• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海东部次海盆U1431站位中中新世以来的沉积物来源特征

    刘雪松 陈雪刚 孙凯 李春峰

    刘雪松, 陈雪刚, 孙凯, 李春峰, 2021. 南海东部次海盆U1431站位中中新世以来的沉积物来源特征. 地球科学, 46(3): 1008-1022. doi: 10.3799/dqkx.2020.290
    引用本文: 刘雪松, 陈雪刚, 孙凯, 李春峰, 2021. 南海东部次海盆U1431站位中中新世以来的沉积物来源特征. 地球科学, 46(3): 1008-1022. doi: 10.3799/dqkx.2020.290
    Liu Xuesong, Chen Xuegang, Sun Kai, Li Chunfeng, 2021. Provenance of U1431 Sediments from the Eastern Subbasin of the South China Sea since Middle Miocene. Earth Science, 46(3): 1008-1022. doi: 10.3799/dqkx.2020.290
    Citation: Liu Xuesong, Chen Xuegang, Sun Kai, Li Chunfeng, 2021. Provenance of U1431 Sediments from the Eastern Subbasin of the South China Sea since Middle Miocene. Earth Science, 46(3): 1008-1022. doi: 10.3799/dqkx.2020.290

    南海东部次海盆U1431站位中中新世以来的沉积物来源特征

    doi: 10.3799/dqkx.2020.290
    基金项目: 

    国家自然科学基金项目 41761134051

    详细信息
      作者简介:

      刘雪松(1996-), 男, 硕士研究生, 主要从事海洋地质研究.ORCID: 0000-0003-3195-8062.E-mail: 21734039@zju.edu.cn

      通讯作者:

      陈雪刚, E-mail: chenxg83@zju.edu.cn

    • 中图分类号: P73

    Provenance of U1431 Sediments from the Eastern Subbasin of the South China Sea since Middle Miocene

    • 摘要: 南海东部次海盆的沉积记录蕴含着区域内中中新世以来沉积物的风化过程和演化历史信息.本文分析了国际大洋发现计划IODP 349航次南海东部次海盆U1431站位沉积物的主、微量元素和Sr-Nd同位素特征.研究显示,样品中化学风化蚀变指数为49~74,表明源区的化学风化强度为低到中等强度.沉积物在风化过程中以斜长石风化为主.含有火山碎屑的岩性单元Ⅵ和Ⅶ及55X-2层位受到含Fe、Mg矿物组分的物质来源输入影响,其余沉积物主要来自长英质源区.Sr和Nd同位素特征显示不同风化程度的沉积物源区具有明显差异.通过与周围潜在源区进行对比,推断12.8 Ma至今,U1431站位的物源主要来自珠江流域,印支半岛、吕宋和巴拉望提供了少量物质.其中12.5~7.4 Ma,沉积物源区受到周围岩浆活动形成的基性物质输入的影响,但仍以珠江源区为主.6.5 Ma以后,台湾岛隆升剥蚀的陆源物质进入中央海盆.因此,台湾岛成为源区之一.

       

    • 图  1  南海及周边区域水深(a),U1431站位周边详细水深(b,图a中黑色方框)

      图a中黄色五角星为U1431站位,橙色虚线为推断的洋陆边界,浅黄色实线为中南断裂,红色虚线为红河断裂,红色标志线为马尼拉海沟,蓝色实线为河流

      Fig.  1.  Bathymetric map of the South China Sea and surrounding region (a), detailed bathymetry around site U1431 (b, black box in Fig.a)

      图  2  U1431站点样品编号及取样位置处录井柱状图

      修改自Li et al.(2015)

      Fig.  2.  Stratigraphy chart of recovered cores and sample locations at site U1431

      图  3  U1431站位地球化学指标随深度变化

      U1431站位的年龄数据来自Li et al. (2015)

      Fig.  3.  Geochemical variations at site U1431 with depth

      图  4  U1431站位样品稀土元素球粒陨石标准化图

      UCC.大陆上地壳;NASC.北美页岩

      Fig.  4.  Chondrite normalized REE pattern of the sediment samples at site U1431

      图  5  主量元素与SiO2的关系

      Fig.  5.  Variations of major elements as a function of silica contents

      图  6  U1431站位样品微量元素UCC标准化图

      Fig.  6.  UCC normalized trace elements pattern of the sediment samples at site U1431

