• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黔中隆起北缘五峰-龙马溪组页岩元素地球化学特征及其地质意义

    李琪琪 蓝宝锋 李刚权 徐尚 刘婷 苟启洋 王雨轩

    李琪琪, 蓝宝锋, 李刚权, 徐尚, 刘婷, 苟启洋, 王雨轩, 2021. 黔中隆起北缘五峰-龙马溪组页岩元素地球化学特征及其地质意义. 地球科学, 46(9): 3172-3188. doi: 10.3799/dqkx.2020.354
    引用本文: 李琪琪, 蓝宝锋, 李刚权, 徐尚, 刘婷, 苟启洋, 王雨轩, 2021. 黔中隆起北缘五峰-龙马溪组页岩元素地球化学特征及其地质意义. 地球科学, 46(9): 3172-3188. doi: 10.3799/dqkx.2020.354
    Li Qiqi, Lan Baofeng, Li Gangquan, Xu Shang, Liu Ting, Gou Qiyang, Wang Yuxuan, 2021. Element Geochemical Characteristics and Their Geological Significance of Wufeng-Longmaxi Formation Shales in North Margin of the Central Guizhou Uplift. Earth Science, 46(9): 3172-3188. doi: 10.3799/dqkx.2020.354
    Citation: Li Qiqi, Lan Baofeng, Li Gangquan, Xu Shang, Liu Ting, Gou Qiyang, Wang Yuxuan, 2021. Element Geochemical Characteristics and Their Geological Significance of Wufeng-Longmaxi Formation Shales in North Margin of the Central Guizhou Uplift. Earth Science, 46(9): 3172-3188. doi: 10.3799/dqkx.2020.354

    黔中隆起北缘五峰-龙马溪组页岩元素地球化学特征及其地质意义

    doi: 10.3799/dqkx.2020.354
    基金项目: 

    国家自然科学基金重大项目 41690134

    国家自然科学基金青年基金 41702155

    国家科技重大专项 2016ZX05034002-003

    详细信息
      作者简介:

      李琪琪(1992-), 男, 博士研究生, 主要从事非常规油气研究.ORCID: 0000-0002-7838-0037.E-mail: liqiqi6@163.com

      通讯作者:

      蓝宝锋, E-mail: 739197374@qq.com

    • 中图分类号: P595

    Element Geochemical Characteristics and Their Geological Significance of Wufeng-Longmaxi Formation Shales in North Margin of the Central Guizhou Uplift

    • 摘要: 为探讨黔中隆起北缘五峰—龙马溪组富有机质页岩的沉积环境和物源区背景,对区内两口井的样品进行了有机碳含量、微量元素和稀土元素地球化学测试和分析.结果表明,研究区五峰—龙马溪组页岩在沉积时以贫氧—厌氧环境为主,富氧环境也偶尔存在,且龙马溪组沉积水体还原程度比五峰组高.LaN/YbN值的变化反映沉积速率为:龙马溪组下部 < 五峰组 < 观音桥段,表明五峰—龙马溪组页岩沉积时存在沉积速率先变快后变缓的过程.Mo/TOC值显示五峰组页岩沉积时盆地滞留程度较强,进入志留纪相对减弱,盆地滞留程度对有机质富集的正向影响可能不大,海平面升降造成的氧化还原条件以及生产力条件的变化或许控制了有机质的富集.微量和稀土元素组合及比值特征,反映研究区五峰—龙马溪组沉积时的原始物质来自上地壳,五峰组沉积时存在混合物源,而龙马溪组沉积时物源相对单一,总体上源岩以长英质(花岗岩)为主.源区构造背景以主动大陆边缘为主,受到一定热液活动的影响,同时也表现出一定的大陆岛弧构造背景的特征.

