• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海北部天然气水合物富集特征及定量评价

    王秀娟 靳佳澎 郭依群 李杰 李元平 钱进 王彬 周吉林

    王秀娟, 靳佳澎, 郭依群, 李杰, 李元平, 钱进, 王彬, 周吉林, 2021. 南海北部天然气水合物富集特征及定量评价. 地球科学, 46(3): 1038-1057. doi: 10.3799/dqkx.2020.321
    引用本文: 王秀娟, 靳佳澎, 郭依群, 李杰, 李元平, 钱进, 王彬, 周吉林, 2021. 南海北部天然气水合物富集特征及定量评价. 地球科学, 46(3): 1038-1057. doi: 10.3799/dqkx.2020.321
    Wang Xiujuan, Jin Jiapeng, Guo Yiqun, Li Jie, Li Yuanping, Qian Jin, Wang Bin, Zhou Jilin, 2021. The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038-1057. doi: 10.3799/dqkx.2020.321
    Citation: Wang Xiujuan, Jin Jiapeng, Guo Yiqun, Li Jie, Li Yuanping, Qian Jin, Wang Bin, Zhou Jilin, 2021. The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038-1057. doi: 10.3799/dqkx.2020.321

    南海北部天然气水合物富集特征及定量评价

    doi: 10.3799/dqkx.2020.321
    基金项目: 

    国家自然科学基金项目 41676041

    中国石油天然气股份有限公司科技开发项目 2019B-4909

    国家重点研发计划项目 2017YFC0307601

    神狐海域天然气水合物先导试验区资源评价项目 DD20190224

    详细信息
      作者简介:

      王秀娟(1976-), 女, 研究员, 主要从事天然气水合物的地质-地球物理识别研究. ORCID: 0000-0003-1144-8698. E-mail: wangxiujuan@qdio.ac.cn

      通讯作者:

      郭依群, E-mail: guo1180@163.com

    • 中图分类号: P618

    The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea

    • 摘要: 为寻找有资源前景的高富集天然气水合物及水合物储层的精细刻画方法,利用南海6次钻探发现的高饱和度水合物层的测井、岩心和三维地震数据,分析水合物富集层测井与地震异常特征.发现:(1)不同饱和度的孔隙与裂隙充填型水合物层的测井和地震异常不同,裂隙充填型水合物层具有各向异性;(2)受高通量流体运移的影响,在粉砂沉积物的水合物稳定带底界附近能形成中等饱和度的水合物层,识别标志为稳定带内极性与海底一致的强振幅反射,而非BSR和振幅空白;(3)裂隙充填型中等饱和度水合物层在地震剖面上表现为地层上拱和弱-中等强度振幅反射.储层-疏导-气源的耦合控制着水合物的富集特征和分布,断层与流体运移控制着细粒粉砂质沉积物中水合物的富集与厚度.基于饱和度岩相的统计学反演,能识别3 m非水合物和低饱和度水合物层及空间分布.

       

    • 图  1  南海北部典型盆地水合物钻探及BSR分布(a);琼东南盆地井位与地形(b);珠江口盆地井位与地形(c);台西南盆地井位与地形(d)

      图据Liu et al.(2006)Lu et al.(2017)Sun et al.(2019)Zhang et al.(2019)

      Fig.  1.  The distributions of BSRs in different basins and gas hydrate drilling expeditions in the northern slope of South China Sea (a), the drilled sites and topographic map in the Qiongdongnan basin (b), the Pearl River Mouth basin (c), and the Taixinan basin (d)

      图  2  不同航次典型井相对富集水合物层的测井曲线及其估算饱和度

      Fig.  2.  The well log and the estimated gas hydrate saturation data from different methods at the typical sites with concentrated gas hydrate

      图  3  GMGS3-W17井海底以下200 m测井曲线及其利用纵横波速度与电阻率联合反演的水合物与游离气饱和度

      Qian et al.(2018)

      Fig.  3.  The display of well log and the estimated gas hydrate and free gas saturations using P-wave velocity, shear wave velocity and resistivity at site GMGS3-W17 in the depth below 200 m

      图  4  过不同井的伽马测井与估算水合物饱和度对比,含水合物层沉积物中孔隙水氯离子出现高值和低值氯离子异常

      Fig.  4.  The gamma ray logs and gas hydrate saturations at different sites, and the chloride values of pore-water freshening with high and low values at gas hydrate-bearing layers

      图  5  过不同井钻探到的不同赋存形态和不同饱和度水合物层的地震振幅响应对比

      其中c中插入图形为GMGS2-08井在碳酸盐岩层与高饱和度水合物层的合成记录与地震道对比

      Fig.  5.  The comparisons seismic amplitude responses of different saturations gas hydrate with different morphologies at the typical sites

      图  6  GMGS3-W11和GMGS4-SC03井孔隙度(a)和水合物饱和度与纵波阻抗(b)交汇图

      Fig.  6.  The cross plots between density porosity (a) and gas hydrate saturation versus the acoustic impedance (b) at sites GMGS3-W11 and GMGS4-SC03

      图  7  约束稀疏脉冲反演纵波阻抗、线性关系反演的孔隙度和饱和度(a~c);利用统计学反演的不分岩相(模型A)反演纵波阻抗、孔隙度和饱和度(d~f);利用水合物饱和度岩相(模型B)统计学反演的波阻抗及基于岩相差异孔隙度和饱和度(g~i)

