 SGL07-27 22.5 367 452 0.81 0.045 9 0.003 2 0.098 7 0.006 8 0.015 6 0.000 2 0.004 5 0.000 2 96 6 100 1.3 95 SGL07-29 39.8 493 1 029 0.48 0.049 2 0.003 1 0.107 5 0.006 7 0.015 9 0.000 2 0.005 4 0.000 2 104 6 102 1.3 97 SGL07-30 44.1 541 1 337 0.40 0.046 2 0.003 1 0.102 2 0.007 1 0.015 8 0.000 2 0.005 0 0.000 2 99 7 101 1.2 97 SGL07-32 20.8 280 486 0.58 0.044 3 0.002 6 0.097 3 0.005 7 0.015 9 0.000 2 0.005 3 0.000 3 94 5 101 1.1 92 表 4 曲桑格勒花岗岩LA-ICP-MS锆石稀土元素(10-6)组成
Table 4. LA-ICP-MS zircon REE (10-6) compositions of the rocks in Qusang'gele
点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y δEu δCe SGL07-1 2.77 26.4 1.02 5.44 5.02 0.21 30.2 12.40 166 67.2 318 67.8 674 120 2 111 0.04 3.85 SGL07-3 2.46 24.5 0.82 5.01 3.72 0.23 23.7 9.43 130 53.4 255 54.5 551 99 1 651 0.06 4.21 SGL07-4 0.12 27.2 0.23 2.86 5.67 0.07 35.6 15.20 205 84.5 406 88.6 887 157 2 624 0.01 30.36 SGL07-5 0.97 18.1 0.30 1.31 3.23 0.11 20.4 8.49 122 49.3 239 52.7 538 95 1 532 0.03 8.16 SGL07-6 0.00 14.8 0.04 0.88 2.96 0.21 21.1 8.20 103 40.4 186 38.5 387 69 1 216 0.06 127.63 SGL07-7 0.03 19.8 0.03 1.00 2.77 0.09 23.1 9.94 139 58.1 289 63.9 657 118 1 846 0.02 131.83 SGL07-11 6.91 36.9 2.45 11.50 4.45 0.31 19.9 7.17 95 37.9 177 37.4 381 68 1 159 0.08 2.19 SGL07-12 1.67 23.7 0.56 3.27 4.00 0.00 26.5 11.20 153 61.5 303 65.6 666 118 1 953 0.75 5.98 SGL07-13 11.90 50.6 3.94 19.90 7.82 0.14 26.6 9.22 115 43.2 198 41.5 410 73 1 312 0.03 1.80 SGL07-14 0.03 49.9 0.24 3.77 10.50 0.87 72.8 26.70 340 127.0 563 114.0 1 078 188 3 807 0.07 61.67 SGL07-16 20.80 61.9 5.92 28.30 9.69 0.65 32.5 10.40 126 48.0 218 45.1 438 77 1 460 0.10 1.35 SGL07-17 48.80 147.0 18.10 86.20 25.70 0.35 42.1 11.00 122 45.4 216 45.9 465 84 1 417 0.03 1.21 SGL07-18 0.07 18.0 0.11 1.26 3.61 0.08 26.0 11.60 165 67.6 330 73.1 733 132 2 115 0.02 41.07 SGL07-19 0.49 17.6 0.27 1.96 3.94 0.07 27.3 11.80 171 70.6 344 74.7 760 138 2 199 0.02 11.72 SGL07-20 0.54 20.4 0.28 2.18 3.58 0.12 23.5 9.78 138 56.1 275 59.6 616 111 1 753 0.03 12.76 SGL07-21 0.08 14.6 0.10 0.71 2.21 0.10 19.0 7.99 114 47.5 234 53.0 538 99 1 487 0.03 34.43 SGL07-22 19.30 68.2 6.40 30.50 10.70 0.21 25.6 8.83 115 44.9 212 46.1 458 83 1 387 0.04 1.50 SGL07-24 13.30 60.9 4.51 22.20 10.90 0.34 47.2 17.20 212 82.1 370 75.4 727 127 2 448 0.04 1.92 SGL07-25 0.03 20.3 0.00 1.54 4.70 0.15 34.0 14.90 212 88.5 434 94.7 959 173 2 741 0.03 587.79 SGL07-26 1.15 19.5 0.46 2.62 2.61 0.14 16.5 6.52 88 35.9 177 38.7 398 73 1 123 0.05 6.57 SGL07-27 0.04 19.5 0.17 1.93 4.34 0.39 25.9 10.70 136 54.6 250 52.0 519 93 1 627 0.09 32.90 SGL07-29 0.14 15.7 0.14 1.25 2.81 0.09 22.2 9.43 133 56.1 268 58.5 598 109 1 701 0.03 24.85 SGL07-30 0.12 14.1 0.00 1.15 2.62 0.08 24.5 10.30 154 63.1 315 68.9 699 125 1 971 0.02 5.73 SGL07-32 0.13 16.1 0.01 1.19 1.92 0.26 14.3 6.20 86 35.2 170 37.9 384 71 1 086 0.11 79.20 表 5 曲桑格勒花岗岩锆石Lu-Hf同位素组成
Table 5. The LA-ICP-MS zircon Lu-Hf isotope compositions of the rocks in Qusang'gele