       

    • 图  1  研究区位置及地层柱状图

      Fig.  1.  Location and stratigraphic column of the study area

      图  2  五峰‒龙马溪组页岩岩心及扫描电镜照片

      a. 炭质页岩,AY3井,2 491.5 m,五峰组;b. 深灰色泥质生物灰岩,含腕足类化石,AY1井,2 325.2 m,观音桥段;c. 富笔石黑色页岩,AY3井,2 475.3 m,龙马溪组;d. 石英、长石、云母、黏土矿物等矿物相间分布,碎屑矿物具次圆状‒次棱角状,AY2井,1 975.3 m,五峰组;e. 石英、钠长石、白云石与伊利石及微晶矿物集合体相间分布,AY3井,2 486.5 m,观音桥段;f. 有机质与片状伊利石充填微晶石英粒间孔,AY3井,2 471.0 m,龙马溪组;g. 黄铁矿扫描电镜照片,AY2井,1 969.26 m,龙马溪组;h.草莓状黄铁矿放大图;i. 黄铁矿扫描电镜照片,AY2井,1 957.33 m,五峰组;j. 草莓状黄铁矿放大图

      Fig.  2.  Core and scanning electron microscope (SEM) photos of the Wufeng-Longmaxi Formation shales

      图  3  五峰-龙马溪组页岩微量元素垂向分布

      a. AY2井;b. AY3井;δU=U/[(U+Th/3)/2]

      Fig.  3.  Vertical distribution map of trace elements of the Wufeng-Longmaxi Formation shales

      图  4  五峰-龙马溪组页岩稀土元素垂向分布

      a. AY2井;b. AY3井;L/H代表LREE/HREE;δCe=CeN/(LaN×PrN1/2;Ceanom=lg[3CeN/(2LaN+NdN)],下标“N”代表经球粒陨石标准化后的比值

      Fig.  4.  Vertical distribution map of rare earth elements of the Wufeng-Longmaxi Formation shales

      图  5  五峰‒龙马溪组氧化还原环境的微量元素判别指标

      Fig.  5.  Determination of redox environment based on trace elements

      图  6  五峰‒龙马溪组页岩LaN/YbN值垂向分布

      Fig.  6.  Vertical distribution map of LaN/YbN value of the Wufeng-Longmaxi Formation shales

      图  7  五峰‒龙马溪组页岩稀土元素配分模式

      球粒陨石标准化据Taylor and McLennan(1985)

      Fig.  7.  REE distribution patterns of the Wufeng-Longmaxi Formation shales

      图  8  黔中隆起北缘Mo/TOC关系与现代厌氧海盆的对比

      Fig.  8.  Comparison of Mo-TOC relationship for north Margin of the Central Guizhou uplift and those for modern anoxic basins

      图  9  五峰‒龙马溪组页岩La/Yb-∑REE(a)及La/Sc-Co/Th图解(b)

      a据Allègre and Minster(1978);b据Gu et al.(2002)

      Fig.  9.  La/Yb-∑REE (a) and La/Sc-Co/Th diagram (b) of Wufeng-Longmaxi Formation shales

      图  10  Zn-Ni-Co物源判别图解

      Cronan(1980)

      Fig.  10.  Zn-Ni-Co provenance discrimination diagram

      图  11  五峰‒龙马溪组页岩Eu/Sm- Sm/Yb图解

      Alexander et al.(2008)

      Fig.  11.  Eu/Sm-Sm/Yb diagram of Wufeng-Longmaxi Formation shales

      图  12  五峰‒龙马溪组构造背景判别图解

      图据Bhatia and Crook(1986);OIA.大洋岛弧;CIA.大陆岛弧;ACM.活动大陆边缘;PM.被动大陆边缘

      Fig.  12.  Tectonic setting discrimination diagrams of the Wufeng-Longmaxi Formation

      表  1  五峰-龙马溪组页岩TOC(%)及微量元素(μg/g)测试结果

      Table  1.   Test results of TOC (%) and trace elements (μg/g) of the Wufeng-Longmaxi Formation shales