      Fig.  7.  The acoustic impedance profiles from the constrained sparse spike inversion, and the inverted porosity and gas hydrate saturation using linear fitting equations (a-c); the inverted acoustic impedance, porosity and gas hydrate saturation using geostatistical inversion of model A (d-f) and model B (g-i)

      图  8  GMGS3-W11和GMGS4-SC03井纵波阻抗与孔隙度不分岩相(a)和分岩相(b)与水合物饱和度的不分岩相(c)和分岩相(d)交汇图

      Fig.  8.  The crossplots between porosity, gas hydrate saturation and acoustic impedance for model A (a and c) and model B for facies 1 (black line) and facies 2 (red line) (b and d) at sites W11 and SC-03

    • [1] Berndt, C., Chi, W. C., Jegen, M., et al., 2019. Tectonic Controls on Gas Hydrate Distribution off SW Taiwan. Journal of Geophysical Research: Solid Earth, 124(2): 1164-1184. https://doi.org/10.1029/2018JB016213
      [2] Boswell, R., 2007. Resource Potential of Methane Hydrate Coming into Focus. Journal of Petroleum Science and Engineering, 56(1-3): 9-13. https://doi.org/10.1016/j.petrol.2006.09.002
      [3] Boswell, R., Shipp, C., Reichel, T., et al., 2016. Prospecting for Marine Gas Hydrate Resources. Interpretation, 4(1): SA13-SA24. https://doi.org/10.1190/int-2015-0036.1
      [4] Chen, D. F., Yao, B. C., Zhao, Z. H., et al., 2001. Geochemical Constraints and Potential Distributions of Gas Hydrates in Pearl River Mouth Basin and Qiongdongnan Basin in the Northern Margin of the South China Sea. Marine Geology & Quaternary Geology, 21(4): 73-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200104016.htm
      [5] Chen, F., Su, X., Lu, H. F., et al., 2013. Relations between Biogenic Component (Foraminifera) and Highly Saturated Gas Hydrates Distribution from Shenhu Area, Northern South China Sea. Earth Science, 38(5): 907-915 (in Chinese with English abstract). http://www.researchgate.net/publication/287239942_Relations_between_biogenic_component_foraminifera_and_highly_saturated_gas_hydrates_distribution_from_Shenhu_area_Northern_South_China_Sea
      [6] Chen, F., Zhuang, C., Zhou, Y., et al., 2016. Calcareous Nannofossils and Foraminifera Biostratigraphy on the Northeastern Slope of the South China Sea and Variation in Sedimentation Rates. Earth Science, 41(3): 416-424 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201603007.htm
      [7] Chen, J. X., Song, H. B., Guan, Y. X., et al., 2018. Geological and Oceanographic Controls on Seabed Fluid Escape Structures in the Northern Zhongjiannan Basin, South China Sea. Journal of Asian Earth Sciences, 168: 38-47. https://doi.org/10.1016/j.jseaes.2018.04.027
      [8] Collett, T. S., Boswell, R., Waite, W. F., et al., 2019. India National Gas Hydrate Program Expedition 02 Summary of Scientific Results: Gas Hydrate Systems along the Eastern Continental Margin of India. Marine and Petroleum Geology, 108: 39-142. https://doi.org/10.1016/j.marpetgeo.2019.05.023
      [9] Collett, T.S., Knapp, C.C., Johnson, A.H., et al., 2009. Natural Gas Hydrate: A review. American Association of Petroleum Geologists Memoir, 89: 146-219. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BPS3-0007-0049
      [10] Dvorkin, J., Prasad, M., Sakai, A., et al., 1999. Elasticity of Marine Sediments: Rock Physics Modeling. Geophysical Research Letters, 26(12): 1781-1784. https://doi.org/10.1029/1999gl900332
      [11] Ecker, C., Dvorkin, J., Nur, A. M., 2000. Estimating the Amount of Gas Hydrate and Free Gas from Marine Seismic Data. Geophysics, 65(2): 565-573. https://doi.org/10.1190/1.1444752
      [12] Feng, D., Chen, D. F., 2015. Authigenic Carbonates from an Active Cold Seep of the Northern South China Sea: New Insights into Fluid Sources and Past Seepage Activity. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 122: 74-83. https://doi.org/10.1016/j.dsr2.2015.02.003
      [13] Helgerud, M. B., Dvorkin, J., Nur, A., et al., 1999. Elastic-Wave Velocity in Marine Sediments with Gas Hydrates: Effective Medium Modeling. Geophysical Research Letters, 26(13): 2021-2024. https://doi.org/10.1029/1999gl900421
      [14] Huang, Y. X., Zhang, G. X., 2009. The Geophysical Features and Prospect of Natural Gas Hydrate in China Sea. Geological Publishing House, Beijing (in Chinese).
      [15] Ito, T., Komatsu, Y., Fujii, T., et al., 2015. Lithological Features of Hydrate-Bearing Sediments and Their Relationship with Gas Hydrate Saturation in the Eastern Nankai Trough, Japan. Marine and Petroleum Geology, 66: 368-378. https://doi.org/10.1016/j.marpetgeo.2015.02.022