      图  7  U1431站点沉积物Al2O3-(CaO+Na2O)-K2O风化趋势三角图

      三角图内的箭头表示沉积物样品的风化趋势;Pl.斜长石;Ks.钾长石

      Fig.  7.  The Al2O3-(CaO+Na2O)-K2O triangle diagram for evolution of the weathering profile of sediments at site U1431

      图  8  U1431站点沉积物Al2O3-[CaO+Na2O+K2O]-[TFeO+MgO]三角图

      箭头表示沉积物样品的风化趋势;Fs.长石;TFeO.总铁

      Fig.  8.  The Al2O3-[CaO+Na2O+K2O]-[TFeO+MgO] triangle diagram of sediments at site U1431

      图  9  U1431站点沉积物的La-Th-Sc三角图

      FEV.长英质火山岩;MAV.镁铁质火山岩

      Fig.  9.  La-Th-Sc triangular diagram for the sediment at site U1431

      图  10  U1431站位样品Sr-Nd同位素分布

      图据Liu et al. (2017b); 湄公河和红河数据来自Liu et al. (2007); 婆罗洲沿海和南沙群岛的沉积物数据来自Wei et al. (2012); 巴拉望数据来自Tu et al. (1992); 苏门答腊数据来自White and Patchett (1984); 海南岛基岩数据来自Fang et al. (1992); 吕宋数据来自Knittel et al. (1988); 台湾岛河流的数据来自Chen and Lee (1990)Lan et al. (2002); 珠江数据来自Hu et al. (2013); Annamite Range river的数据来自Jonell et al. (2017); U1431站点扩张期后玄武岩数据来自Zhang et al. (2018); U1433站位沉积物数据来自Liu et al. (2017b)

      Fig.  10.  Plot of Sr versus Nd isotopes for the samples at site U1431

      表  1  U1431站点沉积物主量元素组成(%)

      Table  1.   The major elemental concentrations (%) of sediments at site U1431

      深度(mbsf) SiO2 Al2O3 MgO CaO Na2O K2O TFeO MnO P2O5 TiO2
      D-1H-2 2.64 66.97 15.19 2.14 2.87 4.83 2.35 4.13 0.31 0.22 0.50
      D-4H-4 27.76 58.83 19.41 3.32 3.89 2.61 3.26 6.70 0.21 0.22 1.06
      D-8H-2 62.38 56.42 20.12 3.28 5.62 2.67 3.65 6.58 0.23 0.13 0.81
      D-12H-4 103.44 57.85 20.12 3.32 3.88 1.89 3.80 7.33 0.22 0.13 0.98
      D-16H-5 141.82 59.85 20.33 2.84 2.47 1.82 3.98 6.94 0.15 0.14 0.99
      D-20X-5 177.02 59.42 19.43 3.28 3.46 1.84 3.50 7.22 0.16 0.12 1.05
      D-28X-6 253.38 56.62 19.17 2.97 7.77 1.80 3.48 6.41 0.17 0.16 0.96
      D-32X-2 287.62 57.19 21.28 3.17 2.62 1.79 3.95 8.26 0.17 0.14 0.94
      D-36X-4 328.22 60.48 19.35 3.19 2.38 1.75 3.85 7.30 0.11 0.13 0.96
      D-39X-3 356.97 57.65 19.93 3.16 5.62 1.67 3.86 6.33 0.15 0.15 0.99
      D-44X-4 398.78 58.19 19.66 2.86 5.97 1.76 3.63 6.22 0.15 0.14 0.92
      D-48X-2 433.48 56.96 20.35 2.97 6.00 1.60 3.90 6.49 0.13 0.13 0.97
      D-52X-CC 471.07 55.46 19.95 2.99 7.64 1.53 3.41 7.20 0.22 0.18 0.92
      D-55X-2 499.68 57.37 17.70 4.00 0.84 3.36 3.25 10.31 0.06 0.17 2.44
      D-60X-1 548.99 58.11 21.53 3.42 0.70 1.64 4.20 8.13 0.75 0.13 0.89
      E-7R-2 606.18 51.40 17.32 4.57 5.17 4.21 2.55 10.45 0.15 0.57 3.12
      E-10R-2 635.98 51.80 17.90 5.78 3.88 4.60 2.33 9.67 0.18 0.39 2.99
      E-17R-6 707.52 53.85 17.67 2.89 4.72 5.30 3.00 8.38 0.23 0.76 2.71
      E-22R-6 756.57 48.79 16.67 8.41 5.99 3.44 1.10 10.76 0.14 0.43 3.78
      E-26R-2 790.55 49.41 18.29 6.67 4.97 4.46 2.03 9.27 0.11 0.28 4.04
      E-31R-5 841.70 49.38 16.12 8.34 4.95 4.24 1.96 10.11 0.18 0.76 3.43
      E-36R-3 887.29 59.70 20.83 3.15 0.46 1.70 4.03 7.90 0.60 0.26 0.88
      平均含量 56.44 19.01 3.94 4.18 2.75 3.23 7.82 0.22 0.26 1.65
      深海黏土 53.48 15.87 3.48 4.06 3.01 9.29 0.87 0.77
      UCC 65.89 15.17 2.20 4.19 3.89 3.39 4.49 0.07 0.20 0.50
      注:TFeO为总铁,UCC(upper continental crust)为大陆上地壳(McLennan, 2001).
      下载: 导出CSV

