• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    斑点火山的形成机制和岩石圈-软流圈边界(LAB)的性质

    潘谟晗 杨挺 林间 张帆 周志远 李海勇 张旭博 范兴利 程子华

    潘谟晗, 杨挺, 林间, 张帆, 周志远, 李海勇, 张旭博, 范兴利, 程子华, 2021. 斑点火山的形成机制和岩石圈-软流圈边界(LAB)的性质. 地球科学, 46(3): 817-825. doi: 10.3799/dqkx.2020.340
    引用本文: 潘谟晗, 杨挺, 林间, 张帆, 周志远, 李海勇, 张旭博, 范兴利, 程子华, 2021. 斑点火山的形成机制和岩石圈-软流圈边界(LAB)的性质. 地球科学, 46(3): 817-825. doi: 10.3799/dqkx.2020.340
    Pan Mohan, Yang Ting, Lin Jian, Zhang Fan, Zhou Zhiyuan, Li Haiyong, Zhang Xubo, Fan Xingli, Cheng Zihua, 2021. The Formation Mechanism of Petit-Spot Volcanoes and the Nature of the Lithosphere-Asthenosphere Boundary (LAB). Earth Science, 46(3): 817-825. doi: 10.3799/dqkx.2020.340
    Citation: Pan Mohan, Yang Ting, Lin Jian, Zhang Fan, Zhou Zhiyuan, Li Haiyong, Zhang Xubo, Fan Xingli, Cheng Zihua, 2021. The Formation Mechanism of Petit-Spot Volcanoes and the Nature of the Lithosphere-Asthenosphere Boundary (LAB). Earth Science, 46(3): 817-825. doi: 10.3799/dqkx.2020.340

    斑点火山的形成机制和岩石圈-软流圈边界(LAB)的性质

    doi: 10.3799/dqkx.2020.340
    基金项目: 

    自然科学基金项目 92058209

    自然科学基金项目 41676033

    自然科学基金项目 41890813

    自然科学基金项目 41976066

    自然科学基金项目 41976064

    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 GML2019ZD0205

    深圳市科创委项目 KQTD20170810111725321

    深圳市科创委项目 JCYJ20180504170422082

    深圳市科创委项目 GJHZ20170313101107497

    详细信息
      作者简介:

      潘谟晗(1992-), 女, 在读博士生, 主要从事海洋地球物理学、地震学研究.ORCID: 0000-0003-0445-6462.E-mail: 11849522@mail.sustech.edu.cn

      通讯作者:

      杨挺(1971-), ORCID: 0000-0002-3433-0898.E-mail: tyang@sustech.edu.cn

    • 中图分类号: P736

    The Formation Mechanism of Petit-Spot Volcanoes and the Nature of the Lithosphere-Asthenosphere Boundary (LAB)

    • 摘要: 近二十年来,在俯冲带外缘发现的斑点火山群代表了一种全新的海底岩浆活动类型.这种火山规模很小,成簇出现,年龄异常年轻,岩样以EM1型碱性玄武岩为主,孔隙度高且富含挥发性组分.有关斑点火山的岩浆起源以及与岩浆上涌相关的动力学过程目前仍然存在广泛的争论.本文系统性地介绍了斑点火山的特征,总结了前人针对其形成机制和岩浆源区研究提出的3种模型;另外,结合大洋岩石圈-软流圈边界(LAB)可能含熔体的最新研究成果,指出了斑点火山还可能与LAB的性质这一板块理论的根本科学问题密切相关;由于CO2可能是导致LAB深度处出现熔融聚集层的原因,而斑点火山岩样中富含CO2,因此斑点火山还可能是碳循环的重要组成部分.最后,本文对未来围绕斑点火山形成机制等科学问题的多学科综合研究做出展望.