      [16] Jaiswal, P., Dewangan, P., Ramprasad, T., et al., 2012. Seismic Characterization of Hydrates in Faulted, Fine-grained Sediments of Krishna-Godavari Basin: Full Waveform Inversion. Journal of Geophysical Research: Solid Earth, 117(B10): B10305. https://doi.org/10.1029/2012jb009201
      [17] Jin, J. P., Wang, X. J., Guo, Y. Q., et al., 2020. Geological Controls on the Occurrence of Recently Formed Highly Concentrated Gas Hydrate Accumulations in the Shenhu Area, South China Sea. Marine and Petroleum Geology, 116: 104294. https://doi.org/10.1016/j.marpetgeo.2020.104294
      [18] Jin, J. P., Wang, X. J., He, M., et al., 2020. Downward Shift of Gas Hydrate Stability Zone due to Seafloor Erosion in the Eastern Dongsha Island, South China Sea. Journal of Oceanology and Limnology, 38(4): 1188-1200. https://doi.org/10.1007/s00343-020-0064-z
      [19] Kang, D. J., Liang, J. Q., Kuang, Z. G., et al., 2018. Application of Elemental Capture Spectroscopy Logging in Hydrate Reservoir Evaluation in the Shenhu Sea Area. Natural Gas Industry, 38(12): 54-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG201812007.htm
      [20] Kang, D. J., Lu, J. A., Zhang, Z. J., et al., 2020. Fine-Grained Gas Hydrate Reservoir Properties Estimated from Well Logs and Lab Measurements at the Shenhu Gas Hydrate Production Test Site, the Northern Slope of the South China Sea. Marine and Petroleum Geology, 122: 104676. https://doi.org/10.1016/j.marpetgeo.2020.104676
      [21] Klapp, S. A., Bohrmann, G., Kuhs, W. F., et al., 2010. Microstructures of Structure Ⅰ and Ⅱ Gas Hydrates from the Gulf of Mexico. Marine and Petroleum Geology, 27(1): 116-125. https://doi.org/10.1016/j.marpetgeo.2009.03.004
      [22] Kuang, Z. G., Fang, Y. X., Liang, J. Q., et al., 2018. Geomorphological-Geological-Geophysical Signatures of High-Flux Fluid Flows in the Eastern Pearl River Mouth Basin and Effects on Gas Hydrate Accumulation. Science in China (Series D), 48(8): 1033-1044 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201807006.htm
      [23] Kuang, Z. G., Guo, Y. Q., 2011. The Sedimentary Facies and Gas Hydrate Accumulation Models since Neogene of Shenhu Sea Area, Northern South China Sea. Earth Science, 36(5): 914-920 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx201105017
      [24] Kvenvolden, K. A., 1995. A Review of the Geochemistry of Methane in Natural Gas Hydrate. Organic Geochemistry, 23(11-12): 997-1008. https://doi.org/10.1016/0146-6380(96)00002-2
      [25] Lee, M. W., Collett, T. S., 2009. Gas Hydrate Saturations Estimated from Fractured Reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India. Journal of Geophysical Research: Solid Earth, 114(B7): B07102. https://doi.org/10.1029/2008jb006237
      [26] Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567
      [27] Li, J. F., Ye, J. L., Qin, X. W., et al., 2018. The First Offshore Natural Gas Hydrate Production Test in South China Sea. China Geology, 1(1): 5-16. https://doi.org/10.31035/cg2018003
      [28] Li, J., He, M., Yan, C. Z., et al., 2020. Seismic Anomalies of Gas Hydrate-Bearing Sediments in the Jieyang Sag, Northern Slope of South China Sea. Oceanologia et Limnologia Sinica, 51(2): 274-282 (in Chinese with English abstract).
      [29] Li, J., Lu, J. A., Kang, D. J., et al., 2019. Lithological Characteristics and Hydrocarbon Gas Sources of Gas Hydrate-Bearing Sediments in the Shenhu Area, South China Sea: Implications from the W01B and W02B Sites. Marine Geology, 408: 36-47. https://doi.org/10.1016/j.margeo.2018.10.013
      [30] Liang, J. Q., Deng, W., Lu, J. A., et al., 2020. A Fast Identification Method Based on the Typical Geophysical Differences between Submarine Shallow Carbonates and Hydrate Bearing Sediments in the Northern South China Sea. China Geology, 3(1): 16-27. https://doi.org/10.31035/cg2020021
      [31] Liang, J. Q., Zhang, W., Lu, J. A., et al., 2019. Geological Occurrence and Accumulation Mechanism of Natural Gas Hydrates in the Eastern Qiongdongnan Basin of the South China Sea: Insights from Site GMGS5-W9-2018. Marine Geology, 418: 106042. https://doi.org/10.1016/j.margeo.2019.106042
      [32] Liang, Q. Y., Hu, Y., Feng, D., et al., 2017. Authigenic Carbonates from Newly Discovered Active Cold Seeps on the Northwestern Slope of the South China Sea: Constraints on Fluid Sources, Formation Environments, and Seepage Dynamics. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 124: 31-41. https://doi.org/10.1016/j.dsr.2017.04.015