      表  2  U1431站点沉积物稀土元素特征参数

      Table  2.   REE characteristics of sediments at site U1431

      ΣREE(10-6) LREE(10-6) HREE(10-6) LREE/HREE LaN/YbN δCe δEu
      D-1H-2 88.78 79.71 9.07 8.79 8.02 1.04 0.86
      D-4H-4 257.10 234.28 22.82 10.27 11.39 0.99 0.65
      D-8H-2 175.56 158.78 16.77 9.47 10.88 0.98 0.75
      D-12H-4 191.53 175.97 15.56 11.31 14.07 0.95 0.71
      D-16H-5 215.29 198.11 17.17 11.54 13.88 0.94 0.69
      D-20X-5 193.30 177.44 15.85 11.19 13.64 0.94 0.71
      D-24X-4 197.41 178.84 18.56 9.64 11.20 0.97 0.74
      D-28X-6 179.60 164.09 15.51 10.58 12.23 0.93 0.70
      D-32X-2 193.21 175.67 17.54 10.01 12.01 0.93 0.73
      D-36X-4 183.20 168.22 14.98 11.23 13.21 0.94 0.70
      D-39X-3 190.21 173.55 16.66 10.42 12.28 0.93 0.70
      D-44X-4 188.14 171.76 16.38 10.49 12.31 0.94 0.70
      D-48X-2 161.01 147.14 13.87 10.61 11.15 0.93 0.69
      D-52X-CC 170.43 155.89 14.54 10.72 13.08 0.95 0.73
      D-55X-2 302.30 276.74 25.56 10.83 17.65 0.94 0.86
      D-60X-1 186.99 169.73 17.26 9.83 11.01 0.96 0.72
      E-7R-2 210.82 187.98 22.84 8.23 10.62 0.92 0.94
      E-10R-2 211.52 187.40 24.11 7.77 10.04 0.92 0.94
      E-17R-6 273.79 246.26 27.53 8.95 12.20 0.90 0.95
      E-22R-6 188.80 168.03 20.77 8.09 10.97 0.91 0.92
      E-26R-2 149.60 130.32 19.28 6.76 6.90 1.04 0.95
      E-31R-5 192.79 173.56 19.23 9.02 13.21 0.90 0.94
      E-33R-6 202.12 180.81 21.31 8.49 11.62 0.92 0.94
      E-36R-3 217.53 194.36 23.16 8.39 9.61 0.91 0.73
      E-36R-4 173.28 152.42 20.86 7.31 8.85 0.82 0.78
      平均值 195.77 177.08 18.69 9.60 11.68 0.94 0.79
      注:TFeO为总铁,UCC(upper continental crust)为大陆上地壳(McLennan, 2001).
      下载: 导出CSV