       

    • 图  1  目前已发现的斑点火山群在全球俯冲带的分布

      A, C, D. 日本海沟(Hirano et al., 2001, 2008; Fujiwara et al., 2007; Ohira et al., 2018);B. 智利海沟(Hirano et al., 2013);E. 巽他海沟(Hoernle et al., 2011; Taneja et al., 2015);F. 汤加海沟(Reinhard et al., 2019);G. 北马里亚纳海沟(Hirano et al., 2019)

      Fig.  1.  Global occurrence of petit-spot volcanoes

      图  2  斑点火山形成机制的不同模型

      Fig.  2.  A schematic of petit-spot volcanoes formation mechanisms

    • [1] Behn, M. D., Hirth, G., Elsenbeck II, J. R., 2009. Implications of Grain Size Evolution on the Seismic Structure of the Oceanic Upper Mantle. Earth and Planetary Science Letters, 282(1-4): 178-189. https://doi.org/10.1016/j.epsl.2009.03.014
      [2] Bercovici, D., Karato, S. I., 2003. Whole-Mantle Convection and the Transition-Zone Water Filter. Nature, 425(6953): 39-44. https://doi.org/10.1038/nature01918
      [3] Dasgupta, R., Hirschmann, M. M., 2006. Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide. Nature, 440(7084): 659-662. https://doi.org/10.1038/nature04612
      [4] Faul, U. H., Jackson, I., 2005. The Seismological Signature of Temperature and Grain Size Variations in the Upper Mantle. Earth and Planetary Science Letters, 234(1-2): 119-134. https://doi.org/10.1016/j.epsl.2005.02.008
      [5] Fischer, K. M., Ford, H. A., Abt, D. L., et al., 2010. The Lithosphere-Asthenosphere Boundary. Annual Review of Earth and Planetary Sciences, 38(1): 551-575. https://doi.org/10.1146/annurev-earth-040809-152438
      [6] Forsyth, D. W., Harmon, N., Scheirer, D. S., et al., 2006. Distribution of Recent Volcanism and the Morphology of Seamounts and Ridges in the GLIMPSE Study Area: Implications for the Lithospheric Cracking Hypothesis for the Origin of Intraplate, Non-Hot Spot Volcanic Chains. Journal of Geophysical Research: Solid Earth, 111(B11): B11407. https://doi.org/10.1029/2005JB004075
      [7] Fujiwara, T., Hirano, N., Abe, N., et al., 2007. Subsurface Structure of the "Petit-Spot" Volcanoes on the Northwestern Pacific Plate. Geophysical Research Letters, 34(13): L13305. https://doi.org/10.1029/2007GL030439
      [8] Gaherty, J. B., Jordan, T. H., Gee, L. S., 1996. Seismic Structure of the Upper Mantle in a Central Pacific Corridor. Journal of Geophysical Research: Solid Earth, 101(B10): 22291-22309. https://doi.org/10.1029/96JB01882
      [9] Gardés, E., Laumonier, M., Massuyeau, M., et al., 2020. UnravellingPartial Melt Distribution in the Oceanic Low Velocity Zone. Earth and Planetary Science Letters, 540: 116242. https://doi.org/10.1016/j.epsl.2020.116242
      [10] Green, D. H., Hibberson, W. O., Rosenthal, A., et al., 2014. Experimental Study of the Influence of Water on Melting and Phase Assemblages in the Upper Mantle. Journal of Petrology, 55(10): 2067-2096. https://doi.org/10.1093/petrology/egu050
      [11] Harmon, N., Forsyth, D. W., Scheirer, D. S., 2006. Analysis of Gravity and Topography in the GLIMPSE Study Region: Isostatic Compensation and Uplift of the Sojourn and HotuMatua Ridge Systems. Journal of Geophysical Research: Solid Earth, 111(B11): B11406. https://doi.org/10.1029/2005JB004071
      [12] Hirano, N., 2011. Petit-Spot Volcanism: A New Type of Volcanic Zone Discovered near a Trench. Geochemical Journal, 45(2): 157-167. https://doi.org/10.2343/geochemj.1.0111
      [13] Hirano, N., Kawamura, K., Hattori, M., et al., 2001. A New Type of Intra-Plate Volcanism; Young Alkali-Basalts Discovered from the Subducting Pacific Plate, Northern Japan Trench. Geophysical Research Letters, 28(14): 2719-2722. https://doi.org/10.1029/2000GL012426
