Whether Sanguliu Granite Provided Energy Required for Forming Wulong Gold Deposit, Liaoning Province, China?
-
摘要: 辽东地区五龙金矿是华北克拉通东部一个典型的石英脉型金矿床,其成矿过程尚存争议.多种证据表明五龙金矿成矿流体属于岩浆热液,成矿时代又与距离较近的三股流岩体的侵位年龄接近,因而有一种观点认为二者密切相关.目前尚未有充足的地质证据表明三股流岩体释放了五龙金矿成矿所需要的含金岩浆热液,那么三股流岩体是否为其提供必要的能量呢?利用现有的地球化学和地球物理数据,建立三股流岩体仅作为热源驱动大气降水和释放岩浆热液的对流数值模型,模拟三股流岩体周边的流场和温度场.数值模拟结果表明,三股流岩体自侵位后可在其周边1 km范围内形成300℃以上的热场,并维持数十万年,因而有利于形成岩浆热液型矿床.然而,五龙金矿所在的位置受三股流岩体侵位后的热场影响不显著.如果三股流岩体释放了充足的岩浆热液,岩浆热液可在岩体边缘和接触带形成热液蚀变和金矿化,这与现有的地质证据不符.故五龙金矿可能与三股流岩体没有直接成因关系,而金成矿热液来源仍需深入研究.Abstract: The Wulong gold deposit located in Liaoning Province is a typical vein-type gold deposit in the eastern part of the North China craton,but how this large-scale gold deposit formed remains controversial. This deposit was interpreted to be genetically related to the Sanguliu granite because they are spatially close and have close chronological ages and the mineralizing fluids have a magmatic-hydrothermal origin. There is no sufficient evidence supporting that the Sanguliu granite provided the gold-bearing magmatic-hydrothermal fluids required for forming the Wulong deposit,so did the former provide sufficient energy for the latter? In order to answer this question,numerical modeling of heat-driven convection of meteoric water and magmatic-hydrothermal fluids released by the Sanguliu granite was built based on its geochemical and geophysical characteristics to simulate the evolution of fluid flow and temperature after emplacement of the granite. Numerical results indicate that the temperatures within 1 km of the Sanguliu granite were elevated to over 300℃ for hundreds of thousands of years. This long high temperature filed favors formation of magmatic-hydrothermal deposits. In contrast,the position of the Wulong deposit received insignificant energy from the Sanguliu granite. If magmatic-hydrothermal fluids were released from the Sanguliu granite,those magmatic-hydrothermal fluids should have caused alteration and minerlization at the granite margin and the contact between the granite and its wallrock. However,these phenomena have not been identified in the field. Therefore,there is probably no genetic relationship between the large-scale Wulong deposit and the Sanguliu granite,and further investigations are needed to identify the source for Au-mineralizing fluids.
-
图 1 辽宁五龙金矿所在的区域地质图(a)及其剖面图(b)
据肖世椰等(2018)修改; 图中B-B’为图 6的剖面线
Fig. 1. The tectonic position (a) and the profile (b) of the Wulong gold deposit, Liaoning Province
图 4 水密度随温度和压力变化的曲线
根据IAPWS-95公式计算(Wagner and Pruss, 2002)
Fig. 4. Water density against temperature and pressure
图 6 三股流岩体热驱动流体对流二维半空间数值模型
剖面线B-B’对应的位置见图 1b.图中所给的初始条件和边界条件见3.2节.实际模型为三维模型,另一水平方向只有1 km,含两层六面体网格
Fig. 6. The two-dimension half-space heat-driven fluid convection triggered by the Sanguliu granite
图 12 数值实验5中岩浆热液以1.35×10-4 m3/s速率释放40万年后热场和流速场的分布
箭头指示流速,箭头方向代表流体流动方向,箭头长度代表流速大小,最大流速为2.2.×10-9m/s;标尺代表温度,单位为°C.红色框指示大气降水与岩浆热液交汇的区域
Fig. 12. The distribution of temperature and fluid velocity after releasing magmatic-hydrothermal fluids at a rate of 1.35×10-4 m3/s by 0.4 Ma in the fifth numerical experiment
图 13 数值实验5中岩浆热液以6.75×10-5 m3/s(a)和1.35×10-4 m3/s(b)速率释放时五龙金矿的3个观察点的温度曲线变化趋势