      表  3  U1431站点沉积物中Sr、Nd同位素含量

      Table  3.   Sr and Nd isotopic compositions of sediments at site U1431

      Sr(10-6) 87Sr/86Sr 1σ SE Nd(10-6) 143Nd/144Nd 1σ SE εNd(0)
      D-1H-2 256.5 0.706 002 0.000 004 16.1 0.512 463 0.000 003 -3.4
      D-4H-4 185.5 0.715 608 0.000 004 45.5 0.512 103 0.000 002 -10.4
      D-8H-2 235.6 0.713 620 0.000 005 30.7 0.512 156 0.000 002 -9.4
      D-12H-4 163.6 0.717 609 0.000 005 34.1 0.512 063 0.000 002 -11.2
      D-16H-5 149.8 0.718 228 0.000 005 37.8 0.512 042 0.000 003 -11.6
      D-20X-5 154.7 0.717 787 0.000 005 34.2 0.512 041 0.000 002 -11.6
      D-24X-4 117.1 0.718 547 0.000 004 34.3 0.512 114 0.000 003 -10.2
      D-28X-6 273.8 0.713 744 0.000 005 32.0 0.512 066 0.000 002 -11.2
      D-32X-2 181.1 0.715 708 0.000 005 33.9 0.512 101 0.000 002 -10.5
      D-36X-4 145.0 0.718 548 0.000 005 32.2 0.512 070 0.000 002 -11.1
      D-39X-3 209.5 0.715 897 0.000 004 33.5 0.512 077 0.000 002 -10.9
      D-44X-4 266.9 0.713 370 0.000 004 33.1 0.512 100 0.000 002 -10.5
      D-48X-2 212.5 0.714 537 0.000 004 28.3 0.512 049 0.000 003 -11.5
      D-52X-CC 275.4 0.713 091 0.000 004 30.1 0.512 106 0.000 003 -10.4
      D-55X-2 149.0 0.708 449 0.000 004 59.6 0.512 686 0.000 002 0.9
      D-60X-1 107.5 0.720 673 0.000 004 32.4 0.512 079 0.000 004 -10.9
      E-7R-2 496.3 0.704 089 0.000 004 41.5 0.512 887 0.000 002 4.9
      E-10R-2 407.1 0.704 760 0.000 003 41.7 0.512 884 0.000 003 4.8
      E-17R-6 437.8 0.704 091 0.000 005 54.7 0.512 862 0.000 002 4.4
      E-22R-6 436.1 0.704 431 0.000 005 38.3 0.512 852 0.000 002 4.2
      E-26R-2 324.3 0.704 419 0.000 004 31.5 0.512 850 0.000 002 4.1
      E-31R-5 244.0 0.704 579 0.000 003 37.1 0.512 863 0.000 002 4.4
      E-33R-6 287.8 0.704 527 0.000 004 39.5 0.512 848 0.000 001 4.1
      E-36R-4 130.2 0.713 103 0.000 004 33.0 0.512 309 0.000 002 -6.4
      注:1σ SE为1倍标准偏差.
      下载: 导出CSV
    • [1] Cai, G. Q., Peng, X. C., Zhang, Y. L., 2011. The Significances of and Advances in the Study of Sediment Sources in the South China Sea. Advances in Marine Science, 29(1): 113-121 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBHH201101015.htm
      [2] Cao, Y., Li, C. F., Yao, Y. J., 2017. Thermal Subsidence and Sedimentary Processes in the South China Sea Basin. Marine Geology, 394: 30-38. https://doi.org/10.1016/j.margeo.2017.07.022
      [3] Chen, C. H., Lee, T., 1990. A Nd-Sr Isotopic Study on River Sediments of Taiwan. Proceedings of the Geological Society of China, 33(4): 339-350. http://ntur.lib.ntu.edu.tw/handle/246246/108328
      [4] Chen, Z. X., Langmuir, C. H., 2018. Improving Data Precision and Accuracy With Short-Term and Long-Term Elemental Fractionation Corrections for Non-Matrix Matched Silicate Analysis by LA-ICP-MS. Goldschmidt 2018, Boston.
      [5] Fang, Z., Zhao, J. X., McCulloch, M. T., 1992. Geochemical and Nd Isotopic Study of Palaeozoic Bimodal Volcanics in Hainan Island, South China: Implications for Rifting Tectonics and Mantle Reservoirs. Lithos, 29(1-2): 127-139. https://doi.org/10.1016/0024-4937(92)90037-Y
      [6] Garçon, M., Chauvel, C., France-Lanord, C., et al., 2014. Which Minerals Control the Nd-Hf-Sr-Pb Isotopic Compositions of River Sediments?. Chemical Geology, 364: 42-55. https://doi.org/10.1016/j.chemgeo.2013.11.018