点号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)t εHf(0) εHf(t) TDM(Ma) TDM2(Ma) fLu-Hf SGL07-1 101 0.036 664 0.001 432 0.282 861 0.000 024 0.282 86 3.13 5.25 561 736 -0.96 SGL07-2 101 0.039 517 0.001 543 0.282 853 0.000 023 0.282 85 2.86 4.98 574 751 -0.95 SGL07-3 101 0.029 474 0.001 161 0.282 871 0.000 021 0.282 87 3.50 5.64 542 714 -0.97 SGL07-4 101 0.034 738 0.001 371 0.282 877 0.000 021 0.282 87 3.72 5.85 536 702 -0.96 SGL07-5 101 0.036 890 0.001 450 0.282 875 0.000 017 0.282 87 3.64 5.76 541 707 -0.96 SGL07-6 101 0.032 122 0.001 268 0.282 837 0.000 017 0.282 83 2.31 4.44 592 781 -0.96 SGL07-7 101 0.028 539 0.001 120 0.282 851 0.000 018 0.282 85 2.79 4.93 570 754 -0.97 SGL07-8 101 0.036 010 0.001 398 0.282 845 0.000 018 0.282 84 2.59 4.72 583 766 -0.96 SGL07-9 101 0.029 788 0.001 163 0.282 852 0.000 019 0.282 85 2.83 4.97 569 751 -0.96 SGL07-10 101 0.036 379 0.001 413 0.282 863 0.000 017 0.282 86 3.21 5.33 558 731 -0.96 表 6 曲桑格勒花岗岩Sr-Nd-Pb同位素组成
Table 6. Sr-Nb-Pb isotope compositions of the rocks in Qusang'gele
样号 t(Ma) 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)t 147Sm/144Nd 143Nd/144Nd fSm/Nd εNd(t) (143Nd/144Nd)t 206Pb/204Pb (206Pb/204Pb)t 207Pb/204Pb (207Pb/204Pb)t 208Pb/204Pb (208Pb/204Pb)t Δβ Δγ SGL01 101 97.145 1 0.837 378 0.698 0 0.147 1 0.512 316 -0.25 -6.27 0.512 315 18.941 18.773 15.726 15.718 39.499 39.100 25.3 43.5 SGL02 101 88.661 8 0.833 417 0.706 2 0.128 7 0.512 426 -0.35 -4.13 0.512 425 19.010 18.794 15.741 15.731 39.742 39.033 26.1 41.7 SGL06 101 117.241 6 0.878 911 0.710 6 0.157 6 0.512 442 -0.20 -3.82 0.512 441 18.733 18.653 15.713 15.709 39.224 38.960 24.7 39.8 注:(87Sr/86Sr)t=87Sr/86Sr-87Rb/86Sr(eλt-1),λRb=1.42×10-11 t-1;(143Nd/144Nd)t=143Nd/144Nd-147Sm/144Nd(eλt-1),λSm=6.54×10-12 t-1;εNd(0)=[143Nd/144Nd/(143Nd/144Nd)CHUR-1]×10 000,εNd(t)={[(143Nd/144Nd)t/(143Nd/144Nd)(CHUR)t-1}×10 000;TDM2=1/λ×ln{1+[(143Nd/144Nd)S-((147Sm/144Nd)S-(147Sm/144Nd)cc)(eλt-1)-(143Nd/144Nd)DM]/[(147Sm/144Nd)cc-(147Sm/144Nd)DM]};(143Nd/144Nd)(CHUR)t=(143Nd/144Nd)CHUR-(147Sm/144Nd)CHUR(eλt-1);fSm/Nd=(147Sm/144Nd)S/(147Sm/144Nd)CHUR-1;(143Nd/144Nd)CHUR=0.512 638,(147Sm/144Nd)CHUR=0.196 7,(147Sm/144Nd)cc=0.118 0,(147Sm/144Nd)DM=0.213 5,(143Nd/144Nd)DM=0.513 150. △β=(β-βM)/βM×1 000,△γ=(γ-γM)/γM×1 000;β=(206Pb/204Pb)t,γ=(207Pb/204Pb)t,βM=15.33,γM=37.47. -
Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0 Ci, Q., AWang, D.Z., SuoLang, D.D., et al., 2021. Identification of Late Cretaceous Volcanic Rocks of Langshan Formation in Dongco Area, Southern Tibet: New Evidence for Partial Melting of a Thickened Lower Crust Triggered by the Northward Subduction of Neo-Tethys. Acta Geoscientica Sinica, 42(1): 55-62 (in Chinese with English abstract). doi: 10.1007/s00531-021-02100-1 Frost, C. D., Frost, B. R., Chamberlain, K. R., et al., 1999. Petrogenesis of the 1.43 Ga Sherman Batholith, SE Wyoming, USA: A Reduced, Rapakivi-Type Anorogenic Granite. Journal of Petrology, 40(12): 1771-1802. https://doi.org/10.1093/petroj/40.12.1771 Goodenough, K. M., Thomas, R. J., de Waele, B., et al., 2010. Post-Collisional Magmatism in the Central East African Orogen: The Maevarano Suite of North Madagascar. Lithos, 116(1-2): 18-34. https://doi.org/10.1016/j.lithos.2009.12.005 Gou, Z.B., Liu, H., Li, J., et al., 2018. The Petrogenesis and Tectonic Significance of Early Cretaceous Volcanic Rocks in Nixiong