Fig. 13. The evolution of temperature at the three observation points of the Wulong deposit after releasing magmatic-hydrothermal fluids at a rate of 6.75×10-5 m3/s (a) and 1.35×10-4 m3/s (b) in the fifth numerical experiment
-
Bao, Z.Y., 1992. Onset and Stability of Thermally-Driven Fluid Convection in a Vertical Rock Crack and Their Implication for Hydrothermal Ore-Forming Processes. Earth Science, 17(Suppl.1):57-67 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZDDY199200006.htm Buret, Y., von Quadt, A., Heinrich, C., et al., 2016. From a Long-Lived Upper-Crustal Magma Chamber to Rapid Porphyry Copper Emplacement:Reading the Geochemistry of Zircon Crystals at Bajo de La Alumbrera (NW Argentina). Earth and Planetary Science Letters, 450:120-131. https://doi.org/10.1016/j.epsl.2016.06.017 Burnham, C. W., 1985. Energy Release in Subvolcanic Environments; Implications for Breccia Formation. Economic Geology, 80(6):1515-1522. https://doi.org/10.2113/gsecongeo.80.6.1515 Burnham, C.W., 1997. Magmas and Hydrothermal Fluids. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits (3rd Edition). John Wiley & Sons, New York, 63-123. Candela, P. A., Blevin, P. L., 1995. Do Some Miarolitic Granites Preserve Evidence of Magmatic Volatile Phase Permeability. Economic Geology, 90(8):2310-2316. https://doi.org/10.2113/gsecongeo.90.8.2310 Cathles, L. M., 1977. An Analysis of the Cooling of Intrusives by Ground-Water Convection Which Includes Boiling. Economic Geology, 72(5):804-826. https://doi.org/10.2113/gsecongeo.72.5.804 Cen, K., Tian, Z.X., 2012. Ore-Forming System around Magma:Model of Spatial Zonation for Magmatic Rock and Deposit Set. Geoscience, 26(5):1051-1057 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201205027.htm Chi, G.X., Xue, C.J., 2011. An Overview of Hydrodynamic Studies of Mineralization. Geoscience Frontiers, 2(3):423-438. doi: 10.1016/j.gsf.2011.05.001 Cui, B., Li, Z., 1998. Synthetic Metallogenic Prediction in the Material Field-Energy Field-Spatial Field. Geoscience, 12(4):501-505 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ804.006.htm Dutrow, B. L., Travis, B. J., Gable, C. W., et al., 2001. Coupled Heat and Silica Transport Associated with Dike Intrusion into Sedimentary Rock:Effects on Isotherm Location and Permeability Evolution. Geochimica et Cosmochimica Acta, 65(21):3749-3767. https://doi.org/10.1016/s0016-7037(01)00704-9 Eldursi, K., Branquet, Y., Guillou-Frottier, L., et al., 2009. Numerical Investigation of Transient Hydrothermal Processes around Intrusions:Heat-Transfer and Fluid-Circulation Controlled Mineralization Patterns. Earth and Planetary Science Letters, 288(1/2):70-83. https://doi.org/10.1016/j.epsl.2009.09.009 Gerdes, M. L., Baumgartner, L. P., Person, M., 1998. Convective Fluid Flow through Heterogeneous Country Rocks during Contact Metamorphism. Journal of Geophysical Research:Solid Earth, 103(B10):23983-24003. https://doi.org/10.1029/98jb02049 Ghiorso, M.S., 1991. Temperatures in and around Cooling Magma Bodies. In: Perchuk, L.L., ed., Progress in Metamorphic and Magmatic Petrology. Cambridge University Press, New York, 387-410. Gu, Y.C., 2019. The Mesozoic Tectonic-Magmatic Constraints on the Gold Mineralization in Wulong