      [33] Liu, C. S., Schnurle, P., Wang, Y., et al., 2006. Distribution and Characters of Gas Hydrate Offshore of Southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17(4): 615-644. https://doi.org/10.3319/tao.2006.17.4.615(gh)
      [34] Liu, J., Zhang, J. Z., Ma, F., et al., 2017. Estimation of Seismic Velocities and Gas Hydrate Concentrations: A Case Study from the Shenhu Area, Northern South China Sea. Marine and Petroleum Geology, 88: 225-234. https://doi.org/10.1016/j.marpetgeo.2017.08.014
      [35] Liu, X. W., Li, M. F., Zhang, Y. W., et al., 2005. Studies of Seismic Characteristics about Gas Hydrate: A Case Study of Line HD152 in the South China Sea. Geoscience, 19(1): 33-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200501004.htm
      [36] Lu, Y. T., Luan, X. W., Lü, F. L., et al., 2017. Seismic Evidence and Formation Mechanism of Gas Hydrates in the Zhongjiannan Basin, Western Margin of the South China Sea. Marine and Petroleum Geology, 84: 274-288. https://doi.org/10.1016/j.marpetgeo.2017.04.005
      [37] Malinverno, A., 2010. Marine Gas Hydrates in Thin Sand Layers that Soak up Microbial Methane. Earth and Planetary Science Letters, 292(3-4): 399-408. https://doi.org/10.1016/j.epsl.2010.02.008
      [38] Moridis, G. J., Reagan, M. T., Boyle, K. L., et al., 2011. Evaluation of the Gas Production Potential of Some Particularly Challenging Types of Oceanic Hydrate Deposits. Transport in Porous Media, 90(1): 269-299. https://doi.org/10.1007/s11242-011-9762-5
      [39] Ning, F. L., Liang, J. Q., Wu, N. Y., et al., 2020. Reservoir Characteristics of Natural Gas Hydrates in China. Natural Gas Industry, 40(8): 1-25 (in Chinese with English abstract).
      [40] Ojha, M., Sain, K., 2007. Seismic Velocities and Quantification of Gas-Hydrates from AVA Modeling in the Western Continental Margin of India. Marine Geophysical Researches, 28(2): 101-107. https://doi.org/10.1007/s11001-007-9017-6
      [41] Paganoni, M., Cartwright, J. A., Foschi, M., et al., 2016. Structure Ⅱ Gas Hydrates Found below the Bottom-Simulating Reflector. Geophysical Research Letters, 43(11): 5696-5706. https://doi.org/10.1002/2016gl069452
      [42] Paull, C. K., Matusmoto, R., Wallace, P. J., et al., 1996. Proceedings of the Ocean Drilling Program, 164 Initial Reports. Ocean Drilling Program, College Station.
      [43] Qian, J., Wang, X. J., Collett, T. S., et al., 2017. Gas Hydrate Accumulation and Saturations Estimated from Effective Medium Theory in the Eastern Pearl River Mouth Basin, South China Sea. Interpretation, 5(3): SM33-SM48. https://doi.org/10.1190/int-2016-0217.1
      [44] Qian, J., Wang, X. J., Collett, T. S., et al., 2018. Downhole Log Evidence for the Coexistence of Structure Ⅱ Gas Hydrate and Free Gas below the Bottom Simulating Reflector in the South China Sea. Marine and Petroleum Geology, 98: 662-674. https://doi.org/10.1016/j.marpetgeo.2018.09.024
      [45] Qian, J., Wang, X. J., Dong, D. D., et al., 2016. Quantitative Assessment of Free Gas Beneath Gas Hydrate Stability Zone from Prestack Seismic Data and Rock Physics: A Case of Hole NGHP01-10A, Krishna-Godavari Basin, India. Chinese Journal of Geophysics, 59(7): 2553-2563 (in Chinese with English abstract).
      [46] Qian, J., Wang, X. J., Wu, S. G., et al., 2014. AVO Analysis of BSR to Assess Free Gas within Fine-Grained Sediments in the Shenhu Area, South China Sea. Marine Geophysical Research, 35(2): 125-140. https://doi.org/10.1007/s11001-014-9214-z
      [47] Qin, X. W., Lu, J. A., Lu, H. L., et al., 2020. Coexistence of Natural Gas Hydrate, Free Gas and Water in the Gas Hydrate System in the Shenhu Area, South China Sea. China Geology, 3(2): 1-11. https://doi.org/10.31035/cg2020038
      [48] Riedel, M., Bellefleur, G., Mair, S., et al., 2009. Acoustic Impedance Inversion and Seismic Reflection Continuity Analysis for Delineating Gas Hydrate Resources near the Mallik Research Sites, Mackenzie Delta, Northwest Territories, Canada. Geophysics, 74(5): B125-B137. https://doi.org/10.1190/1.3159612
      [49] Rossi, G., Gei, D., Böhm, G., et al., 2007. Attenuation Tomography: An Application to Gas-Hydrate and Free-Gas Detection. Geophysical Prospecting, 55(5): 655-669. https://doi.org/10.1111/j.1365-2478.2007.00646.x
      [50] Sha, Z. B., Guo, Y. Q., Yang, M. Z., et al., 2009. Relation between Sedimentation and Gas Hydrate Reservoirs in the Northern Slope of South China Sea. Marine Geology & Quaternary Geology, 29(5): 89-98 (in Chinese with English abstract). http://www.cqvip.com/QK/96122X/20095/32320819.html