      样品号 深度(m) 层位 TOC Sc V Cr Co Ni Zn Sr Mo Ba Th U Zr
      AY2-1 1 957.05 龙马溪组 3.65 6.84 350.88 52.18 9.36 102.53 154.56 141.49 31.20 912.91 9.45 15.61 45.98
      AY2-2 1 959.10 龙马溪组 3.63 8.10 470.09 29.95 9.45 104.92 230.50 140.66 34.88 1 047.62 9.79 27.10 50.98
      AY2-3 1 963.13 龙马溪组 2.99 6.49 658.15 59.38 9.72 156.47 243.64 111.03 39.08 2 009.61 8.85 3.34 42.58
      AY2-4 1 969.26 龙马溪组 5.27 6.91 593.10 62.85 9.30 144.54 302.28 88.63 56.70 926.93 9.28 17.73 39.51
      AY2-5 1 970.07 观音桥段 0.34 5.25 71.98 28.95 4.02 41.75 38.46 432.58 1.48 1 367.51 5.75 7.34 32.40
      AY2-6 1 972.25 五峰组 5.04 8.49 487.21 59.49 10.00 126.56 275.72 87.73 39.00 945.05 10.78 1.10 62.03
      AY2-7 1 975.33 五峰组 2.82 19.02 184.54 101.61 22.20 101.54 482.4 139.61 2.67 980.00 24.96 2.76 231.77
      AY3-1 2 471.00 龙马溪组 3.91 8.01 520.47 86.95 12.47 148.68 234.95 161.05 37.38 1 256.41 13.66 19.81 80.55
      AY3-2 2 473.70 龙马溪组 4.17 6.78 394.51 83.17 10.32 102.23 139.62 150.80 35.28 992.62 9.79 19.12 49.65
      AY3-3 2 477.04 龙马溪组 4.33 6.65 388.05 81.24 9.57 91.42 181.68 136.94 36.88 1 027.27 9.29 21.77 54.21
      AY3-4 2 480.00 龙马溪组 4.58 5.43 608.47 53.51 8.75 112.65 191.52 243.03 28.92 1 037.36 7.63 14.43 40.45
      AY3-5 2 482.00 龙马溪组 5.45 4.93 627.76 80.11 8.54 141.84 236.83 265.28 30.77 1 039.79 7.14 14.00 33.66
      AY3-6 2 484.30 龙马溪组 6.09 6.88 836.94 109.11 11.17 149.68 368.28 70.84 52.08 1 029.7 8.97 30.28 49.69
      AY3-7 2 486.50 观音桥段 0.92 6.58 69.77 56.80 4.89 39.05 54.15 616.19 1.60 2 734.62 7.46 1.93 38.89
      AY3-8 2 488.00 五峰组 4.12 7.82 552.12 85.03 6.86 66.63 184.22 90.10 18.85 926.15 10.38 13.53 109.02
      AY3-9 2 491.63 五峰组 4.60 14.86 340.54 176.45 9.65 76.78 286.74 118.22 1.08 981.75 17.89 6.65 126.90
      平均值 8.07 447.16 75.42 9.77 106.70 225.35 187.14 27.99 1 200.96 10.69 13.53 68.02
      上地壳丰度 10.00 70.00 44.00 12.00 21.00 63.00 300.00 0.60 640.00 9.50 1.80 170.00
      浓集系数 0.80 6.40 1.70 0.80 5.10 3.60 0.60 46.70 1.90 1.10 7.50 0.40
      下载: 导出CSV

      表  2  五峰-龙马溪组页岩稀土元素(μg/g)分析结果

      Table  2.   Test results of rare earth elements (μg/g) of the Wufeng-Longmaxi Formation shales