Gold Mining Area, Eastern Liaoning (Dissertation). China University of Geosciences, Beijing, 156 (in Chinese with English abstract). Hanson, R.B., 1995. The Hydrodynamics of Contact Metamorphism. Geological Society of America Bulletin, 107(5):595-611. doi: 10.1130/0016-7606(1995)107<0595:THOCM>2.3.CO;2 Hu, G.H., Zhang, Q.Q., Li, J.F., et al., 2020. Emplacement Ages of Mesozoic Granites in the Liaodong Area:Constraints from Zircon and Monazite U-Pb Dating. Earth Science, 45(11):3962-3981 (in Chinese with English abstract). Ingebritsen, S. E., Geiger, S., Hurwitz, S., et al., 2010. Numerical Simulation of Magmatic Hydrothermal Systems. Reviews of Geophysics, 48(1):1-33. https://doi.org/10.1029/2009rg000287 Lange, R. A., Cashman, K. V., Navrotsky, A., 1994. Direct Measurements of Latent Heat during Crystallization and Melting of a Ugandite and an Olivine Basalt. Contributions to Mineralogy and Petrology, 118(2):169-181. https://doi.org/10.1007/bf01052867 Li, S.Z., Liu, J.Z., Zhao, G.C., et al., 2004. Key Geochronology of Mesozoic Deformation in the Eastern Block of the North China Craton and Its Constraints on Regional Tectonics:A Case of Jiaodong and Liaodong Peninsula. Acta Petrologica Sinica, 20(3):633-646 (in Chinese with English abstract). http://www.researchgate.net/publication/232696982_Key_geochronology_of_Mesozoic_deformation_in_the_Eastern_Block_of_the_North_China_Craton_and_its_constrains_on_regional_tectonics-a_case_of_Jiaodong_and_Liaodong_Peninsula Li, Y., Selby, D., Condon, D., et al., 2017. Cyclic Magmatic-Hydrothermal Evolution in Porphyry Systems:High-Precision U-Pb and Re-Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu-Mo Deposit. Economic Geology, 112(6):1419-1440. https://doi.org/10.5382/econgeo.2017.4515 Liu, J., Zhang, L. J., Wang, S. L., et al., 2019. Formation of the Wulong Gold Deposit, Liaodong Gold Province, NE China:Constraints from Zircon U-Pb Age, Sericite Ar-Ar Age, and H-O-S-He Isotopes. Ore Geology Reviews, 109:130-143. https://doi.org/10.1016/j.oregeorev.2019.04.013 Liu, Y. D., 1987. Discussion on the Geological Characteristics and Genesis of Granite in Sanguliu of Liaoning. Liaoning Geology, 3:245-260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LOAD198703005.htm Lv, Y.F., Li, J.F., Zhang, M., 1993. The Structural Character of Syntectonic Granite Body with Forceful Emplacement and Its Relationship with the Gold Deposit:The Example of Sanguliu Granite Body, Dandong. Land & Resources, 1(2):120-128 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LOAD199302001.htm Ma, C.Q., Li, Y.Q., 2017. Incremental Growth of Granitoid Plutons and Highly Crystalline Magmatic Differentiation. Acta Petrologica Sinica, 33(5):1479-1488 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201705007.htm Ma, Y.M., Lu, X.C., Zhang, X.F., et al., 2013. A Numerical Simulation of the Heat Transfer in Granite Intrusion-Mudstone Contact Zone and Its Geological Implication:A Case Study from Eastern Guangdong Province, China. Geological Journal of China Universities, 19(2):307-315 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201302013.htm Nabelek, P. I., Hofmeister, A. M., Whittington, A. G., 2012. The Influence of Temperature-Dependent