• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海大陆边缘动力学:从陆缘破裂到海底扩张

    丁巍伟

    丁巍伟, 2021. 南海大陆边缘动力学:从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303
    引用本文: 丁巍伟, 2021. 南海大陆边缘动力学:从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303
    Ding Weiwei, 2021. Continental Margin Dynamics of South China Sea: From Continental Break-Up to Seafloor Spreading. Earth Science, 46(3): 790-800. doi: 10.3799/dqkx.2020.303
    Citation: Ding Weiwei, 2021. Continental Margin Dynamics of South China Sea: From Continental Break-Up to Seafloor Spreading. Earth Science, 46(3): 790-800. doi: 10.3799/dqkx.2020.303

    南海大陆边缘动力学:从陆缘破裂到海底扩张

    doi: 10.3799/dqkx.2020.303
    基金项目: 

    全球变化与海气相互作用专项 GASI-02-SHB-15

    全球变化与海气相互作用专项 GASI-GEOGE-01

    国家自然科学基金项目 42025601

    国家自然科学基金项目 91858214

    国家自然科学基金项目 41890811

    详细信息
      作者简介:

      丁巍伟(1977-), 男, 研究员, 博士生导师, 研究方向为大陆边缘动力学.ORCID: 0000-0002-9944-2356.E-mail: wwding@sio.org.cn

    • 中图分类号: P736

    Continental Margin Dynamics of South China Sea: From Continental Break-Up to Seafloor Spreading

    • 摘要: 边缘海如何形成是地球科学的基本问题.本研究通过对南海区域深反射地震数据及钻井数据的综合解释,聚焦地壳深部结构和三维全变形机制,在南海陆缘张裂-海盆扩张的构造动力学研究中取得重要进展:(1)“大陆破裂非均一”:拉张过程垂向上分层非均一,受拆离断层系统控制;裂离过程横向上高度变化,中-东侧受岩浆作用主导,西侧受构造作用主导.(2)“海盆扩张非对称”:受周期性地幔对流活动主导,扩张表现为两次洋脊南向跃迁,方向也发生多次转变,导致南海扩张的不连续-非对称性.据此提出西太俯冲背景下周缘受限型海盆高度变化-非均衡扩张模式的新认识,丰富大陆边缘动力学理论.

       

    • 图  1  南海南部陆缘的拆离断层构造(a), 陆缘地壳拉张因子计算结果(b), 经典均一伸展模型和分层差异伸展模型示意(c)

      图b显示全地壳伸展因子与上地壳伸展因子之间存在巨大差异;图c中亮黄部分为上地壳, 暗黄部分为下地壳

      Fig.  1.  Geological interpretation shows the detachment structures within the southern continental margin of South China Sea (a); calculation results of the continental stretching factors (b); cartoons show the uniform stretching model and ununiform depth-dependent stretching model (c)

      图  2  过南海北部陆缘洋陆过渡带区原始地震剖面(a)及地质解释(b)

      Fig.  2.  Original seismic profile (a) crossing the transitional zone of the northern continental margin of the South China Sea and its geological interpretation (b)

      图  3  南海北部陆缘东侧大陆破裂‒初始海底扩张过程示意

      Fig.  3.  Sketch map shows the process from continental breakup to initial seafloor spreading in the eastern part of the northern continental margin, South China Sea

      图  4  南海洋壳内部显示的对倾LCR构造(左)及洋中脊两次向南跃迁示意(右)

      Fig.  4.  LCR structure within the oceanic crust (left) and two-episodic southward ridge jumps during the seafloor spreading (right), South China Sea

      图  5  南海南部苏拉威西海海底地震仪(OBS)(红五角星)及婆罗洲东北部陆地地震台站(红、蓝三角)布设图

      Fig.  5.  Distribution of OBS array deployed in the Celebes Sea (red star), and land seismic stations in northeastern part of Borneo (red & blue triangle)