      [7] Ge, Q., Liu, J. P., Xue, Z., et al., 2014. Dispersal of the Zhujiang River (Pearl River) Derived Sediment in the Holocene. Acta Oceanologica Sinica, 33(8): 1-9. https://doi.org/10.1007/s13131-014-0407-8
      [8] Hu, D. K., Clift, P. D., Böning, P., et al., 2013. Holocene Evolution in Weathering and Erosion Patterns in the Pearl River Delta. Geochemistry, Geophysics, Geosystems, 14(7): 2349-2368. https://doi.org/10.1002/ggge.20166
      [9] Huang, C. Y., Yuan, P. B., Tsao, S. J., 2006. Temporal and Spatial Records of Active Arc-Continent Collision in Taiwan: A Synthesis. Geological Society of America Bulletin, 118(3-4): 274-288. https://doi.org/10.1130/b25527.1
      [10] Jonell, T. N., Clift, P. D., Hoang, L. V., et al., 2017. Controls on Erosion Patterns and Sediment Transport in a Monsoonal, Tectonically Quiescent Drainage, Song Gianh, Central Vietnam. Basin Research, 29: 659-683. https://doi.org/10.1111/bre.12199
      [11] Knittel, U., Defant, M. J., Raczek, I., 1988. Recent Enrichment in the Source Region of Arc Magmas from Luzon Island, Philippines: Sr and Nd Isotopic Evidence. Geology, 16(1): 73-76. https://doi.org/10.1130/0091-7613(1988)0160073:reitsr>2.3.co;2 doi: 10.1130/0091-7613(1988)0160073:reitsr>2.3.co;2
      [12] Lan, C. Y., Lee, C. S., Shen, J. J., et al., 2002. Nd-Sr Isotopic Composition and Geochemistry of Sediments from Taiwan and Their Implications. Western Pacific Earth Science, 2(2): 205-222 http://www.researchgate.net/publication/281263130_Nd-Sr_isotopic_composition_and_geochemistry_of_sediments_from_Taiwan_and_their_implications
      [13] Li, C. F., Lin, J., Kulhanek, D. K., et al., 2015. Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics. International Ocean Discovery Program, College Station. https://doi.org/10.14379/iodp.proc.349.101.2015
      [14] Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567
      [15] Li, P. Y., Liu, Z. F., 2018. Characteristics and Significance of Trace Fossils in Late Miocene Deep-Sea Volcaniclastic Sediments in the Central Basin of South China Sea. Earth Science, 43(S2): 203-213 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2016.htm
      [16] Liu, C., Clift, P. D., Murray, R. W., et al., 2017a. Geochemical Evidence for Initiation of the Modern Mekong Delta in the Southwestern South China Sea after 8 Ma. Chemical Geology, 451: 38-54. https://doi.org/10.1016/j.chemgeo.2017.01.008
      [17] Liu, J. G., Xiang, R., Chen, M. H., et al., 2011. Influence of the Kuroshio Current Intrusion on Depositional Environment in the Northern South China Sea: Evidence from Surface Sediment Records. Marine Geology, 285(1-4): 59-68. https://doi.org/10.1016/j.margeo.2011.05.010
      [18] Liu, J. G., Xiang, R., Chen, Z., et al., 2013. Sources, Transport and Deposition of Surface Sediments from the South China Sea. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 71: 92-102. https://doi.org/10.1016/j.dsr.2012.09.006
      [19] Liu, Z. F., Colin, C., Huang, W., et al., 2007. Climatic and Tectonic Controls on Weathering in South China and Indochina Peninsula: Clay Mineralogical and Geochemical Investigations from the Pearl, Red, and Mekong Drainage Basins. Geochemistry, Geophysics, Geosystems, 8(5): Q05005. https://doi.org/10.1029/2006GC001490