Area from the Central and Northern Lhasa Terrane. Earth Science, 43(8): 2780-2794 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DQKX201808019&dbcode=CJFD&year=2018&dflag=pdfdown Guo, Z.F., Wilson, M., Zhang, M. L., et al., 2015. Post-Collisional Ultrapotassic Mafic Magmatism in South Tibet: Products of Partial Melting of Pyroxenite in the Mantle Wedge Induced by Roll-Back and Delamination of the Subducted Indian Continental Lithosphere Slab. Journal of Petrology, 56(7): 1365-1406. https://doi.org/10.1093/petrology/egv040 Haapala, I., Rämö, O. T., Frindt, S., 2005. Comparison of Proterozoic and Phanerozoic Rift-Related Basaltic-Granitic Magmatism. Lithos, 80(1-4): 1-32. https://doi.org/10.1016/j.lithos.2004.04.057 Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. https://doi.org/10.1144/gsl.sp.1986.019.01.04 Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027 Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). http://www.researchgate.net/publication/303721491_Laser_ablation-MC-ICP-MS_technique_for_Hf_isotope_microanalysis_of_zircon_and_its_geological_applications Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006. Metallogenesis in Tibetan Collisional Orogenic Belt: I. Mineralization in Main Collisional Orogenic Setting. Mineral Deposits, 25(4): 337-358 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030175040 Hu, D.G., Wu, Z.H., Jiang, W., et al., 2005. SHRIMP Zircon U-Pb Age and Nd Isotopic Study on the Nyainqêntanglha Group in Tibet. Scientia Sinica Terrae, 35(1): 29-37 (in Chinese). http://d.wanfangdata.com.cn/Periodical_zgkx-ed200509006.aspx Huang, H. X., Li, G. M., Chen, H.A., et al., 2013. Molybdenite Re-Os Isotope Age and Metallogenic Significance of Sebuta Copper Molybdenum Deposit in Tibet. Acta Geologica Sinica, 87(2): 240-244 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201302010.htm Huang, H.X., Li, G.M., Liu, B., et al., 2012a. Zircon U-Pb Geochronology and Geochemistry of the Tiangongnile Skarn-Type Cu-Au Deposit in Zhongba County, Tibet: Their Genetic and Tectonic Setting Significance. Acta Geoscientica Sinica, 33(4): 424-434 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201204007.htm Huang, H.X., Li, G.M., Zeng, Q.G., et al., 2012b. Geochronology of the Chagele Pb-Zn Deposit in Tibet and Its Significance. Geology in China, 39(3): 750-759 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201203017.htm Huang, H.X., Li, G.M., Dong, S.L., et al., 2012c. 40Ar-39Ar Dating of Sericite in the Nongruri Gold Deposit of Tibet and Its Geological Significance. Geotectonica et Metallogenia, 36(4): 607-612 (in Chinese with English abstract). Jiang, S.Y., Zhao, K.D., Jiang, Y.H., et al., 2008. Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200804006.htm Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8): 917-933. https://doi.org/10.1130/b26033.1 Li, G.M., Duan, Z.M., Liu, B., et al., 2011. Zhang L. The Discovery of Jurassic Accretionary Complexes in Duolong Area, Northern Bangong Co-Nujiang Suture Zone, Tibet, and Its Geologic Significance. Geological Bulletin of China, 30(8): 1256-1260 (in Chinese with English abstract). http://www.researchgate.net/publication/279669870_The_discovery_of_Jurassic_accretionary_complexes_in_Duolong_area_northern_Bangong_Co-Nujiang_suture_zone_Tibet_and_its_geologic_significance Li, H. L., Gao, C., Li, Z.H., et al., 2016. Age and Tectonic Significance of Jingzhushan Formation in Bangong Lake Area, Tibet. Geotectonica et Metallogenia, 40(3): 535-542 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201604004.htm Li, H.L., Yang, S., Li, D.W., et al., 2014. Geochronology, Geochemistry, Tectonic Setting and Metallogenetic Significance of the Late Cretaceous Quartz Monzonite in the Northwestern Gangdise Terrane. Geotectonica et Metallogenia, 38(3): 694-705 (in Chinese with English abstract). http://www.researchgate.net/publication/287486889_Geochronology_geochemistry_tectonic_setting_and_metallogenetic_significance_of_the_late_cretaceous_quartz_monzonite_in_the_northwestern_Gangdise_terrane Litvinovsky, B. A., Jahn, B. M., Zanvilevich, A. N., et al., 2002. Petrogenesis of Syenite-Granite Suites from the Bryansky Complex (Transbaikalia, Russia): Implications for the Origin of A-Type Granitoid Magmas. Chemical Geology, 189(1-2): 105-133. https://doi.org/10.1016/s0009-2541(02)00142-0 Liu, H., Huang, H.X., Li, G.M., et al., 2015. Factor Analysis in Geochemical Survey of the Shangxu Gold Deposit, Northern Tibet. Geology in China, 42(4): 1126-1136 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201504026.htm Liu, H., Li, G. M., Huang, H. X., et al., 2018. Petrogenesis of Late Cretaceous Jiangla'angzong I-Type Granite in Central Lhasa Terrane, Tibet, China: Constraints from Whole-Rock Geochemistry, Zircon U-Pb Geochronology, and Sr-Nd-Pb-Hf Isotopes. Acta Geologica Sinica (English Edition), 92(4): 1396-1414. https://doi.org/10.1111/1755-6724.13634 Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 Ma, G.L., Yue, Y.H., 2010. Cretaceous Volcanic Rocks in Northern Lhasa Block: Constraints on the Tectonic Evolution of the Gangdise Arc. Acta Petrologica et Mineralogica, 29(5): 525-538 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-mineralogica_thesis/0201254450817.html Meng, X.Z., Niu, W.C., Wang, G.H., et al., 2017. Garnet Blueschist from Rongma Area, Central Qiangtang, North Tibet: Metamorphic Characteristics and Implications of the Tectonic Evolution. Geological Survey and Research, 40(3): 169-177 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-survey-research_thesis/0201254043577.html Ouyang, Y., Yang, W. N., Huang, H. X., et al., 2017. Metallogenic Dynamics Background of Ga'erqiong Cu-Au Deposit in Tibet, China. Earth Sciences Research Journal, 21(2): 59-65. https://doi.org/10.15446/esrj.v21n2.65192 Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract). http://www.oalib.com/paper/1472080 Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018 Pan, G.T., Wang, L.Q., Li, X.Z., et al., 2001. The Tectonic Framework and Spatial Allocation of the Archipelagic Arc Basin Systems on the Qinghai-Xizang Plateau. Sedimentary Geology and Tethyan Geology, 21(3): 1-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD200103000.htm Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2 