      样品号 层位 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
      AY2-1 龙马溪组 27.69 47.78 5.96 23.13 4.54 0.94 4.29 0.67 3.55 0.67 1.71 0.29 1.95 0.28
      AY2-2 龙马溪组 28.18 48.30 6.10 23.61 4.58 0.90 4.24 0.66 2.78 0.66 1.73 0.31 2.06 0.30
      AY2-3 龙马溪组 25.22 43.88 5.49 21.88 4.17 0.85 3.93 0.6 3.14 0.60 1.59 0.28 1.93 0.28
      AY2-4 龙马溪组 27.43 51.32 6.51 27.07 5.37 1.02 4.67 0.57 3.31 0.61 1.53 0.28 1.90 0.26
      AY2-5 观音桥段 17.85 30.38 3.47 15.26 3.18 0.94 3.26 0.54 3.07 0.62 1.70 0.30 1.99 0.28
      AY2-6 五峰组 29.44 47.66 5.93 22.46 4.20 0.73 3.99 0.59 3.13 0.61 1.67 0.31 2.21 0.31
      AY2-7 五峰组 62.21 116.92 12.05 43.91 7.66 1.19 6.96 1.10 6.23 1.26 3.19 0.68 4.72 0.67
      AY3-1 龙马溪组 31.24 56.33 7.56 27.57 5.34 1.08 4.44 0.69 3.59 0.72 2.05 0.32 2.08 0.33
      AY3-2 龙马溪组 25.74 46.56 6.27 23.50 4.48 0.91 3.76 0.60 3.10 0.60 1.70 0.27 1.71 0.27
      AY3-3 龙马溪组 26.43 44.08 6.11 22.68 4.58 0.94 3.88 0.61 3.14 0.64 1.78 0.27 1.78 0.28
      AY3-4 龙马溪组 21.07 36.82 5.19 19.36 3.80 0.79 3.07 0.49 2.49 0.49 1.44 0.22 1.50 0.24
      AY3-5 龙马溪组 18.34 29.88 4.69 17.96 3.60 0.78 2.98 0.47 2.38 0.48 1.36 0.21 1.38 0.24
      AY3-6 龙马溪组 27.98 48.03 6.65 26.13 5.01 0.99 4.08 0.61 3.08 0.59 1.68 0.26 1.76 0.27
      AY3-7 观音桥段 20.88 32.31 4.73 18.46 3.78 1.40 3.29 0.58 3.33 0.69 1.94 0.30 1.90 0.29
      AY3-8 五峰组 30.87 47.14 6.41 23.65 4.70 0.80 3.75 0.57 3.12 0.68 2.14 0.35 2.45 0.38
      AY3-9 五峰组 47.06 68.91 9.23 30.54 4.84 0.85 3.96 0.64 3.57 0.78 2.60 0.46 3.40 0.55
      平均值 29.23 49.77 6.40 24.20 4.61 0.94 4.03 0.62 3.31 0.67 1.86 0.32 2.17 0.33
      上地壳丰度 33.00 64.00 7.30 28.0 5.00 1.12 4.40 0.67 4.00 0.80 2.30 0.34 3.24 0.33
      下载: 导出CSV

      表  3  研究区样品与不同构造背景沉积盆地杂砂岩的REE特征对比

      Table  3.   The comparison of REE characteristic parameters with those from graywackes in different settings