      [20] Liu, Z. F., Li, C. F., Kulhanek, D., 2017b. Preface: Evolution of the Deep South China Sea: Integrated IODP Expedition 349 Results. Marine Geology, 394: 1-3. https://doi.org/10.1016/j.margeo.2017.11.009
      [21] López, J. M. G., Bauluz, B., Fernández-Nieto, C., et al., 2005. Factors Controlling the Trace-Element Distribution in Fine-Grained Rocks: The Albian Kaolinite-Rich Deposits of the Oliete Basin (NE Spain). Chemical Geology, 214(1-2): 1-19. https://doi.org/10.1016/j.chemgeo.2004.08.024
      [22] McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 203-236. https://doi.org/10.1029/2000GC000109
      [23] McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Geological Society of America, Special Paper, 285: 21-40. https://doi.org/10.1130/SPE284-p21
      [24] Nesbitt, H. W., Markovics, G., Price, R. C., 1980. Chemical Processes Affecting Alkalis and Alkaline Earths during Continental Weathering. Geochimica et Cosmochimica Acta, 44(11): 1659-1666. https://doi.org/10.1016/0016-7037(80)90218-5
      [25] Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      [26] Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
      [27] Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. The Journal of Geology, 97(2): 129-147. https://doi.org/10.1086/629290
      [28] Shao, L., Cui, Y. C., Stattegger, K., et al., 2019. Drainage Control of Eocene to Miocene Sedimentary Records in the Southeastern Margin of Eurasian Plate. GSA Bulletin, 131(3-4): 461-478. https://doi.org/10.1130/b32053.1
      [29] Shao, L., Qiao, P. J., Pang, X., et al., 2008. Nd Isotopic Variations and Its Implications in the Recent Sediments from the Northern South China Sea. Chinese Science Bulletin, 54(2): 311-317. https://doi.org/10.1007/s11434-008-0453-8
      [30] Su, M., Xie, X. N., Wang, Z. F., et al., 2013. Sedimentary Evolution of the Central Canyon System in Qiongdongnan Basin, Northern South China Sea. Acta Petrolei Sinica, 34(3): 467-478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201303008.htm
      [31] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford. https://doi.org/10.1016/0031-9201(86)90093-2
      [32] Tong, S. Q., 2007. Elemental Geochemistry of Surface Sediments in Pearl River, Red River and Mekong River Basin (Dissertation). Tongji University, Shanghai (in Chinese with English abstract).
      [33] Tu, K., Flower, M. F. J., Carlson, R. W., et al., 1992. Magmatism in the South China Sea: 1. Isotopic and Trace-Element Evidence for an Endogenous Dupal Mantle Component. Chemical Geology, 97(1-2): 47-63. https://doi.org/10.1016/0009-2541(92)90135-R
      [34] Wang, J., Zhao, M. H., Qiu, X. L., et al., 2016. 3D Seismic Structure of the Zhenbei-Huangyan Seamounts Chain in the East Sub-Basin of the South China Sea and Its Mechanism of Formation. Geological Journal, 51: 448-463. https://doi.org/10.1002/gj.2781
      [35] Wang, P. X., Jian, Z. M., 2019. Exploring the Deep South China Sea: Retrospects and Prospects. Science in China (Sreies D), 49(10): 1590-1606 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JDXG201910001
      [36] Wang, Y. J., Han, X. Q., Luo, Z. H., et al., 2009. Late Miocene Magmatism and Evolution of Zhenbei-Huangyan Seamount in the South China Sea: Evidence from Petrochemistry and Chronology. Acta Oceanologica Sinica, 31(4): 93-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC200904010.htm