      [14] Hirano, N., Koppers, A. A., Takahashi, A., et al., 2008. Seamounts, Knolls and Petit-Spot Monogenetic Volcanoes on the Subducting Pacific Plate. Basin Research, 20(4): 543-553. https://doi.org/10.1111/j.1365-2117.2008.00363.x
      [15] Hirano, N., Machida, S., Abe, N., et al., 2013. Petit-Spot Lava Fields off the Central Chile Trench Induced by Plate Flexure. Geochemical Journal, 47(2): 249-257. https://doi.org/10.2343/geochemj.2.0227
      [16] Hirano, N., Machida, S., Sumino, H., et al., 2019. Petit-Spot Volcanoes on the Oldest Portion of the Pacific Plate. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 154: 103142. https://doi.org/10.1016/j.dsr.2019.103142
      [17] Hirano, N., Takahashi, E., Yamamoto, J., et al., 2006. Volcanism in Response to Plate Flexure. Science, 313(5792): 1426-1428. https://doi.org/10.1126/science.1128235
      [18] Hirschmann, M. M., 2010. Partial Melt in the Oceanic Low Velocity Zone. Physics of the Earth and Planetary Interiors, 179(1-2): 60-71. https://doi.org/10.1016/j.pepi.2009.12.003
      [19] Hoernle, K., Hauff, F., Werner, R., et al., 2011. Origin of Indian Ocean Seamount Province by Shallow Recycling of Continental Lithosphere. Nature Geoscience, 4(12): 883-887. https://doi.org/10.1038/ngeo1331
      [20] Karato, S. I., 2011. Water Distribution across the Mantle Transition Zone and Its Implications for Global Material Circulation. Earth and Planetary Science Letters, 301(3-4): 413-423. https://doi.org/10.1016/j.epsl.2010.11.038
      [21] Karato, S. I., 2012. On the Origin of the Asthenosphere. Earth and Planetary Science Letters, 321-322: 95-103. https://doi.org/10.1016/j.epsl.2012.01.001
      [22] Karato, S. I., Park, J., 2018. On the Origin of the Upper Mantle Seismic Discontinuities. Lithospheric Discontinuities, 5-34.
      [23] Kawakatsu, H., Kumar, P., Takei, Y., et al., 2009. Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates. Science, 324(5926): 499-502. https://doi.org/10.1126/science.1169499
      [24] Kelbert, A., Schultz, A., Egbert, G., 2009. Global Electromagnetic Induction Constraints on Transition-Zone Water Content Variations. Nature, 460(7258): 1003-1006. https://doi.org/10.1038/nature08257
      [25] Kono, Y., Kenney-Benson, C., Hummer, D., et al., 2014. Ultralow Viscosity of Carbonate Melts at High Pressures. Nature Communications, 5(1): 5091. https://doi.org/10.1038/ncomms6091
      [26] Lin, P. Y. P., Gaherty, J. B., Jin, G., et al., 2016. High-Resolution Seismic Constraints on Flow Dynamics in the Oceanic Asthenosphere. Nature, 535(7613): 538-541. https://doi.org/10.1038/nature18012
      [27] Liu, J., Hirano, N., Machida, S., et al., 2020. Melting of Recycled Ancient Crust Responsible for the Gutenberg Discontinuity. Nature Communications, 11: 172. https://doi.org/10.1038/s41467-019-13958-w
      [28] Ma C., Tang Y., Ying J., 2019. Magmatism in Subduction Zones and Growth of Continental Crust. Earth Science, 44(4): 1128-1142 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904006.htm
      [29] Machida, S., Hirano, N., Kimura, J. I., 2009. Evidence for Recycled Plate Material in Pacific Upper Mantle Unrelated to Plumes. Geochimica et Cosmochimica Acta, 73(10): 3028-3037. https://doi.org/10.1016/j.gca.2009.01.026