Thermal Diffusivity on the Conductive Cooling Rates of Plutons and Temperature-Time Paths in Contact Aureoles. Earth and Planetary Science Letters, 317/318:157-164. https://doi.org/10.1016/j.epsl.2011.11.009 Ni, P., Wang, X. D., Wang, G. G., et al., 2015. An Infrared Microthermometric Study of Fluid Inclusions in Coexisting Quartz and Wolframite from Late Mesozoic Tungsten Deposits in the Gannan Metallogenic Belt, South China. Ore Geology Reviews, 65(4):1062-1077. http://www.sciencedirect.com/science/article/pii/S0169136814001954 Norton, D., Knight, J. E., 1977. Transport Phenomena in Hydrothermal Systems; Cooling Plutons. American Journal of Science, 277(8):937-981. https://doi.org/10.2475/ajs.277.8.937 Ren, Q.J., Guo, G.Z., Feng, Z.J., et al., 1994. Computer Simulation of Heat and Fluid Transport in the Ore-Forming Process of the Jinduicheng Porphyry Molybdenum Deposit, Shaanxi Province. Mineral Deposits, 13(1):88-959 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ401.008.htm Schön, J.H., 2015. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. Elsevier, Amsterdam, 378-380. https://doi.org/ 10.1016/c2014-0-03002-x Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1):3-41. https://doi.org/10.2113/gsecongeo.105.1.3 Spencer, E. T., Wilkinson, J. J., Creaser, R. A., et al., 2015. The Distribution and Timing of Molybdenite Mineralization at the El Teniente Cu-Mo Porphyry Deposit, Chile. Economic Geology, 110(2):387-421. https://doi.org/10.2113/econgeo.110.2.387 Vosteen, H. D., Schellschmidt, R., 2003. Influence of Temperature on Thermal Conductivity, Thermal Capacity and Thermal Diffusivity for Different Types of Rock. Physics and Chemistry of the Earth, Parts A/B/C, 28(9/10/11):499-509. https://doi.org/10.1016/s1474-7065(03)00069-x Wagner, W., Pruss, A., 2002. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Journal of Physical and Chemical Reference Data, 31(2):387-535. https://doi.org/10.1063/1.1461829 Wang, D.L., Shen, J.F., Qiu, H.C., et al., 2019. Study on Typomorphic Characteristics of Pyrite and Prediction of Deep Prospecting of Wulong Gold Deposit in Liaoning Province. Journal of Nanjing University (Natural Science), 55(6):898-915 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NJDZ201906003.htm Wang, D. Y., 2013. Magma Heat NS1D:One-Dimensional Visualization Numerical Simulator for Computing Thermal Evolution in a Contact Metamorphic Aureole. Computers & Geosciences, 54:21-27. https://doi.org/10.1016/j.cageo.2013.01.006 Wang, K.Y., Qing, M., Bian, H.Y., et al., 2010. The Geological Features and Geochemistry of Ore-Forming Fluids of Wulong Gold Deposit in Liaoning Province. Journal of Jilin University (Earth Science Edition), 40(3):557-564 (in Chinese with English abstract). Wang, Y. Z., Wang, F., Wu, L., et al., 2018. (U-Th)/He Thermochronology of Metallic Ore Deposits in the Liaodong Peninsula:Implications for Orefield Evolution in Northeast China. Ore Geology Reviews, 92:348-365. https://doi.org/10.1016/j.oregeorev.2017.11.025 Wei, J.H., Liu, C.Q., Tang, H.F., 2003. Metallogeny of Gold Deposits and Evidence of Isotopes and Trace Elements for the Comagmatic Evolution of the Yanshanian Intrusive Rocks in the Wulong Area, Eastern Liaoning. Geological Review, 49(3):265-271 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200303007.htm Wei, J.H., Liu, C.Q., Zhao, Y.X., et al., 2001. Time Span of the Major Ore-Forming Stages of the Wulong Gold Deposit, Liaoning. Geological Review, 47(4):433-437 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200104020.htm Weis, P., Driesner, T., Heinrich, C. A., 2012. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts within Dynamic Fluid Plumes. Science, 338(6114):1613-1616. https://doi.org/10.1126/science.1225009 Wu, F., Lin, J., Wilde, S., et al., 2005a. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2):103-119. https://doi.org/10.1016/j.epsl.2005.02.019 Wu, F. Y., Yang, J. H., Wilde, S. A., et al., 2005b. Geochronology, Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1/2):127-156. https://doi.org/10.1016/j.chemgeo.2005.04.010 Xiao, C.H., Liu, X.C., Zhao, Y., et al., 2020. Structural Controls and Re-Os Dating of Molybdenite of the Wulong Gold Deposit, NE China. Earth Science, 45(11):3982-3997 (in Chinese with English abstract). Xiao, S.Y., Zhu, G., Zhang, S., et al., 2018. Structural Processes and Dike Emplacement Mechanism in the Wulong Gold Field, Eastern Liaoning. Chinese Science Bulletin, 63(28):3022-3036 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-KXTB2018Z2011.htm Xing, H. L., 2014. Finite Element Simulation of Transient Geothermal Flow in Extremely Heterogeneous Fractured Porous Media. Journal of Geochemical Exploration, 144:168-178. https://doi.org/10.1016/j.gexplo.2014.03.002 Yang, C.F., 1997. The Characteristics of the Ore Bearing Fracture Tectonics and the Gold Orebody's Spatial Occurrence of Wulong Gold Deposit. Gold, 18(3):3-8 (in Chinese with English abstract). Yang, F.C., Song, Y.H., Yang, J.L., et al., 2018. SHRIMP U-Pb Age and Geochemical Characteristics of Granites in Wulong-Sidaogou Gold Deposit, East Liaoning. Geotectonica et Metallogenia, 42(5):940-954 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201805013.htm Yang, F.C., Yang, J.L., Gu, Y.C., et al., 2019. Emplacement and Deformation Age of Surrounding Gneissic Granite in Wulong Gold Deposit, Eastern Liaoning Province:SHRIMP U-Pb Age. Journal of Geomechanics, 25(Suppl.1):44-48 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX2019S1008.htm Yang, J., Large, R. R., Bull, S., et al., 2006. Basin-Scale Numerical Modeling to Test the Role of Buoyancy-Driven Fluid Flow and Heat Transfer in the Formation of Stratiform Zn-Pb-Ag Deposits in the Northern Mount Isa Basin. Economic Geology, 101(6):1275-1292. https://doi.org/10.2113/gsecongeo.101.6.1275 Yang, J.H., Wu, F.Y., Luo, Q.H., et al., 2004. Deformation Age of Jurassic Granites in the Dandong Area, Eastern China:40Ar/39Ar Geochronological Constraints. Acta Petrologica Sinica, 20(5):1205-1214 (in Chinese with English abstract). http://www.oalib.com/paper/1472346 Yang, R.Y., Ma, D.S., Pan, J.Y., 2005. Effect of Annual Precipitation to Geotherm of Ore-Forming Fluid:A Case of Antimony Deposits in Xikuangshan. Earth Science, 30(3):366-370 (in Chinese with English abstract). http://www.researchgate.net/publication/289039033_Effect_of_annual_precipitation_to_geotherm_of_ore-forming_fluid_A_case_of_antimony_deposits_in_Xikuangshan