      [51] Sha, Z. B., Liang, J. Q., Zhang, G. X., et al., 2015. A Seepage Gas Hydrate System in Northern South China Sea: Seismic and Well Log Interpretations. Marine Geology, 366: 69-78. https://doi.org/10.1016/j.margeo.2015.04.006
      [52] Shelander, D., Dai, J. C., Bunge, G., et al., 2012. Estimating Saturation of Gas Hydrates Using Conventional 3D Seismic Data, Gulf of Mexico Joint Industry Project Leg Ⅱ. Marine and Petroleum Geology, 34(1): 96-110. https://doi.org/10.1016/j.marpetgeo.2011.09.006
      [53] Shi, Y. H., Liang, Q. Y., Yang, J. P., et al., 2019. Stability Analysis of Submarine Slopes in the Area of the Test Production of Gas Hydrate in the South China Sea. China Geology, 2(3): 276-286. https://doi.org/10.31035/cg2018122
      [54] Sloan, E. D., 2017. Clathrate Hydrates of Natural Gases, CRC Press, Boca Raton.
      [55] Song, H. B., Wu, S. G., Jiang, W. W., 2007. The Characteristics of BSRS and Their Derived Heat Flow on the Profile 973 in the Northeastern South China Sea. Chinese Journal of Geophysics, 50(5): 1508-1517 (in Chinese with English abstract). doi: 10.1002/cjg2.1151/full
      [56] Su, P. B., Liang, J. Q., Zhang, W., et al., 2020. Natureal Gas Hydrate Accumulation System in the Shenhu Sea Area of the Northern South China Sea. Natural Gas Industry, 40(8): 77-89 (in Chinese with English abstract).
      [57] Subramanian, S., Kini, R. A., Dec, S. F., et al., 2000. Evidence of Structure Ⅱ Hydrate Formation from Methane+Ethane Mixtures. Chemical Engineering Science, 55(11): 1981-1999. https://doi.org/10.1016/s0009-2509(99)00389-9
      [58] Sun, L. Y., Wang, X. J., He, M., et al., 2020. Thermogenic Gas Controls High Saturation Gas Hydrate Distribution in the Pearl River Mouth Basin: Evidence from Numerical Modeling and Seismic Anomalies. Ore Geology Reviews, 127: 103846. https://doi.org/10.1016/j.oregeorev.2020.103846
      [59] Sun, Q. L., Wu, S. G., Cartwright, J., et al., 2013. Focused Fluid Flow Systems of the Zhongjiannan Basin and Guangle Uplift, South China Sea. Basin Research, 25(1): 97-111. https://doi.org/10.1111/j.1365-2117.2012.00551.x
      [60] Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      [61] Takeya, S., Kamata, Y., Uchida, T., et al., 2003. Coexistence of Structure Ⅰ and Ⅱ Hydrates Formed from a Mixture of Methane and Ethane Gases. Canadian Journal of Physics, 81(1-2): 479-484. https://doi.org/10.1139/p03-038
      [62] Torres, M. E., Wallmann, K., Trehu, A. M., et al., 2004. Gas Hydrate Growth, Methane Transport, and Chloride Enrichment at the Southern Summit of Hydrate Ridge, Cascadia Margin off Oregon. Earth and Planetary Science Letters, 226(1): 225-241. https://doi.org/10.1016/j.epsl.2004.07.029
      [63] Tréhu, A. M., Bohrmann, G., Rack, F. R., et al., 2003. Proceedings of the Ocean Drilling Program, 204 Initial Reports. Ocean Drilling Program, College Station.
      [64] Tsuji, Y., Nonaka, Y., 2004. Multi-Well Drilling Campaign METI "Tokai-Oki to Kumano-Nada" in 2004 for Methane Hydrate Evaluation in the Nankai Trough Area, off Central Japan. Proceedings, AAPG Hedberg Conference, Energy Resource Potential and Associated Geologic Hazards. Vancouver, B.C. .
      [65] Wang, J. L., Wang, X. J., Qian, J., et al., 2013. Anisotropic Analysis and Saturation Estimation of Gas Hydrate Filled in Fractures: A Case of Site NGHP01-10D, Offshore Eastern India. Chinese Journal of Geophysics, 56(4): 1312-1320 (in Chinese with English abstract).
      [66] Wang, P. X., Huang, C. Y., Lin, J., et al., 2019. The South China Sea is not a Mini-Atlantic: Plate-Edge Rifting vs Intra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135
      [67] Wang, X. C., Pan, D. Y., 2017. Application of AVO Attribute Inversion Technology to Gas Hydrate Identification in the Shenhu Area, South China Sea. Marine and Petroleum Geology, 80: 23-31. https://doi.org/10.1016/j.marpetgeo.2016.11.015
      [68] Wang, X. J., Collett, T. S., Lee, M. W., et al., 2014. Geological Controls on the Occurrence of Gas Hydrate from Core, Downhole Log, and Seismic Data in the Shenhu Area, South China Sea. Marine Geology, 357: 272-292. https://doi.org/10.1016/j.margeo.2014.09.040
      [69] Wang, X. J., Hutchinson, D. R., Wu, S. G., et al., 2011a. Elevated Gas Hydrate Saturation within Silt and Silty Clay Sediments in the Shenhu Area, South China Sea. Journal of Geophysical Research Atmospheres, 116(B5): B05102. https://doi.org/10.1029/2010jb007944