    • [1] Barckhausen, U., Ranero, C. R., Cande, S. C., et al., 2008. Birth of an Intraoceanic Spreading Center. Geology, 36(10): 767-770. https://doi.org/10.1130/G25056A.1
      [2] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280
      [3] Brune, S., Heine, C., Clift, P. D., et al., 2017. Rifted Margin Architecture and Crustal Rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine and Petroleum Geology, 79: 257-281. https://doi.org/10.1016/j.marpetgeo.2016.10.018
      [4] Clift, P., Lin, J., 2001. Preferential Mantle Lithospheric Extension under the South China Margin. Marine and Petroleum Geology, 18(8): 929-945. https://doi.org/10.1016/S0264-8172(01)00037-X
      [5] Crosby, A. G., White, N. J., Edwards, G. R. H., et al., 2011. Evolution of Deep-Water Rifted Margins: Testing Depth-Dependent Extensional Models. Tectonics, 30(1): TC1004. https://doi.org/10.1029/2010tc002687
      [6] Davis, M., Kusznir, N. J., 2003. Depth-Dependent Lithopheric Stretching at Rifted Continental Margin. In: Karner, G. D., ed., Proceedings of NSF Rifted Margins. Columbia University Press, New York, 92-136.
      [7] Ding, W. W., Chen, Y. F., Sun, Z., et al., 2017. Chemical Compositions and Precipitation Timing of Basement Calcium Carbonate Veins from the South China Sea. Marine Geology, 392: 170-178. https://doi.org/10.1016/j.margeo.2017.08.021
      [8] Ding, W. W., Franke, D., Li, J. B., et al., 2013. Seismic Stratigraphy and Tectonic Structure from a Composite Multi-Channel Seismic Profile across the Entire Dangerous Grounds, South China Sea. Tectonophysics, 582: 162-176. https://doi.org/10.1016/j.tecto.2012.09.026
      [9] Ding, W. W., Li, J. B., 2011a. Seismic Stratigraphy, Tectonic Structure and Extension Factors across the Southern Margin of the South China Sea: Evidence from Two Regional Multi-Channel Seismic Profiles. Chinese Journal of Geophysics, 54(12): 3038-3056 (in Chinese with English abstract).
      [10] Ding, W. W., Li, J. B., Clift, P. D., 2016a. Spreading Dynamics and Sedimentary Process of the Southwest Sub-Basin, South China Sea: Constraints from Multi-Channel Seismic Data and IODP Expedition 349. Journal of Asian Earth Sciences, 115: 97-113. https://doi.org/10.1016/j.jseaes.2015.09.013
      [11] Ding, W. W., Li, J. B., 2016b. Conjugate Margin Pattern of the Southwest Sub-Basin, South China Sea: Insights from Deformation Structures in the Continent-Ocean Transition Zone. Geological Journal, 51(S1): 524-534. https://doi.org/10.1002/gj.2733
      [12] Ding, W. W., Li, J. B., 2016c. Propagated Rifting in the Southwest Sub-Basin, South China Sea: Insights from Analogue Modelling. Journal of Geodynamics, 100: 71-86. https://doi.org/10.1016/j.jog.2016.02.004
      [13] Ding, W. W., Li, J. B., Li, M. B., 2011b. Seismic Stratigraphy, Tectonic Structure and Extension Model across the Reed Bank Basin in the South Margin of South China Sea: Evidence from NH973-2 Multichannel Seismic Profile. Earth Science, 36(5): 895-904 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201105018.htm
      [14] Ding, W. W., Schnabel, M., Franke, D., et al., 2012. Crustal Structure across the Northwestern Margin of South China Sea: Evidence for Magma-Poor Rifting from a Wide-Angle Seismic Profile. Acta Geologica Sinica (English Edition), 86(4): 854-866. https://doi.org/10.1111/j.1755-6724.2012.00711.x
      [15] Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic Accretionary Processes. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011
      [16] Ding, W. W., Sun, Z., Mohn, G., et al., 2020. Lateral Evolution of the Rift-to-Drift Transition in the South China Sea: Evidence from Multi-Channel Seismic Data and IODP Expeditions 367 & 368 Drilling Results. Earth and Planetary Science Letters, 531: 115932. https://doi.org/10.1016/j.epsl.2019.115932