      [37] Wei, G. J., Liu, Y., Ma, J. L., et al., 2012. Nd, Sr Isotopes and Elemental Geochemistry of Surface Sediments from the South China Sea: Implications for Provenance Tracing. Marine Geology, 319-322: 21-34. https://doi.org/10.1016/j.margeo.2012.05.007
      [38] White, W. M., Patchett, J., 1984. Hf-Nd-Sr Isotopes and Incompatible Element Abundances in Island Arcs: Implications for Magma Origins and Crust-Mantle Evolution. Earth and Planetary Science Letters, 67(2): 167-185. https://doi.org/10.1016/0012-821x(84)90112-2
      [39] Yin, S. R., Li, J. B., Ding, W. W., et al., 2020. Sedimentary Filling Characteristics of the South China Sea Oceanic Basin, with Links to Tectonic Activity during and after Seafloor Spreading. International Geology Review, 62(7-8): 887-907. https://doi.org/10.1080/00206814.2018.1522603
      [40] Zhang, D. J., Zhang, Y. Z., Shao, L., et al., 2017. Sedimentary Provenance in the Central Canyon of Qiongdongnan Basin in the Northern South China Sea. Natural Gas Geoscience, 28(10): 1574-1581 (in Chinese with English abstract). http://www.researchgate.net/publication/322294402_Sedimentary_provenance_in_the_Central_Canyon_of_Qiongdongnan_Basin_in_the_northern_South_China_Sea
      [41] Zhang, G. L., Sun, W. D., Seward, G., 2018. Mantle Source and Magmatic Evolution of the Dying Spreading Ridge in the South China Sea. Geochemistry, Geophysics, Geosystems, 19(11): 4385-4399. https://doi.org/10.1029/2018GC007570
      [42] Zhao, M., Shao, L., Liang, J. S., et al., 2015. No Red River Capture since the Late Oligocene: Geochemical Evidence from the Northwestern South China Sea. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 122: 185-194. https://doi.org/10.1016/j.dsr2.2015.02.029
      [43] Zhao, M. H., Du, F., Wang, Q., et al., 2018. Current Status and Challenges for Three-Dimensional Deep Seismic Survery in the South China Sea. Earth Science, 43(10): 3749-3761 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810034.htm
      [44] 蔡观强, 彭学超, 张玉兰, 2011. 南海沉积物物质来源研究的意义及其进展. 海洋科学进展, 29(1): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHH201101015.htm
      [45] 李平原, 刘志飞, 2018. 南海中央海盆晚中新世深海火山碎屑沉积的遗迹学特征及意义. 地球科学, 43(S2): 203-213. doi: 10.3799/dqkx.2018.130
      [46] 苏明, 解习农, 王振峰, 等, 2013. 南海北部琼东南盆地中央峡谷体系沉积演化. 石油学报, 34(3): 467-478. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303008.htm
      [47] 童胜琪, 2007. 珠江、红河及湄公河流域表层沉积物元素地球化学研究(硕士学位论文). 上海: 同济大学.
      [48] 汪品先, 翦知湣, 2019. 探索南海深部的回顾与展望. 中国科学(D辑), 49(10): 1590-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910006.htm
      [49] 王叶剑, 韩喜球, 罗照华, 等, 2009. 晚中新世南海珍贝-黄岩海山岩浆活动及其演化: 岩石地球化学和年代学证据. 海洋学报, 31(4): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200904010.htm
      [50] 张道军, 张迎朝, 邵磊, 等, 2017. 琼东南盆地中央峡谷沉积物源探讨. 天然气地球科学, 28(10): 1574-1581. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201710012.htm
      [51] 赵明辉, 杜峰, 王强, 等, 2018. 南海海底地震仪三维深地震探测的进展及挑战. 地球科学, 43(10): 3479-3761. doi: 10.3799/dqkx.2018.573
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  237
    • HTML全文浏览量:  32
    • PDF下载量:  46
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-06-18
    • 刊出日期:  2021-03-15

    目录

      /

      返回文章
      返回