      [70] Wang, X. J., Liu, B., Jin, J. P., et al., 2020. Increasing the Accuracy of Estimated Porosity and Saturation for Gas Hydrate Reservoir by Integrating Geostatistical Inversion and Lithofacies Constraints. Marine and Petroleum Geology, 115: 104298. https://doi.org/10.1016/j.marpetgeo.2020.104298
      [71] Wang, X. J., Liu, B., Qian, J., et al., 2018. Geophysical Evidence for Gas Hydrate Accumulation Related to Methane Seepage in the Taixinan Basin, South China Sea. Journal of Asian Earth Sciences, 168: 27-37. https://doi.org/10.1016/j.jseaes.2017.11.011
      [72] Wang, X. J., Qian, J., Collett, T. S., et al., 2016. Characterization of Gas Hydrate Distribution Using Conventional 3D Seismic Data in the Pearl River Mouth Basin, South China Sea. Interpretation, 4(1): SA25-SA37. https://doi.org/10.1190/int-2015-0020.1
      [73] Wang, X. J., Sain, K., Satyavani, N., et al., 2013. Gas Hydrates Saturation Using Geostatistical Inversion in a Fractured Reservoir in the Krishna-Godavari Basin, Offshore Eastern India. Marine and Petroleum Geology, 45: 224-235. https://doi.org/10.1016/j.marpetgeo.2013.04.024
      [74] Wang, X. J., Wu, S. G., Dong, D. D., et al., 2011. Control of Mass Transport Deposits over the Occurrence of Gas Hydrate in Qiongdongnan Basin. Marine Geology & Quaternary Geology, 31(1): 109-118 (in Chinese with English abstract). http://www.researchgate.net/publication/273208717_CONTROL_OF_MASS_TRANSPORT_DEPOSITS_OVER_THE_OCCURRENCE_OF_GAS_HYDRATE_IN_QIONGDONGNAN_BASIN
      [75] Wang, X. J., Wu, S. G., Lee, M., et al., 2011b. Gas Hydrate Saturation from Acoustic Impedance and Resistivity Logs in the Shenhu Area, South China Sea. Marine and Petroleum Geology, 28(9): 1625-1633. https://doi.org/10.1016/j.marpetgeo.2011.07.002
      [76] Wang, X. J., Wu, S. G., Wang, J. L., et al., 2013. Anomalous Wireline Logging Data Caused by Gas Hydrate Dissociation in the Shenhu Area, Northern Slope of South China Sea. Chinese Journal of Geophysics, 56(8): 2799-2807 (in Chinese with English abstract).
      [77] Wang, X. J., Wu, S. G., Yuan, S., et al., 2010. Geophysical Signatures Associated with Fluid Flow and Gas Hydrate Occurrence in a Tectonically Quiescent Sequence, Qiongdongnan Basin, South China Sea. Geofluids, 10(3): 351-368. https://doi.org/10.1111/j.1468-8123.2010.00292.x
      [78] Wang, X. X., Cai, F., Sun, Z.L., et al., 2021. Sedimentary Evolution and Geological Significance of the Dongsha Submarine Canyon in the Northern South China Sea. Earth Science, 46(3): 1023-1037 (in Chinese with English abstract).
      [79] Wang, Z. F., Sun, Z. P., Zhang, Y. Z., et al., 2016. Distribution and Hydrocarbon Accumulation Mechanism of the Grant Deepwater Central Canyon Gas Field in Qiongdongnan Basin, Northern South China Sea. China Petroleum Exploration, 21(4): 54-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY201604007.htm
      [80] Wang, Z. Z., Wang, X. J., Guo, Y. Q., et al., 2014. Deposition and Migration of Sediments in Submarine Canyons of Baiyun Sag and Their Effects on Gas Hydrate Accumulation. Marine Geology & Quaternary Geology, 34(3): 105-113 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201403017.htm
      [81] Wei, J. G., Fang, Y. X., Lu, H. L., et al., 2018. Distribution and Characteristics of Natural Gas Hydrates in the Shenhu Sea Area, South China Sea. Marine and Petroleum Geology, 98: 622-628. https://doi.org/10.1016/j.marpetgeo.2018.07.028
      [82] Wei, J. G., Liang, J. Q., Lu, J. G., et al., 2019. Characteristics and Dynamics of Gas Hydrate Systems in the Northwestern South China Sea-Results of the Fifth Gas Hydrate Drilling Expedition. Marine and Petroleum Geology, 110: 287-298. https://doi.org/10.1016/j.marpetgeo.2019.07.028
      [83] Westbrook, G. K., Chand, S., Rossi, G., et al., 2008. Estimation of Gas Hydrate Concentration from Multi-component Seismic Data at Sites on the Continental Margins of NW Svalbard and the Storegga Region of Norway. Marine and Petroleum Geology, 25(8): 744-758. https://doi.org/10.1016/j.marpetgeo.2008.02.003
      [84] Wu, N. Y., Liang, J. Q., Wang, H. B., et al., 2008. Marine Gas Hydrate System State of the Art. Geoscience, 22(3): 356-362 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200803003.htm
      [85] Wu, N. Y., Yang, S. X., Wang, H. B., et al., 2009. Gas-Bearing Fluid Influx Sub-System for Gas Hydrate Geological System in Shenhu Area, Northern South China Sea. Chinese Journal of Geophysics, 52(6): 1641-1650 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqwlxb200906027
      [86] Wu, S. G., Zhang, G. X., Huang, Y., et al., 2005. Gas Hydrate Occurrence on the Continental Slope of the Northern South China Sea. Marine and Petroleum Geology, 22(3): 403-412. https://doi.org/10.1016/j.marpetgeo.2004.11.006