doi: 10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2 Pearce, J.A., Deng, W.M., 1988. The Ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 327(1594): 215-238. https://doi.org/10.1098/rsta.1988.0127 Peccerillo, A., Barberio, M. R., Yirgu, G., et al., 2003. Relationships between Mafic and Peralkaline Silicic Magmatism in Continental Rift Settings: A Petrological, Geochemical and Isotopic Study of the Gedemsa Volcano, Central Ethiopian Rift. Journal of Petrology, 44(11): 2003-2032. https://doi.org/10.1093/petrology/egg068 Qu, X.M., Xin, H.B., Du, D.D., et al., 2012. Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau. Geochimica, 41(1): 1-14 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqhx201201002.htm Ren, J.S., Xiao, L.W., 2004. Lifting the Mysterious Veil of the Tectonics of the Qinghai-Tibet Plateau by 1: 250 000 Geological Mapping. Geological Bulletin of China, 23(1): 1-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200401002.htm Ren, Q., Ma, J. M., Hou, Z.S., 2017. Metamorphic Rocks Features and Metamorphism of Nianqingtanggula Group-Complex in Bange Area of Tibet. Jilin Geology, 36(1): 22-24, 54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JLDZ201701004.htm Scherer, E. E., Cameron, K. L., Blichert-Toft, J., 2000. Lu-Hf Garnet Geochronology: Closure Temperature Relative to the Sm-Nd System and the Effects of Trace Mineral Inclusions. Geochimica et Cosmochimica Acta, 64(19): 3413-3432. https://doi.org/10.1016/s0016-7037(00)00440-3 Shi, S.F., Xiao, Y.F., Yuan, H.W., et al., 2019. Geochronology and Geochemical Characteristics of A-Type Granites in Boguorize Area, the Northern Margin of Gangdese Belt, Tibet, China and Their Geological Significance. Journal of Earth Sciences and Environment, 41(6): 644-657 (in Chinese with English abstract). Sun, G.P., Wu, Y.J., Zheng, Y.Y., et al., 2019. Ore-Forming Fluids Signature and Evolution in the Qiagong Fe Skarn Deposit of the Gangdese Belt, Tibet: Implications for Fe-Pb Mineralization. Earth Science, 44(9): 3007-3025 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909018.htm Sun, G. Y., Hu, X. M., Zhu, D. C., et al., 2015. Thickened Juvenile Lower Crust-Derived~90 Ma Adakitic Rocks in the Central Lhasa Terrane, Tibet. Lithos, 224-225: 225-239. https://doi.org/10.1016/j.lithos.2015.03.010 Tang, J.X., Chen, Y.C., Wang, D.H., et al., 2009. Re-Os Dating of Molybdenite from the Sharang Porphyry Molybdenum Deposit in Gongbo'gyamda County, Tibet and Its Geological Significance. Acta Geologica Sinica, 83(5): 698-704 (in Chinese with English abstract). http://www.researchgate.net/publication/285347553_Re-Os_dating_of_molybdenite_from_the_Sharang_Porphyry_Molybdenum_deposit_in_Gongbo'gyamda_county_Tibet_and_its_geological_significance Tang, J.X., Li, F.J., Li, Z.J., et al., 2010. Time Limit for Formation of Main Geological Bodies in Xiongcun Copper-Gold Deposit, Xietongmen County, Tibet: Evidence from Zircon U-Pb Ages and Re-Os Age of Molybdenite. Mineral Deposits, 29(3): 461-475 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/kcdz201003008 Tian, J., Duan, X.L., Cheng, X.Y., 2020. Source Characteristics of the Late Silurian-Early Devonian Intrusive Rocks in the Central Part of the Beishan Orogenic Belt, NW China. Geological Survey and Research, 43(3): 207-211, 223 (in Chinese with English abstract). Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. https://doi.org/10.1016/0024-4937(92)90029-x Volkmer, J. E., Kapp, P., Guynn, J. H., et al., 2007. Cretaceous-Tertiary Structural Evolution of the North Central Lhasa Terrane, Tibet. Tectonics, 26(6): TC6007. https://doi.org/10.1029/2005tc001832 Wang, B.D., Guo, L., Wang, L.Q., et al., 2012. Geochronology and Petrogenesis of the Ore-Bearing Pluton in Chagele Deposit in Middle of the Gangdese Metallogenic Belt. Acta Petrologica Sinica, 28(5): 1647-1662 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_ysxb98201205025.aspx Wang, B.D., Liu, H., Wang, L.Q., et al., 2020. Spatial-Temporal Framework of Shiquanhe-Laguoco-Yongzhu-Jiali Ophiolite Mélange Zone, Qinghai-Tibet Plateau and Its Tectonic Evolution. Earth Science, 45(8): 2764-2784 (in Chinese with English abstract). Wang, B.D., Xu, J.F., Chen, J.L., et al., 2010. Petrogenesis and Geochronology of the Ore-Bearing Porphyritic Rocks in Tangbula Porphyry Molybdenum-Copper Deposit in the Eastern Segment of the Gangdese Metallogenic Belt. Acta Petrologica Sinica, 26(6): 1820-1832 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201006016.htm Wang, B.D., Xu, J.F., Liu, B.M., et al., 2013. Geochronology and Ore-Forming Geological Background of~90 Ma Porphyry Copper Deposit in the Lhasa Terrane, Tibet Plateau. Acta Geologica Sinica, 87(1): 71-80 (in Chinese with English abstract). http://www.researchgate.net/publication/288635058_Geochronology_and_ore-forming_geological_background_of_90Ma_porphyry_copper_deposit_in_the_Lhasa_Terrane_Tibet_Plateau Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2014. Origin of the ca. 90 Ma Magnesia-Rich Volcanic Rocks in SE Nyima, Central Tibet: Products of Lithospheric Delamination beneath the Lhasa-Qiangtang Collision Zone. Lithos, 198-199: 24-37. https://doi.org/10.1016/j.lithos.2014.03.019 Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200706000.htm Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/s0009-2541(02)00018-9 Wu, Y., Ma, X.X., Zhang, Z.P., et al., 2016. Geochemical Features of the Nyainqentanglha Group in the Western Lhasa Terrane, Western Tibet and Their Tectonic Significance. Acta Geologica Sinica, 90(11): 3081-3098 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201611008.htm Xie, L., Dun, D., Zhu, L.D., et al., 2015. Zircon U-Pb Geochronology, Geochemistry and Geological Significance of the Zhaduding A-Type Granites in Northern Gangdise, Tibet. Geology in China, 42(5): 1214-1227 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201505004.htm Yan, G.Q., Wang, X.X., Huang, Y., et al., 2018. Evolution Characteristics of Magma in the Nuri Superlarge Polymetallic Deposit, Tibet: Implications for Regional Mineralization in the Shannan Ore Cluster Area. Acta Geologica Sinica, 92(10): 2138-2154 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201810013.htm Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1-2): 