      构造背景 La (µg/g) Ce (µg/g) ∑REE (µg/g) La/Yb LREE/HREE LaN/YbN δEu
      大洋岛弧 8±1.7 19±3.7 58±10 4.2±1.3 3.8±0.9 2.8±0.9 1.04±0.11
      大陆岛弧 27±4.5 59±8.2 146±20 11.0±3.6 7.7±1.7 7.5±2.5 0.79±0.13
      活动大陆边缘 37 78 186 12.5 9.1 8.5 0.6
      被动大陆边缘 39 85 210 15.9 8.5 10.8 0.56
      研究区平均值 29.23 49.77 128.47 13.53 8.52 9.14 0.69
      校正值 24.36 41.47 107.06 13.53 8.52 9.14 0.69
      下载: 导出CSV
    • Abanda, P. A., Hannigan, R. E., 2006. Effect of Diagenesis on Trace Element Partitioning in Shales. Chemical Geology, 230(1-2): 42-59. https://doi.org/10.1016/j.chemgeo.2005.11.011
      Alexander, B. W., Bau, M., Andersson, P., et al., 2008. Continentally-Derived Solutes in Shallow Archean Seawater: Rare Earth Element and Nd Isotope Evidence in Iron Formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72(2): 378-394. https://doi.org/10.1016/j.gca.2007.10.028
      Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): PA1016. https://doi.org/10.1029/2004PA001112
      Algeo, T. J., Marenco, P. J., Saltzman, M. R., 2016. Co-Evolution of Oceans, Climate, and the Biosphere during the 'Ordovician Revolution': A Review. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 1-11. https://doi.org/10.1016/j.palaeo.2016.05.015
      Algeo, T. J., Rowe, H., 2012. Paleoceanographic Applications of Trace-Metal Concentration Data. Chemical Geology, 324-325: 6-18. https://doi.org/10.1016/j.chemgeo.2011.09.002
      Alkhafaji, M. W., Aljubouri, Z. A., Aldobouni, I. A., 2015. Depositional Environment of the Lower Silurian Akkas Hot Shales in the Western Desert of Iraq: Results from an Organic Geochemical Study. Marine and Petroleum Geology, 64: 294-303. https://doi.org/10.1016/j.marpetgeo.2015.02.012
      Allègre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1-25. https://doi.org/10.1016/0012-821X(78)90123-1
      Bau, M., Dulski, P., 1999. Comparing Yttrium and Rare Earths in Hydrothermal Fluids from the Mid-Atlantic Ridge: Implications for Y and REE Behaviour during Near-Vent Mixing and for the Y/Ho Ratio of Proterozoic Seawater. Chemical Geology, 155(1-2): 77-90. https://doi.org/10.1016/S0009-2541(98)00142-9
      Berry, W. B. N., Wilde, P., 1978. Progressive Ventilation of the Oceans: An Explanation for the Distribution of the Lower Paleozoic Black Shales. American Journal of Science, 278(3): 257-275. https://doi.org/10.2475/ajs.278.3.257
      Bhatia, M. R., 1985. Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks: Provenance and Tectonic Control. Sedimentary Geology, 45(1-2): 97-113. https://doi.org/10.1016/0037-0738(85)90025-9
      Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/bf00375292
      Bhatia, M. R., Taylor, S. R., 1981. Trace-Element Geochemistry and Sedimentary Provinces: A Study from the Tasman Geosyncline, Australia. Chemical Geology, 33(1-4): 115-125. https://doi.org/10.1016/0009-2541(81)90089-9
      Bond, D. P. G., Wignall, P. B., 2010. Pyrite Framboid Study of Marine Permian-Triassic Boundary Sections: A Complex Anoxic Event and Its Relationship to Contemporaneous Mass Extinction. Bulletin of the Geological Society of America, 122(7-8): 1265-1279. https://doi.org/10.1130/B30042.1
      Brenchley, P. J., Marshall, J. D., Carden, G. A. F., et al., 1994. Bathymetric and Isotopic Evidence for a Short-Lived Late Ordovician Glaciation in a Greenhouse Period. Geology, 22(4): 295-298. https://doi.org/10.1130/0091-7613(1994)0220295:baiefa>2.3.co;2 doi: 10.1130/0091-7613(1994)0220295:baiefa>2.3.co;2
      Chen, L., Lu, Y. C., Jiang, S., et al., 2015. Heterogeneity of the Lower Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin of China. Marine and Petroleum Geology, 65: 232-246. https://doi.org/10.1016/j.marpetgeo.2015.04.003
      Chen, X., 1990. Graptolite Depth Zonation. Acta Palaeontologica Sinica, 29(5): 507-526 (in Chinese).
      Chen, X., Rong, J. Y., Fan, J. X., et al., 2006. The Global Boundary Stratotype Section and Point (GSSP) for the Base of the Hirnantian Stage (the Uppermost of the Ordovician System). Episodes, 29(3): 183-196. https://doi.org/10.18814/epiiugs/2006/v29i3/004
      Chen, X., Xiao, C. X., Chen, H. Y., 1987. Wufengian (Ashgillian) Graptolite Faunal Differentiation and Anoxic Environment in South China. Acta Palaeontologica Sinica, 26(3): 326-338 (in Chinese). http://search.cnki.net/down/default.aspx?filename=GSWX198703014&dbcode=CJFD&year=1987&dflag=pdfdown