      [87] Yan, C. Z., Shi, H. S., Li, Y. P., et al., 2018. Identification and Accumulation Control Factors of Natural Gas Hydrate and Shallow Gas in Baiyun Sag, Pearl River Mouth Basin. China Offshore Oil and Gas, 30(6): 25-32 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZHSD201806003.htm
      [88] Yang, J. X., Wang, X. J., Jin, J. P., et al., 2017b. The Role of Fluid Migration in the Occurrence of Shallow Gas and Gas Hydrates in the South of the Pearl River Mouth Basin, South China Sea. Interpretation, 5(3): SM1-SM11. https://doi.org/10.1190/int-2016-0197.1
      [89] Yang, S. X., Liang, J. Q., Lei, Y., et al., 2017a. GMGS4 Gas Hydrate Drilling Expedition in the South China Sea. Fire in the Ice: Methane Hydrate Newsletter, 17(1): 7-11.
      [90] Yang, S. X., Liang, J. Q., Lu, J. A., et al., 2017. New Understandings on the Characteristics and Controlling Factors of Gas Hydrate Reservoirs in the Shenhu Area on the Northern Slope of the South China Sea. Earth Science Frontiers, 24(4): 1-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201704002.htm
      [91] Yang, S. X., Zhang, M., Liang, J. Q., et al., 2015. Preliminary Results of China's Third Gas Hydrate Drilling Expedition: A Critical Step from Discovery to Development in the South China Sea. Fire in the Ice: Methane Hydrate Newsletter, 15(2): 1-5.
      [92] Yao, B. C., 1998. Preliminary Exploration of Gas Hydrate in the Northern Margin of the South China Sea. Marine Geology & Quaternary Geology, 18(4): 11-18 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-HYDZ804.001.htm
      [93] Yao, B. C., Yang, M. Z., Wu, S. G., et al., 2008. The Gas Hydrate Resources in the China Seas. Geoscience, 22(3): 333-341 (in Chinese with English abstract).
      [94] Ye, J. L., Wei, J. G., Liang, J. Q., et al., 2019. Complex Gas Hydrate System in a Gas Chimney, South China Sea. Marine and Petroleum Geology, 104: 29-39. https://doi.org/10.1016/j.marpetgeo.2019.03.023
      [95] Zhang, G. X., Liang, J. Q., Lu, J. A., et al., 2015. Geological Features, Controlling Factors and Potential Prospects of the Gas Hydrate Occurrence in the East Part of the Pearl River Mouth Basin, South China Sea. Marine and Petroleum Geology, 67: 356-367. https://doi.org/10.1016/j.marpetgeo.2015.05.021
      [96] Zhang, H. Q., Yang, S. X., Wu, N. Y., et al., 2007. Successful and Surprising Results for China First Gas Hydrate Drilling Expedition. Fire in the Ice: Methane Hydrate Newsletter, 7(3): 6-9. http://www.researchgate.net/publication/286200076_Successful_and_surprising_results_for_China's_first_gas_hydrate_drilling_expedition_Fire_in_the_ice_Fall_2007/download
      [97] Zhang, R. W., Lu, J. A., Wen, P. F., et al., 2018. Distribution of Gas Hydrate Reservoir in the First Production Test Region of the Shenhu Area, South China Sea. China Geology, 1(4): 493-504. https://doi.org/10.31035/cg2018049
      [98] Zhang, W., Liang, J. Q., Lu, J. A., et al., 2020. Characteristics and Controlling Mechanism of Typical Leakage Gas Hydrate Reservoir Forming System in the Qiongdongnan Basin, Northern South China Sea. Natural Gas Industry, 40(8): 90-99 (in Chinese with English abstract).
      [99] Zhang, W., Liang, J. Q., Su, P. B., et al., 2019. Distribution and Characteristics of Mud Diapirs, Gas Chimneys, and Bottom Simulating Reflectors Associated with Hydrocarbon Migration and Gas Hydrate Accumulation in the Qiongdongnan Basin, Northern Slope of the South China Sea. Geological Journal, 54(6): 3556-3573. https://doi.org/10.1002/gj.3351
      [100] Zhong, G. F., Liang, J. Q., Guo, Y. Q., et al., 2017. Integrated Core-Log Facies Analysis and Depositional Model of the Gas Hydrate-Bearing Sediments in the Northeastern Continental Slope, South China Sea. Marine and Petroleum Geology, 86: 1159-1172. https://doi.org/10.1016/j.marpetgeo.2017.07.012.
      [101] Zhong, G. F., Zhang, D., Zhao, L. X., et al., 2020. Current States of Well-Logging Evaluation of Deep-Sea Gas Hydrate-Bearing Sediments by International Scientific Ocean Drilling (DSDP/ODP/IODP) Programs. Natural Gas Industry, 40(8): 25-44 (in Chinese with English abstract).
      [102] Zhou, S. W., Chen, W., Li, Q. P., et al., 2017. Research on the Solid Fluidization Well Testing and Production for Shallow Non-Diagenetic Natural Gas Hydrate in Deep Water Area. China Offshore Oil and Gas, 29(4): 1-8 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZHSD201704001.htm