      [17] Franke, D., Ladage, S., Schnabel, M., et al., 2010. Birth of a Volcanic Margin off Argentina, South Atlantic. Geochemistry, Geophysics, Geosystems, 11(2): Q0AB04. https://doi.org/10.1029/2009GC002715
      [18] Franke, D., Savva, D., Pubellier, M., et al., 2014. The Final Rifting Evolution in the South China Sea. Marine and Petroleum Geology, 58(B): 704-720. https://doi.org/10.1016/j.marpetgeo.2013.11.020
      [19] Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/S1367-9120(01)00069-4
      [20] Kodaira, S., Gou, F. J., Yamashita, M., et al., 2014. SeismologicalEvidence of Mantle Flow Driving Plate Motions at a Palaeo-Spreading Centre. NatureGeoscience, 7(5): 371-375. https://doi.org/10.1038/ngeo2121
      [21] Larsen, H. C., Mohn, G. M., Nirrengarten, M., et al., 2018. Rapid Transition from Continental Break-Up to Igneous Oceanic Crust in the South China Sea. Nature Geoscience, 11(10): 782-789. https://doi.org/10.1038/s41561-018-0198-1
      [22] Li, C. F., Lin, J., Kulhanek, D. K., 2015. The Expedition 349 Scientists. In: Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics. International Ocean Discovery Program, College Station.
      [23] Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014GC005567
      [24] Li, F. C., Sun, Z., Yang, H. F., et al., 2020. Continental Interior and Edge Breakup at Convergent Margins Induced by SubductionDirection Reversal: A Numerical Modeling Study Applied to the South China Sea Margin. Tectonics, 39(11): e2020TC006409. https://doi.org/10.1029/2020TC006409
      [25] Li, J. B., Jin, X. L., Gao, J. Y., 2002. Morpho-Tectonic Study on Late-Stage Spreading of the Eastern Subbasin of South China Sea. Science in China (Series D), 32(3): 239-248 (in Chinese). doi: 10.1007%2FBF02911236
      [26] Liang, Y., Delescluse, M., Qiu, Y., et al., 2019. Decollements, Detachments, and Rafts in the Extended Crust of Dangerous Ground, South China Sea: The Role of Inherited Contacts. Tectonics, 38(6): 1863-1883, https://doi-org.libezproxy.um.edu.mo/10.1029/2018TC005418 doi: 10.1029/2018TC005418
      [27] Manatschal, G., Müntener, O., 2009. A Type Sequence across an Ancient Magma-Poor Ocean-Continent Transition: The Example of the Western Alpine Tethys Ophiolites. Tectonophysics, 473(1-2): 4-19. https://doi.org/10.1016/j.tecto.2008.07.021
      [28] McKenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821X(78)90071-7
      [29] Morley, C. K., 2016. Major Unconformities/Termination of Extension Events and Associated Surfaces in the South China Seas: Review and Implications for Tectonic Development. Journal of Asian Earth Sciences, 120: 62-86. https://doi.org/10.1016/j.jseaes.2016.01.013
      [30] Nissen, S. S., Hayes, D. E., Buhl, P., et al., 1995. Deep Penetration Seismic Soundings across the Northern Margin of the South China Sea. Journal of Geophysical Research: Solid Earth, 100(B11): 22407-22433. https://doi.org/10.1029/95JB01866
      [31] Ranero, C. R., Reston, T. J., Belykh, I., et al., 1997. Reflective Oceanic Crust Formed at a Fast-Spreading Center in the Pacific. Geology, 25(6): 499-502. https://doi.org/10.1130/0091-7613(1997)0250499:rocfaa>2.3.co;2 doi: 10.1130/0091-7613(1997)0250499:rocfaa>2.3.co;2
      [32] Sibuet, J. C., Yeh, Y. C., Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98-119. https://doi.org/10.1016/j.tecto.2016.02.022
      [33] Sun, W. D., 2016. Initiation and Evolution of the South China Sea: An Overview. Acta Geochimica, 35(3): 215-225. https://doi.org/10.1007/s11631-016-0110-x
      [34] Sun, W. D., Lin, Q. T., Zhang, L. P., et al., 2018. The Formation of the South China Sea Resulted from the Closure of the Neo-Tethys: A Perspective from Regional Geology. Acta Petrologica Sinica, 34(12): 3467-3478 (in Chinese with English abstract).