      Choi, J. H., Hariya, Y., 1992. Geochemistry and Depositional Environment of Mn Oxide Deposits in the Tokoro Belt, Northeastern Hokkaido, Japan. Economic Geology, 87(5): 1265-1274. https://doi.org/10.2113/gsecongeo.87.5.1265
      Cocks, L. R. M., Torsvik, T. H., 2013. The Dynamic Evolution of the Palaeozoic Geography of Eastern Asia. Earth-Science Reviews, 117: 40-79. https://doi.org/10.1016/j.earscirev.2012.12.001
      Condie, K. C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 104(1-4): 1-37. https://doi.org/10.1016/0009-2541(93)90140-E
      Cronan, D. S., 1980. Underwater Minerals. American Academic Press, New York.
      Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145(1-4): 65-78. https://doi.org/10.1016/S0012-821X(96)00204-X
      Curiale, J. A., Curtis, J. B., 2016. Organic Geochemical Applications to the Exploration for Source-Rock Reservoirs-A Review. Journal of Unconventional Oil and Gas Resources, 13: 1-31. https://doi.org/10.1016/j.juogr.2015.10.001
      Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11): 1921-1938. https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d
      Davies, J. R., Waters, R. A., Molyneux, S. G., et al., 2016. Gauging the Impact of Glacioeustasy on a Mid-Latitude Early Silurian Basin Margin, Mid Wales, UK. Earth-Science Reviews, 156: 82-107. https://doi.org/10.1016/j.earscirev.2016.02.004
      Elderfield, H., Greaves, M. J., 1982. The Rare Earth Elements in Seawater. Nature, 296(5854): 214-219. https://doi.org/10.1038/296214a0
      Feng, Z. Z., Peng, Y. M., Jin, Z. K., et al., 2003. Lithofacies Palaeogeography of the Middle Ordovician in China. Journal of Palaeogeography, 5(3): 263-278 (in Chinese with English abstract).
      Francois, R., 1988. A Study on the Regulation of the Concentrations of Some Trace Metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British Columbia, Canada. Marine Geology, 83(1-4): 285-308. https://doi.org/10.1016/0025-3227(88)90063-1
      Gai, S. H., Liu, H. Q., He, S. L., et al., 2016. Shale Reservoir Characteristics and Exploration Potential in the Target: A Case Study in the Longmaxi Formation from the Southern Sichuan Basin of China. Journal of Natural Gas Science and Engineering, 31: 86-97. https://doi.org/10.1016/j.jngse.2016.02.060
      Gromet, L. P., Haskin, L. A., Korotev, R. L., et al., 1984. The "North American Shale Composite": Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482. https://doi.org/10.1016/0016-7037(84)90298-9
      Gu, X. X., Liu, J. M., Zheng, M. H., et al., 2002. Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence. Journal of Sedimentary Research, 72(3): 393-407. https://doi.org/10.1306/081601720393
      Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091
      Harper, D. A. T., Hammarlund, E. U., Rasmussen, C. M. Ø., 2014. End Ordovician Extinctions: A Coincidence of Causes. Gondwana Research, 25(4): 1294-1307. https://doi.org/10.1016/j.gr.2012.12.021
      Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 99(1-3): 65-82. https://doi.org/10.1016/0009-2541(92)90031-Y
      Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068
      Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-X
      Leggett, J. K., 1980. British Lower Palaeozoic Black Shales and Their Palaeo-Oceanographic Significance. Journal of the Geological Society, 137(2): 139-156. https://doi.org/10.1144/gsjgs.137.2.0139
      Lewan, M. D., Maynard, J. B., 1982. Factors Controlling Enrichment of Vanadium and Nickel in the Bitumen of Organic Sedimentary Rocks. Geochimica et Cosmochimica Acta, 46(12): 2547-2560. https://doi.org/10.1016/0016-7037(82)90377-5
      Li, J., Yu, B. S., Guo, F., 2013. Depositional Setting and Tectonic Background Analysis on Lower Cambrian Black Shales in the North of Guizhou Province. Acta Sedimentologica Sinica, 31(1): 20-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201301004.htm
      Liang, C., Jiang, Z. X., Yang, Y. T., et al., 2012. Shale Lithofacies and Reservoir Space of the Wufeng-Longmaxi Formation, Sichuan Basin, China. Petroleum Exploration and Development, 39(6): 736-743. https://doi.org/10.1016/S1876-3804(12)60098-6
      Liang, D. G., Guo, T. L., Bian, L. Z., et al., 2009. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 3): Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks. Marine Origin Petroleum Geology, 14(2): 1-19 (in Chinese with English abstract). http://www.researchgate.net/publication/284772485_Some_progresses_on_studies_of_hydrocarbon_generation_and_accumulation_in_marine_sedimentary_regions_Southern_China_Part_3_Controlling_factors_on_the_sedimentary_facies_and_development_of_Palaeozoic_ma