      [30] Machida, S., Hirano, N., Sumino, H., et al., 2015. Petit-Spot Geology Reveals Melts in Upper-Most Asthenosphere Dragged by Lithosphere. Earth and Planetary Science Letters, 426: 267-279. https://doi.org/10.1016/j.epsl.2015.06.018
      [31] Machida, S., Kogiso, T., Hirano, N., 2017. Petit-Spot as Definitive Evidence for Partial Melting in the Asthenosphere Caused by CO2. Nature Communications, 8: 14302. https://doi.org/10.1038/ncomms14302
      [32] Mehouachi, F., Singh, S. C., 2018. Water-Rich Sublithospheric Melt Channel in the Equatorial Atlantic Ocean. Nature Geoscience, 11(1): 65-69. https://doi.org/10.1038/s41561-017-0034-z
      [33] Mo X. X., 2019. Magmatism and Deep Geological Process. Earth Science, 44(5): 1487-1493 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905007.htm
      [34] Naif, S., Key, K., Constable, S., et al., 2013. Melt-Rich Channel Observed at the Lithosphere-Asthenosphere Boundary. Nature, 495(7441): 356-359. https://doi.org/10.1038/nature11939
      [35] Ohira, A., Kodaira, S., Gou, F. J., et al., 2018. Seismic Structure of the Oceanic Crust around Petit-Spot Volcanoes in the Outer-Rise Region of the Japan Trench. Geophysical Research Letters, 45(20): 11123-111129. https://doi.org/10.1029/2018gl080305
      [36] Okumura, S., Hirano, N., 2013. Carbon Dioxide Emission to Earth's Surface by Deep-Sea Volcanism. Geology, 41(11): 1167-1170. https://doi.org/10.1130/g34620.1
      [37] Pearson, D. G., Brenker, F. E., Nestola, F., et al., 2014. Hydrous Mantle Transition Zone Indicated by Ringwoodite Included within Diamond. Nature, 507(7491): 221-224. https://doi.org/10.1038/nature13080
      [38] Qin, Y. F., Singh, S. C., Grevemeyer, I., et al., 2020. Discovery of Flat Seismic Reflections in the Mantle Beneath the Young Juan de Fuca Plate. Nature Communications, 11: 4122. https://doi.org/10.1038/s41467-020-17946-3
      [39] Reinhard, A. A., Jackson, M. G., Blusztajn, J., et al., 2019. "Petit Spot" Rejuvenated Volcanism Superimposed on Plume-Derived Samoan Shield Volcanoes: Evidence from a 645-m Drill Core from Tutuila Island, American Samoa. Geochemistry, Geophysics, Geosystems, 20(3): 1485-1507. https://doi.org/10.1029/2018gc007985
      [40] Ritter, X., Sanchez-Valle, C., Sator, N., et al., 2020. Density of Hydrous Carbonate Melts under Pressure, Compressibility of Volatiles and Implications for Carbonate Melt Mobility in the Upper Mantle. Earth and Planetary Science Letters, 533: 116043. https://doi.org/10.1016/j.epsl.2019.116043
      [41] Rohrbach, A., Schmidt, M. W., 2011. Redox Freezing and Melting in the Earth's Deep Mantle Resulting from Carbon-Iron Redox Coupling. Nature, 472(7342): 209-212. https://doi.org/10.1038/nature09899
      [42] Russell, J. B., Gaherty, J. B., Lin, P. Y. P., et al., 2019. High-Resolution Constraints on Pacific Upper Mantle Petrofabric Inferred from Surface-Wave Anisotropy. Journal of Geophysical Research: Solid Earth, 124(1): 631-657. https://doi.org/10.1029/2018jb016598
      [43] Rychert, C. A., Shearer, P. M., 2011. Imaging the Lithosphere-Asthenosphere Boundary Beneath the Pacific Using SS Waveform Modeling. Journal of Geophysical Research Atmospheres, 116(B7): B07307. https://doi.org/10.1029/2010jb008070
      [44] Sakamaki, T., Suzuki, A., Ohtani, E., et al., 2013. Ponded Melt at the Boundary between the Lithosphere and Asthenosphere. Nature Geoscience, 6(12): 1041-1044. https://doi.org/10.1038/ngeo1982
      [45] Sato, Y., Hirano, N., Machida, S., et al., 2018. Direct Ascent to the Surface of Asthenospheric Magma in a Region of Convex Lithospheric Flexure. International Geology Review, 60(10): 1231-1243. https://doi.org/10.1080/00206814.2017.1379912