89-106. https://doi.org/10.1016/j.lithos.2005.10.002 Yu, Y.S., Zhou, Y., Bao, B., et al., 2019. Geochronology, Petrogenesis and Its Tectonic Setting Significance of Intrusive Rocks from Coqen to Longgeer Iron Deposit, Lhasa Subterrane, Tibet, China. Earth Science, 44(6): 1888-1904 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906011.htm Zeng, Q.G., Wang, B.D., Xiluo, L., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763 (in Chinese with English abstract). Zhang, Q., Pan, G.Q., Li, C.D., et al., 2007. Does Fractional Crystallization Occur in Granitic Magma? Some Crucial Questions on Granite Study (2). Acta Petrologica Sinica, 23(6): 1239-1251 (in Chinese with English abstract). http://www.oalib.com/paper/1471727 Zhang, Z., Song, J.L., Tang, J.X., et al., 2017. Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet: Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating. Earth Science, 42(6): 862-880 (in Chinese with English abstract). Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2008. Association of Neoproterozoic A- and I-Type Granites in South China: Implications for Generation of A-Type Granites in a Subduction-Related Environment. Chemical Geology, 257(1-2): 1-15. https://doi.org/10.1016/j.chemgeo.2008.07.018 Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7-17. https://doi.org/10.1016/j.lithos.2015.06.023 Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009. Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Terrane, Tibet. Chemical Geology, 268(3-4): 298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008 Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005 次琼, 阿旺旦增, 索朗顿旦, 等, 2021. 西藏洞错地区郎山组晚白垩世火山岩的厘定——新特提斯洋北向俯冲导致增厚下地壳部分熔融的新证据. 地球学报, 42(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202101006.htm 苟正彬, 刘函, 李俊, 等, 2018. 拉萨地块中北部尼雄地区早白垩世火山岩的成因及构造意义. 地球科学, 43(8): 2780-2794. doi: 10.3799/dqkx.2018.153 侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 侯增谦, 杨竹森, 徐文艺, 等, 2006. 青藏高原碰撞造山带: I. 主碰撞造山成矿作用. 矿床地质, 25(4): 337-358. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604000.htm 胡道功, 吴珍汉, 江万, 等, 2005. 西藏念青唐古拉岩群SHRIMP锆石U-Pb年龄和Nd同位素研究. 中国科学: 地球科学, 35(1): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200501002.htm 黄瀚霄, 李光明, 陈华安, 等, 2013. 西藏色布塔铜钼矿床中辉钼矿Re-Os定年及其成矿意义. 地质学报, 87(2): 240-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201302010.htm 黄瀚霄, 李光明, 刘波, 等, 2012a. 西藏仲巴县天宫尼勒矽卡岩型铜金矿床锆石U-Pb年代学和岩石地球化学特征: 对成因及其成矿构造背景的指示. 地球学报, 33(4): 424-434. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201204007.htm 黄瀚霄, 李光明, 曾庆高, 等, 2012b. 西藏查个勒铅锌矿床成矿时代研究及地质意义. 中国地质, 39(3): 750-759. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201203017.htm 黄瀚霄, 李光明, 董随亮, 等, 2012c. 西藏弄如日金矿床蚀变绢云母40Ar-39Ar年龄及其地质意义. 大地构造与成矿学, 36(4): 607-612. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201204016.htm 蒋少涌, 赵葵东, 姜耀辉, 等, 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496-509. doi: 10.3969/j.issn.1006-7493.2008.04.004 李光明, 段志明, 刘波, 等, 2011. 西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义. 地质通报, 30(8): 1256-1260. doi: 10.3969/j.issn.1671-2552.2011.08.012 李华亮, 高成, 李正汉, 等, 2016. 西藏班公湖地区竟柱山组时代及其构造意义. 大地构造与成矿学, 40(4): 663-673. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201604004.htm 李华亮, 杨绍, 李德威, 等, 2014. 冈底斯西北缘晚白垩世石英二长岩的年代学、地球化学、构造环境及成矿意义. 大地构造与成矿学, 38(3): 694-705. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201403021.htm 刘洪, 黄瀚霄, 李光明, 等, 2015. 因子分析在藏北商旭金矿床地球化学勘查中的应用. 中国地质, 42(4): 1126-1136. doi: 10.3969/j.issn.1000-3657.2015.04.026 马国林, 岳雅慧, 2010. 西藏拉萨地块北部白垩纪火山岩及其对冈底斯岛弧构造演化的制约. 岩石矿物学杂志, 29(5): 525-538. doi: 10.3969/j.issn.1000-6524.2010.05.008 孟献真, 牛文超, 王根厚, 等, 2017. 西藏羌塘中部荣玛地区含石榴石蓝片岩变质特征及其构造意义. 地质调查与研究, 40(3): 169-177. doi: 10.3969/j.issn.1672-4135.2017.03.002 潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm 潘桂棠, 王立全, 李兴振, 等, 2001. 青藏高原区域构造格局及其多岛弧盆系的空间配置. 沉积与特提斯地质, 21(3): 1-26. doi: 10.3969/j.issn.1009-3850.2001.03.001 曲晓明, 辛洪波, 杜德道, 等, 2012. 西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束. 地球化学, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm 任纪舜, 肖黎薇, 2004.1: 25万地质填图进一步揭开了青藏高原大地构造的神秘面纱. 地质通报, 23(1): 1-11. doi: 10.3969/j.issn.1671-2552.2004.01.006 任强, 马俊明, 侯召硕, 2017. 西藏班戈地区念青唐古拉岩群的变质岩特征及变质作用. 吉林地质, 36(1): 22-24, 54. doi: 10.3969/j.issn.1001-2427.2017.01.004 史少飞, 肖渊甫, 袁浩为, 等, 2019. 西藏冈底斯带北缘波果日则地区A型花岗岩年代学、地球化学特征及其地质意义. 地球科学与环境学报, 41(6): 644-657. doi: 10.3969/j.issn.1672-6561.2019.06.002 孙国平, 吴运军, 郑有业, 等, 2019. 西藏恰功矽卡岩铁矿床成矿流体特征及演化: 对Fe-Pb矿化的约束. 地球科学, 44(9): 3007-3025. doi: 10.3799/dqkx.2018.564 唐菊兴, 陈毓川, 王登红, 等, 2009. 西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义. 地质学报, 83(5): 698-704. doi: 10.3321/j.issn:0001-5717.2009.05.010 唐菊兴, 黎风佶, 李志军, 等, 2010. 西藏谢通门县雄村铜金矿主要地质体形成的时限: 锆石U-Pb、辉钼矿Re-Os年龄的证据. 矿床地质, 29(3): 461-475. doi: 10.3969/j.issn.0258-7106.2010.03.008 田健, 段霄龙, 程先钰, 2020. 北山造山带中部晚志留世-早泥盆世侵入岩源区特征及其反映的陆壳增生机制. 地质调查与研究, 43(3): 207-211, 223. doi: 10.3969/j.issn.1672-4135.2020.03.002 王保弟, 郭琳, 王立全, 等, 2012. 中冈底斯成矿带查个勒矿床含矿岩体的年代学及成因. 岩石学报, 28(5): 1647-1662. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205027.htm 王保弟, 刘函, 王立全, 等, 2020. 青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化. 地球科学, 45(8): 2764-2784. doi: 10.3799/dqkx.2020.083 王保弟, 许继峰, 陈建林, 等, 2010. 冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究. 岩石学报, 26(6): 1820-1832. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201006016.htm 王保弟, 许继峰, 刘保民, 等, 2013. 拉萨地块北部~90 Ma斑岩型矿床年代学及成矿地质背景. 地质学报, 87(1): 71-80. doi: 10.3969/j.issn.0001-5717.2013.01.007 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 吴勇, 马绪宣, 张志平, 等, 2016. 青藏高原拉萨地块西部念青唐古拉岩群的地球化学特征及构造意义. 地质学报, 90(11): 3081-3098. doi: 10.3969/j.issn.0001-5717.2016.11.008 解龙, 顿都, 朱利东, 等, 2015. 西藏北冈底斯扎独顶A型花岗岩锆石U-Pb年代学、地球化学及其地质意义. 中国地质, 42(5): 1214-1227. doi: 10.3969/j.issn.1000-3657.2015.05.004 闫国强, 王欣欣, 黄勇, 等, 2018. 西藏山南努日超大型钨多金属矿床岩浆演化对区域成矿作用指示. 地质学报, 92(10): 2138-2154. doi: 10.3969/j.issn.0001-5717.2018.10.013 于玉帅, 周云, 鲍波, 等, 2019. 拉萨地块措勤-隆格尔地区铁矿床成岩时代、岩石成因及构造环境指示. 地球科学, 44(6): 1888-1904. doi: 10.3799/dqkx.2019.037 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152 张旗, 潘国强, 李承东, 等, 2007. 花岗岩结晶分离作用问题——关于花岗岩研究的思考之二. 岩石学报, 23(6): 1239-1251. doi: 10.3969/j.issn.1000-0569.2007.06.002 张志, 宋俊龙, 唐菊兴, 等, 2017. 西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因: 锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年. 地球科学, 42(6): 862-880. doi: 10.3799/dqkx.2017.523