Yang, S.S., Wang, K.Y., Hao, T.S., et al., 2010. Characteristics of Fluid Inclusions and Genesis of Sidaogou Gold Deposit in Dandong Area, Liaoning Province. Journal of Jilin University (Earth Science Edition), 40(4):773-780 (in Chinese with English abstract). http://www.researchgate.net/publication/290308650_Characteristics_of_fluid_inclusions_and_genesis_of_Sidaogou_gold_deposit_in_Dandong_Area_Liaoning_Province?ev=auth_pub Yu, B., Zeng, Q. D., Frimmel, H. E., et al., 2018. Genesis of the Wulong Gold Deposit, Northeastern North China Craton:Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations. Ore Geology Reviews, 102:313-337. https://doi.org/10.1016/j.oregeorev.2018.09.016 Yu, C.W., Cen, K., Bao, Z. Y., et al., 1997. Dynamics of Ore-Forming Processes. Geological Publishing House, Beijing, 224 (in Chinese). Zeng, Q.D., Chen, R.Y., Yang, J.H., et al., 2019. The Metallogenic Characteristics and Exploring Ore Potential of the Gold Deposits in Eastern Liaoning Province. Acta Petrologica Sinica, 35(7):1939-1963 (in Chinese with English Abstract). doi: 10.18654/1000-0569/2019.07.01 Zhang, D.H., Jin, X.D., Mao, S.D., et al., 2011. The Classification of Ore-Forming Fluid and the Efficiency of Ore Formation of Magmatic Hydrothermal Solution. Earth Science Frontiers, 18(5):90-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201105009.htm Zhang, D.H., Yu, C.W., Bao, Z.Y., et al., 1998. Fluid Dynamics and Numerical Simulation of Ore Zoning of Yinshan Polymetallic Deposit in Dexing, Jiangxi Province. Earth Science, 23(3):267-271 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX803.010.htm Zhang, P., Kou, L. L., Zhao, Y., et al., 2020. Genesis of the Wulong Gold Deposit, Liaoning Province, NE China:Constrains from Noble Gases, Radiogenic and Stable Isotope Studies. Geoscience Frontiers, 11(2):547-563. https://doi.org/10.1016/j.gsf.2019.05.012 Zhang, Q., Jin, W.J., Li, C.D., et al., 2014. Magma-Thermal Field:Its Basic Characteristics, and Differences with Geothermal Field. Acta Petrologica Sinica, 30(2):341-349 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201402003.htm Zhang, Q., Jin, W.J., Wang, J.R., et al., 2016. Relationship between Magma-Thermal Field and Hydrocarbon Accumulation. Progress in Geophysics, 31(4): 1525-1541 (in Chinese with English abstract). doi: 10.1016/j.oregeorev.2019.103138 Zhang, Z. Q., Wang, G. W., Carranza, E. J. M., et al., 2019. Metallogenic Model of the Wulong Gold District, China, and Associated Assessment of Exploration Criteria Based on Multi-Scale Geoscience Datasets. Ore Geology Reviews, 114:103138. https://doi.org/10.1016/j.oregeorev.2019.103138 Zhao, C., Hobbs, B.E., Ord, A., 2008. Convective and Advective Heat Transfer in Geological Systems. Springer, Berlin, 229. Zhao, C. B., Reid, L. B., Regenauer-Lieb, K., 2012. Some Fundamental Issues in Computational Hydrodynamics of Mineralization:A Review. Journal of Geochemical Exploration, 112:21-34. https://doi.org/10.1016/j.gexplo.2011.10.005 Zhu, R.X., Fan, H.R., Li, J.W., et al., 2015. Decratonic Gold Deposits. Scientia Sinica (Terrae), 45(8):1153-1168 (in Chinese). doi: 10.1360/zd2015-45-8-1153 鲍征宇, 1992.