      [35] Sun, Z., Ding, W. W., Zhao, X. X., et al., 2019. The Latest Spreading Periods of the South China Sea: New Constraints from Macrostructure Analysis of IODP Expedition 349 Cores and Geophysical Data. Journal of Geophysical Research: Solid Earth, 124(10): 9980-9998. https://doi.org/10.1029/2019jb017584
      [36] Sun, Z., Jian, Z., Stock, J.M., et al., 2018. The Expedition 367/368 Scientists. In: Proceedings of the International Ocean Discovery Program, Vol. 367/368, South China Sea Rifted Margin. International Ocean Discovery Program, College Station.
      [37] Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      [38] Sun, Z., Sun, L.T., Zhou, D., et al., 2009. Discussion on the South China Sea Evolution and Lithospheric Breakup through 3D Analogue Modeling. Earth Science, 34(3): 435-447 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200903008.htm
      [39] Symonds, P. A., Planke, S., Frey, O., et al., 1998. Volcanic Evolution of the Western Australian Continental Margin and Its Implications for Basin Development, In: Purcell, R. R., ed., The Sedimentary Basins of Western Australia: Proceedings of the PESA Symposium. Perth.
      [40] Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the Mechanism of Collision between India and Asia. In: Coward, M. P., Ries, A. C., eds., Collision Tectonics. Geological Society London, Special Publications, 19(1): 113-157. https: //doi.org/10.1144/GSL.SP.1986.019.01.07
      [41] Wang, P. X., 2012. Tracing the Life History of a Marginal Sea-On "The South China Sea Deep" Research Program. Chinese Science Bulletin, 57(20): 1807-1826 (in Chinese). doi: 10.1360/csb2012-57-20-1807
      [42] Wang, P. X., Huang, C. Y., Lin, J., et al., 2019. The South China Sea is not a Mini-Atlantic: Plate-Edge Rifting vs Intra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135
      [43] Wang, T. K., Chen, M. K., Lee, C. S., et al., 2006. Seismic Imaging of the Transitional Crust across the Northeastern Margin of the South China Sea. Tectonophysics, 412(3-4): 237-254. https://doi.org/10.1016/j.tecto.2005.10.039
      [44] Wernicke, B., 1981. Low-Angle Normal Faults in the Basin and Range Province: Nappe Tectonics in an Extending Orogen. Nature, 291(5817): 645-648. https://doi.org/10.1038/291645a0
      [45] White, R. S., Detrick, R. S., Mutter, J. C., et al., 1990. New Seismic Images of Oceanic Crustal Structure. Geology, 18(5): 462. https://doi.org/10.1130/0091-7613(1990)0180462:nsiooc>2.3.co;2 doi: 10.1130/0091-7613(1990)0180462:nsiooc>2.3.co;2
      [46] Whitmarsh, R. B., Manatschal, G., Minshull, T. A., 2001. Evolution of Magma-Poor Continental Margins from Rifting to Seafloor Spreading. Nature, 413(6852): 150-154. https://doi.org/10.1038/35093085
      [47] Xia, S. H., Zhao, D. P., Sun, J. L., et al., 2016. Teleseismic Imaging of the Mantle Beneath Southernmost China: New Insights into the Hainan Plume. Gondwana Research, 36: 46-56. https://doi.org/10.1016/j.gr.2016.05.003
      [48] Xu, Y. G., Wei, J. X., Qiu, H. N., et al., 2012. Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks: Preliminary Results and a Research Design. Chinese Science Bulletin, 57(20): 1863-1878 (in Chinese). doi: 10.1360/csb2012-57-20-1863
      [49] Yao, B. C., Wan, L., 2010. Variation of the Lithospheric Thickness in the South China Sea Area and Its Tectonic Significance. Chinese Geology, 37(4): 888-899 (in Chinese with English abstract). http://www.researchgate.net/publication/287686204_Variation_of_the_lithospheric_thickness_in_the_South_China_Sea_area_and_its_tectonic_significance
      [50] Yao, B. C., Zeng, W. J., 1994. Special Report on China-USA Cooperation of Geology Investigation in the South China Sea. China University of Geosciences Press, Wuhan (in Chinese).