      [46] Schmerr, N., 2012. The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary. Science, 335(6075): 1480-1483. https://doi.org/10.1126/science.1215433
      [47] Sifré, D., Gardés, E., Massuyeau, M., et al., 2014. Electrical Conductivity during Incipient Melting in the Oceanic Low-Velocity Zone. Nature, 509(7498): 81-85. https://doi.org/10.1038/nature13245
      [48] Stagno, V., Ojwang, D. O., McCammon, C. A., et al., 2013. The Oxidation State of the Mantle and the Extraction of Carbon from Earth's Interior. Nature, 493(7430): 84-88. https://doi.org/10.1038/nature11679
      [49] Stern, T. A., Henrys, S. A., Okaya, D., et al., 2015. A Seismic Reflection Image for the Base of a Tectonic Plate. Nature, 518(7537): 85-88. https://doi.org/10.1038/nature14146
      [50] Tan, Y., Helmberger, D. V., 2007. Trans-Pacific Upper Mantle Shear Velocity Structure. Journal of Geophysical Research: Solid Earth, 112(B8): B08301. https://doi.org/10.1029/2006JB004853
      [51] Taneja, R., O'Neill, C., Lackie, M., et al., 2015. 40Ar/39Ar Geochronology and the Paleoposition of Christmas Island (Australia), Northeast Indian Ocean. Gondwana Research, 28(1): 391-406. https://doi.org/10.1016/j.gr.2014.04.004
      [52] Valentine, G. A., Hirano, N., 2010. Mechanisms of Low-Flux Intraplate Volcanic Fields-Basin and Range (North America) and Northwest Pacific Ocean. Geology, 38(1): 55-58. https://doi.org/10.1130/g30427.1
      [53] Wessel, P., Sandwell, D., Kim, S. S., 2010. The Global Seamount Census. Oceanography, 23(1): 24-33. https://doi.org/10.5670/oceanog.2010.60
      [54] Wyllie, P. J., 1988. Magma Genesis, Plate Tectonics, and Chemical Differentiation of the Earth. Reviews of Geophysics, 26(3): 370-404. https://doi.org/10.1029/RG026i003p00370
      [55] Yamamoto, J., Korenaga, J., Hirano, N., et al., 2014. Melt-Rich Lithosphere-Asthenosphere Boundary Inferred from Petit-Spot Volcanoes. Geology, 42(11): 967-970. https://doi.org/10.1130/g35944.1
      [56] Yang, J., Faccenda, M., 2020. Intraplate Volcanism Originating from Upwelling Hydrous Mantle Transition Zone. Nature, 579(7797): 88-91. https://doi.org/10.1038/s41586-020-2045-y
      [57] Yesson, C., Clark, M. R., Taylor, M. L., et al., 2011. The Global Distribution of Seamounts Based on 30 Arc Seconds Bathymetry Data. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 58(4): 442-453. https://doi.org/10.1016/j.dsr.2011.02.004
      [58] Zhang, F., Lin, J., Zhou, Z. Y., et al., 2018. Intra- and Intertrench Variations in Flexural Bending of the Manila, Mariana and Global Trenches: Implications on Plate Weakening in Controlling Trench Dynamics. Geophysical Journal International, 212(2): 1429-1449. https://doi.org/10.1093/gji/ggx488
      [59] Zhou, Z. Y., Lin, J., 2018. Elasto-Plastic Deformation and Plate Weakening Due to Normal Faulting in the Subducting Plate along the Mariana Trench. Tectonophysics, 734/735: 59-68. https://doi.org/10.1016/j.tecto.2018.04.008
      [60] 马超, 汤艳杰, 英基丰, 2019. 俯冲带岩浆作用与大陆地壳生长. 地球科学, 44(4): 1128-1142. doi: 10.3799/dqkx.2019.026
      [61] 莫宣学, 2019. 岩浆作用与地球深部过程. 地球科学, 44(5): 1487-1493. doi: 10.3799/dqkx.2019.972
    • 加载中
    图(2)
    计量
    • 文章访问数:  603
    • HTML全文浏览量:  243
    • PDF下载量:  73
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-10-30
    • 刊出日期:  2021-03-01

    目录

      /

      返回文章
      返回