      [103] Zhu, M. Z., Graham, S., Pang, X., et al., 2010. Characteristics of Migrating Submarine Canyons from the Middle Miocene to Present: Implications for Paleoceanographic Circulation, Northern South China Sea. Marine and Petroleum Geology, 27(1): 307-319. https://doi.org/10.1016/j.marpetgeo.2009.05.005
      [104] 陈多福, 姚伯初, 赵振华, 等, 2001. 珠江口和琼东南盆地天然气水合物形成和稳定分布的地球化学边界条件及其分布区. 海洋地质与第四纪地质, 21(4): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200104016.htm
      [105] 陈芳, 苏新, 陆红锋, 等, 2013. 南海神狐海域有孔虫与高饱和度水合物的储存关系. 地球科学, 38(5): 907-915. doi: 10.3799/dqkx.2013.089
      [106] 陈芳, 庄畅, 周洋, 等, 2016. 南海东北部陆坡天然气水合物钻探区生物地层与沉积速率. 地球科学, 41(3): 416-424. doi: 10.3799/dqkx.2016.033
      [107] 黄永样, 张光学, 2009. 我国海域天然气水合物地质-地球物理特征及前景. 北京: 地质出版社.
      [108] 康冬菊, 梁金强, 匡增桂, 等, 2018. 元素俘获能谱测井在神狐海域天然气水合物储层评价中的应用. 天然气工业, 38(12): 54-60. doi: 10.3787/j.issn.1000-0976.2018.12.006
      [109] 匡增桂, 方允鑫, 梁金强, 等, 2018. 珠江口盆地东部海域高通量流体运移的地貌-地质-地球物理标志及其对水合物成藏的控制. 中国科学(D辑), 48(8): 1033-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201808006.htm
      [110] 匡增桂, 郭依群, 2011. 南海北部神狐海域新近系以来沉积相及水合物成藏模式. 地球科学, 36(5): 914-920. doi: 10.3799/dqkx.2011.096
      [111] 李杰, 何敏, 颜承志, 等, 2020. 南海北部揭阳凹陷天然气水合物的地震异常特征分析. 海洋与湖沼, 51(2): 274-282. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ202002007.htm
      [112] 刘学伟, 李敏锋, 张聿文, 等, 2005. 天然气水合物地震响应研究: 中国南海HD152测线应用实例. 现代地质, 19(1): 33-38. doi: 10.3969/j.issn.1000-8527.2005.01.005
      [113] 宁伏龙, 梁金强, 吴能友, 等, 2020. 中国天然气水合物赋存特征. 天然气工业, 40(8): 1-25. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008002.htm
      [114] 钱进, 王秀娟, 董冬冬, 等, 2016. 基于叠前地震数据和岩石物理的游离气定量估算方法: 以印度Krishna-Godavari盆地NGHP01-10A井为例. 地球物理学报, 59(7): 2553-2563. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201607020.htm
      [115] 沙志彬, 郭依群, 杨木壮, 等, 2009. 南海北部陆坡区沉积与天然气水合物成藏关系. 海洋地质与第四纪地质, 29(5): 89-98. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200905017.htm
      [116] 宋海斌, 吴时国, 江为为, 2007. 南海东北部973剖面BSR及其热流特征. 地球物理学报, 50(5): 1508-1517. doi: 10.3321/j.issn:0001-5733.2007.05.027
      [117] 苏丕波, 梁金强, 张伟, 等, 2020. 南海北部神狐海域天然气水合物成藏系统. 天然气工业, 40(8): 77-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803022.htm
      [118] 王吉亮, 王秀娟, 钱进, 等, 2013. 裂隙充填型天然气水合物的各向异性分析及饱和度估算: 以印度东海岸NGHP01-10D井为例. 地球物理学报, 56(4): 1312-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304027.htm
      [119] 王秀娟, 吴时国, 董冬冬, 等, 2011. 琼东南盆地块体搬运体系对天然气水合物形成的控制作用. 海洋地质与第四纪地质, 31(1): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201101017.htm
      [120] 王秀娟, 吴时国, 王吉亮, 等, 2013. 南海北部神狐海域天然气水合物分解的测井异常. 地球物理学报, 56(8): 2799-2807. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201308029.htm
      [121] 王星星, 蔡峰, 孙治雷, 等, 2021. 南海北部东沙海底峡谷沉积演化过程及其地质意义. 地球科学, 46(3): 1023-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202103020.htm
      [122] 王振峰, 孙志鹏, 张迎朝, 等, 2016. 南海北部琼东南盆地深水中央峡谷大气田分布与成藏规律. 中国石油勘探, 21(4): 54-64. doi: 10.3969/j.issn.1672-7703.2016.04.006
      [123] 王真真, 王秀娟, 郭依群, 等, 2014. 白云凹陷陆坡峡谷沉积与迁移特征及其对天然气水合物成藏的影响. 海洋地质与第四纪地质, 34(3): 105-113. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201403017.htm
      [124] 吴能友, 梁金强, 王宏斌, 等, 2008. 海洋天然气水合物成藏系统研究进展. 现代地质, 22(3): 356-362. doi: 10.3969/j.issn.1000-8527.2008.03.003
      [125] 吴能友, 杨胜雄, 王宏斌, 等, 2009. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系. 地球物理学报, 52(6): 1641-1650. doi: 10.3969/j.issn.0001-5733.2009.06.027
      [126] 颜承志, 施和生, 李元平, 等, 2018. 珠江口盆地白云凹陷天然气水合物与浅层气识别及成藏控制因素. 中国海上油气, 30(6): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201806003.htm
      [127] 杨胜雄, 梁金强, 陆敬安, 等, 2017. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识. 地学前缘, 24(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704002.htm
      [128] 姚伯初, 1998. 南海北部陆缘天然气水合物初探. 海洋地质与第四纪地质, 18(4): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ804.001.htm
      [129] 姚伯初, 杨木壮, 吴时国, 等, 2008. 中国海域的天然气水合物资源. 现代地质, 22(3): 333-341. doi: 10.3969/j.issn.1000-8527.2008.03.001
      [130] 张伟, 梁金强, 陆敬安, 等, 2020. 琼东南盆地典型渗漏型天然气水合物成藏系统的特征与控藏机制. 天然气工业, 40(8): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008011.htm
      [131] 钟广法, 张迪, 赵峦啸, 2020. 大洋钻探天然气水合物储层测井评价研究进展. 天然气工业, 40(8): 25-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008003.htm
      [132] 周守为, 陈伟, 李清平, 等, 2017. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展. 中国海上油气, 29(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201704001.htm
    • 加载中
    图(8)
    计量
    • 文章访问数:  667
    • HTML全文浏览量:  158
    • PDF下载量:  56
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-10-14
    • 刊出日期:  2021-03-15

    目录

      /

      返回文章
      返回