      [51] Yu, M. M., Yan, Y., Huang, C. Y., et al., 2018. Opening of the South China Sea and Upwelling of the Hainan Plume. Geophysical Research Letters, 45(6): 2600-2609. https://doi.org/10.1002/2017GL076872
      [52] Zhang, F., Lin, J., Zhang, X. B., et al., 2020. Asymmetry in Oceanic Crustal Structure of the South China Sea Basin and Its Implications on Mantle Geodynamics. International Geology Review, 62(7-8): 840-858. https://doi.org/10.1080/00206814.2018.1425922
      [53] Zhang, P. Z., Deng, Q. D., Zhang, G. M., et al., 2003. Active Tectonic Blocks and Strong Earthquakes in the Continent of China. Science in China (Series D), 33(Z1): 12-20 (in Chinese). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020414997685.html
      [54] Zhang, Y. Z., Qi, J. F., Wu, J. F., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2): 603-625 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX201902023.htm
      [55] Zhao, M. H., Qiu, X. L., Xia, S. H., et al., 2010. Seismic Structure in the Northeastern South China Sea: S-Wave Velocity and Vp/Vs Ratios Derived from Three-Component OBS Data. Tectonophysics, 480(1-4): 183-197. https://doi.org/10.1016/j.tecto.2009.10.004
      [56] Zhao, Y. H., Ding, W. W., Yin, S. R., et al., 2020. Asymmetric Post-Spreading Magmatism in the South China Sea: Based on the Quantification of the Volume and Its Spatiotemporal Distribution of the Seamounts. International Geology Review, 62(7-8): 955-969. https://doi.org/10.1080/00206814.2019.1577189
      [57] Zhao, Y. H., Ren, J. Y., Pang, X., et al., 2018. Structural Style, Formation of Low Angle Normal Fault and Its Controls on the Evolution of Baiyun Rift, Northern Margin of the South China Sea. Marine and Petroleum Geology, 89(3): 687-700. https://doi.org/10.1016/j.marpetgeo.2017.11.001
      [58] Zheng, Y. F., Chen, Y. X., Dai, L. Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Science in China (Series D), 45(6): 711-735 (in Chinese). doi: 10.1007/s11430-015-5097-3
      [59] 丁巍伟, 李家彪, 2011a. 南海南部陆缘构造变形特征及伸展作用: 来自两条973多道地震测线的证据. 地球物理学报, 54(12): 3038-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201112008.htm
      [60] 丁巍伟, 李家彪, 黎明碧, 2011b. 南海南部陆缘礼乐盆地新生代的构造-沉积特征及伸展机制: 来自NH973-2多道地震测线的证据. 地球科学, 36(5): 895-904. doi: 10.3799/dqkx.2011.094
      [61] 李家彪, 金翔龙, 高金耀, 2002. 南海东部海盆晚期扩张的构造地貌研究. 中国科学(D辑), 32(3): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200203008.htm
      [62] 孙卫东, 林秋婷, 张丽鹏, 等, 2018. 跳出南海看南海-新特提斯洋闭合与南海形成演化. 岩石学报, 34(12): 3467-3478. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812001.htm
      [63] 孙珍, 孙龙涛, 周蒂, 等, 2009. 南海岩石圈破裂方式与扩张过程的三维物理模拟. 地球科学, 34(3): 435-447. doi: 10.3321/j.issn:1000-2383.2009.03.008
      [64] 汪品先, 2012. 追踪边缘海的生命史: "南海深部计划"的科学目标. 科学通报, 57(20): 1807-1826. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220002.htm
      [65] 徐义刚, 魏静娴, 邱华宁, 等, 2012. 用火山岩制约南海的形成演化: 初步认识与研究设想. 科学通报, 57(20): 1863-1878. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220006.htm
      [66] 姚伯初, 万玲, 2010. 南海岩石圈厚度变化特征及其构造意义. 中国地质, 37(4): 888-899. doi: 10.3969/j.issn.1000-3657.2010.04.006
      [67] 姚伯初, 曾维军, 1994. 中美合作调研南海地质专报. 武汉: 中国地质大学出版社.
      [68] 张培震, 邓起东, 张国民, 等, 2003. 中国大陆的强震活动与活动地块. 中国科学(D辑), 33(Z1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm
      [69] 张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625. doi: 10.3799/dqkx.2018.542
      [70] 郑永飞, 陈伊翔, 戴立群, 赵子福, 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带. 中国科学(D辑), 45(6): 711-735. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201506001.htm
    • 加载中
    图(5)
    计量
    • 文章访问数:  741
    • HTML全文浏览量:  284
    • PDF下载量:  164
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-03
    • 刊出日期:  2021-03-01

    目录

      /

      返回文章
      返回