垂直裂隙中热驱动流体对流的发生和稳定性及其热液成矿作用意义.地球科学, 17(S1):57-67. http://www.cnki.com.cn/Article/CJFDTotal-DQKX1992S1009.htm 岑况, 田兆雪, 2012.岩浆中心成矿系:岩浆岩体和矿床组合的空间分带理想模式.现代地质, 26(5):1051-1057. http://d.wanfangdata.com.cn/Periodical/xddz201205026 崔彬, 李忠, 1998.物质场-能量场-空间场综合成矿预测.现代地质, 12(4):501-505. 顾玉超, 2019.辽东五龙金矿区中生代构造-岩浆作用对金成矿制约(博士学位论文).北京: 中国地质大学, 156. 胡国辉, 张琪琪, 李建锋, 等, 2020.辽东地区中生代花岗岩的侵位时代:锆石和独居石U-Pb年代学.地球科学, 45(11):3962-3981. doi: 10.3799/dqkx.2020.293 李三忠, 刘建忠, 赵国春, 等, 2004.华北克拉通东部地块中生代变形的关键时限及其对构造的制约:以胶辽地区为例.岩石学报, 20(3):633-646. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200403027.htm 刘义德, 1987.辽宁省三股流花岗岩地质特征及成因探讨.辽宁地质, 3:245-260. http://www.cnki.com.cn/Article/CJFDTotal-LOAD198703005.htm 吕贻峰, 李江风, 张鸣, 1993.强力侵位花岗岩体与金矿的关系:以丹东三股流岩体为例.国土资源, 1(2):120-128. 马昌前, 李艳青, 2017.花岗岩体的累积生长与高结晶度岩浆的分异.岩石学报, 33(5):1479-1488. http://d.wanfangdata.com.cn/Periodical/ysxb98201705007 马野牧, 陆现彩, 张雪芬, 等, 2013.花岗岩侵入体-泥质围岩热传输过程的数值模拟及其地质意义:以粤东典型接触带剖面为例.高校地质学报, 19(2):307-315. http://www.cnki.com.cn/Article/CJFDTotal-GXDX201302013.htm 任启江, 郭国章, 冯祖钧, 等, 1994.陕西金堆城斑岩钼矿成矿过程中热及流体传输的计算模拟.矿床地质, 13(1):88-95. http://www.cqvip.com/Main/Detail.aspx?id=1418808 王冬丽, 申俊峰, 邱海成, 等, 2019.辽宁五龙金矿黄铁矿标型特征研究及深部找矿预测.南京大学学报(自然科学版), 55(6):898-915. http://www.cqvip.com/QK/95251X/20196/7100287129.html 王可勇, 卿敏, 边红业, 等, 2010.辽宁五龙金矿床地质特征及成矿流体地球化学性质.吉林大学学报(地球科学版), 40(3):557-564. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201003012.htm 魏俊浩, 刘丛强, 唐红峰, 2003.辽东五龙地区燕山期侵入岩类同源岩浆演化微量元素、同位素证据与金矿成矿.地质论评, 49(3):265-271. http://www.cnki.com.cn/Article/CJFDTotal-DZLP200303007.htm 魏俊浩, 刘丛强, 赵永鑫, 等, 2001.辽宁五龙金矿主成矿阶段成矿持续时限.地质论评, 47(4):433-437. 肖昌浩, 刘向冲, 赵岩, 等, 2020.辽东五龙金矿床构造控矿特征和辉钼矿Re-Os年龄, 地球科学, 45(11):3982-3997. doi: 10.3799/dqkx.2020.217 肖世椰, 朱光, 张帅, 等, 2018.辽东五龙金矿区成矿期构造过程与岩脉就位机制.科学通报, 63(28):3022-3036. http://www.cqvip.com/QK/94252X/201828/676541281.html 杨春福, 1997.辽宁五龙金矿容矿断裂构造与金矿体空间赋存特征.黄金, 18(3):3-8. http://www.cqvip.com/Main/Detail.aspx?id=2452073 杨凤超, 宋运红, 杨佳林, 等, 2018.辽东五龙-四道沟金矿集区花岗杂岩SHRIMP U-Pb年龄、地球化学特征及地质意义.大地构造与成矿学, 42(5):940-954. http://d.old.wanfangdata.com.cn/Periodical_ddgzyckx201805013.aspx 杨凤超, 杨佳林, 顾玉超, 等, 2019.辽东五龙金矿围岩片麻状花岗岩的侵位和变形时代:SHRIMP U-Pb年代学制约.地质力学学报, 25(S1):44-48. http://www.cqvip.com/QK/98414X/2019A01/68907688504849578349484856.html 杨进辉, 吴福元, 罗清华, 等, 2004.辽宁丹东地区侏罗纪花岗岩的变形时代:40Ar/39Ar年代学制约.岩石学报, 20(5):1205-1214. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200412002043.htm 杨瑞琰, 马东升, 潘家永, 2005.大气降水量对成矿流体热场的影响:以锡矿山锑矿床成矿流体为例.地球科学, 30(3):366-370. http://www.earth-science.net/article/id/1419 杨帅师, 王可勇, 郝通顺, 等, 2010.辽宁丹东四道沟金矿床流体包裹体特征及矿床成因.吉林大学学报(地球科学版), 40(4):773-780. 於崇文, 岑况, 鲍征宇, 等, 1998.成矿作用动力学.北京:地质出版社, 224. 曾庆栋, 陈仁义, 杨进辉, 等, 2019.辽东地区金矿床类型、成矿特征及找矿潜力.岩石学报, 35(7):1939-1963. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201907001.htm 张德会, 金旭东, 毛世德, 等, 2011.成矿热液分类兼论岩浆热液的成矿效率.地学前缘, 18(5):90-102. 张德会, 於崇文, 鲍征宇, 等, 1998.银山多金属矿床成矿分带的流体动力学计算模拟.地球科学, 23(3):267-271. http://www.earth-science.net/article/id/648 张旗, 金惟俊, 李承东, 等, 2014.岩浆热场:它的基本特征及其与地热场的区别.岩石学报, 30(2):341-349. http://d.wanfangdata.com.cn/Periodical/ysxb98201402003 张旗, 金维浚, 王金荣, 等, 2016.岩浆热场对油气成藏的影响.地球物理学进展, 31(4):1525-1541. 朱日祥, 范宏瑞, 李建威, 等, 2015.克拉通破坏型金矿床.中国科学(D辑:地球科学), 45(8):1153-1168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201508006