      Loucks, R. G., Ruppel, S. C., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. https://doi.org/10.1306/11020606059
      Lu, Y. B., Ma, Y. Q., Wang, Y. X., et al., 2017. The Sedimentary Response to the Major Geological Events and Lithofacies Characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area. Earth Science, 42(7): 1169-1184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707012.htm
      Lüning, S., Craig, J., Loydell, D. K., et al., 2000. Lower Silurian 'hot Shales' in North Africa and Arabia: Regional Distribution and Depositional Model. Earth-Science Reviews, 49(1-4): 121-200. https://doi.org/10.1016/S0012-8252(99)00060-4
      Ma, Y. Q., Fan, M. J., Lu, Y. C., et al., 2016. Geochemistry and Sedimentology of the Lower Silurian Longmaxi Mudstone in Southwestern China: Implications for Depositional Controls on Organic Matter Accumulation. Marine and Petroleum Geology, 75: 291-309. https://doi.org/10.1016/j.marpetgeo.2016.04.024
      Mou, C. L., Ge, X. Y., Xu, X. S., et al., 2014. Lithofacies Palaeogeography of the Late Ordovician and Its Petroleum Geological Significance in Middle-Upper Yangtze Region. Journal of Palaeogeography, 16(4): 427-440 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GDLX201404001.htm
      Mou, C. L., Zhou, K. K., Liang, W., et al., 2011. Early Paleozoic Sedimentary Environment of Hydrocarbon Source Rocks in the Middle-Upper Yangtze Region and Petroleum and Gas Exploration. Acta Geologica Sinica, 85(4): 526-532 (in Chinese with English abstract). http://www.cqvip.com/QK/95080X/201104/38280138.html
      Peter, J. M., Scott, S. D., 1988. Mineralogy, Composition, and Fluid-Inclusion Microthermometry of Seafloor Hydrothermal Deposits in the Southern Trough of Guaymas Basin, Gulf of California. Canadian Mineralogist, 26(3): 567-587. http://ci.nii.ac.jp/naid/80004314197
      Ran, B., Liu, S. G., Jansa, L., et al., 2015. Origin of the Upper Ordovician-Lower Silurian Cherts of the Yangtze Block, South China, and Their Palaeogeographic Significance. Journal of Asian Earth Sciences, 108: 1-17. https://doi.org/10.1016/j.jseaes.2015.04.007
      Rong, J. Y., 1984. Ecostratigraphic Evidence of the Upper Ordovician Regressive Sequences and the Effect of Glaciation. Journal of Stratigraphy, 8(1): 19-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ198401002.htm
      Rong, J. Y., Chen, X., Wang, Y., et al., 2011. The Changes of the Ancient Land in Central Guizhou at the Turn of the Ordovician and Silurian: Evidence and Enlightenment. Science in China (Series D), 41(10): 1407-1415 (in Chinese).
      Rong, J. Y., Zhan, R. B., 1999. Ordovician-Silurian Brachiopod Fauna Turnover in South China. Geoscience, 13(4): 390-394 (in Chinese with English abstract). http://ir.nigpas.ac.cn/bitstream/332004/2973/2/42.pdf
      Rowe, H. D., Loucks, R. G., Ruppel, S. C., et al., 2008. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk Geochemical Inferences and Mo-TOC Constraints on the Severity of Hydrographic Restriction. Chemical Geology, 257(1-2): 16-25. https://doi.org/10.1016/j.chemgeo.2008.08.006
      Russell, A. D., Morford, J. L., 2001. The Behavior of Redox-Sensitive Metals across a Laminated-Massive-Laminated Transition in Saanich Inlet, British Columbia. Marine Geology, 174(1-4): 341-354. https://doi.org/10.1016/S0025-3227(00)00159-6
      Scheffler, K., Buehmann, D., Schwark, L, 2006. Analysis of Late Palaeozoic Glacial to Postglacial Sedimentary Successions in South Africa by Geochemical Proxies-Response to Climate Evolution and Sedimentary Environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1-2): 184-203. https://doi.org/10.1016/j.palaeo.2006.03.059
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Journal of Geology, 94(4): 57-72. https://doi.org/10.1086/629067
      Tenger, Liu, W. H., Xu, Y. C., et al., 2006. Comprehensive Geochemical Identification of Highly Evolved Marine Carbonate Rocks as Hydrocarbon-Source Rocks as Exemplified by the Ordos Basin. Science China Earth Sciences, 49(4): 384-396. https://doi.org/10.1007/s11430-006-0384-7
      Tian, W., Wang, C. S., Bai, Y. S., et al., 2019. Shale Geochemical Characteristics and Enrichment Mechanism of Organic Matter of the Upper Devonian Shetianqiao Formation Shale in Lianyuan Sag, Central Hunan. Earth Science, 44(11): 3794-3811 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911019.htm
      Toth, J. R., 1980. Deposition of Submarine Crusts Rich in Manganese and Iron. Geological Society of America Bulletin, 91(1): 44. https://doi.org/10.1130/0016-7606(1980)9144:doscri>2.0.co;2 doi: 10.1130/0016-7606(1980)9144:doscri>2.0.co;2
      Wang, Y. M., Li, X. J., Dong, D. Z., et al., 2017. Major Controlling Factors for the High-Quality Shale of Wufeng-Longmaxi Formation, Sichuan Basin. Energy Exploration & Exploitation, 35(4): 444-462. https://doi.org/10.1177/0144598717698080
      Wang, Z. G., Yu, X. Y., Zhao, Z. H., 1989. Geochemistry of Rare Earth Elements. Science Press, Beijing (in Chinese).
      Wignall, P. B., Newton, R., 1998. Pyrite Framboid Diameter as a Measure of Oxygen Deficiency in Ancient Mudrocks. American Journal of Science, 298(7): 537-552. https://doi.org/10.2475/ajs.298.7.537
      Wignall, P. B., Twitchett, R. J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272(5265): 1155-1158. https://doi.org/10.1126/science.272.5265.1155
      Wilkin, R. T., Barnes, H. L., Brantley, S. L., 1996. The Size Distribution of Framboidal Pyrite in Modern Sediments: An Indicator of Redox Conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. https://doi.org/10.1016/0016-7037(96)00209-8
      Yan, C. N., Jin, Z. J., Zhao, J. H., et al., 2018. Influence of Sedimentary Environment on Organic Matter Enrichment in Shale: A Case Study of the Wufeng and Longmaxi Formations of the Sichuan Basin, China. Marine and Petroleum Geology, 92: 880-894. https://doi.org/10.1016/j.marpetgeo.2018.01.024
      Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2009. Geochemical Changes across the Ordovician-Silurian Transition on the Yangtze Platform, South China. Science China Earth Sciences, 52(1): 38-54. https://doi.org/10.1007/s11430-008-0143-z
      Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2010. Large-Scale Climatic Fluctuations in the Latest Ordovician on the Yangtze Block, South China. Geology, 38(7): 599-602. https://doi.org/10.1130/g30961.1
      Yan, D. T., Wang, H., Fu, Q. L., et al., 2015. Geochemical Characteristics in the Longmaxi Formation (Early Silurian) of South China: Implications for Organic Matter Accumulation. Marine and Petroleum Geology, 65: 290-301. https://doi.org/10.1016/j.marpetgeo.2015.04.016
      Yan, D. T., Wang, Q. C., Chen, D. Z., et al., 2008. Sedimentary Environment and Development Controls of the Hydrocarbon Sources Beds: the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Yangtze Area. Acta Geologica Sinica, 82(3): 321-327 (in Chinese with English abstract). http://www.cqvip.com/QK/95080X/20083/26857697.html
      Yu, B. S., Dong, H. L., Widom, E., et al., 2009. Geochemistry of Basal Cambrian Black Shales and Cherts from the Northern Tarim Basin, Northwest China: Implications for Depositional Setting and Tectonic History. Journal of Asian Earth Sciences, 34(3): 418-436. https://doi.org/10.1016/j.jseaes.2008.07.003
      Zhan, R. B., Wang, G. X., Wu, R. C., 2010. Late Ordovician Foliomena Fauna (Brachiopoda) of South China. Journal of Earth Science, 21(1): 64-69. https://doi.org/10.1007/s12583-010-0171-4
      Zhang, C.M., Zhang, W.S., Guo, Y.H., 2012. Sedimentary Environment and Its Effect on Hydrocarbon Source Rocks of Longmaxi Formation in Southeast Sichuan and Northern Guizhou. Earth Science Frontiers, 19(1): 136-145 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201201017
      Zhang, T. S., Kershaw, S., Wan, Y., et al., 2000. Geochemical and Facies Evidence for Palaeoenvironmental Change during the Late Ordovician Hirnantian Glaciation in South Sichuan Province, China. Global and Planetary Change, 24(2): 133-152. https://doi.org/10.1016/S0921-8181(99)00063-6
      Zhao, C. J., Kang, Z. H., Hou, Y. H., et al., 2019. Geochemical Characteristics of Rare Earth Element and their Geological Significance of Permian Shales in Lower Yangtze Area. Earth Science, 44(11): 4118-4127 (in Chinese with English abstract).
      Zheng, Y., Anderson, R. F., van Geen, A., et al., 2002. Preservation of Particulate Non-Lithogenic Uranium in Marine Sediments. Geochimica et Cosmochimica Acta, 66(17): 3085-3092. https://doi.org/10.1016/S0016-7037(01)00632-9
      Zhou, L., Algeo, T. J., Shen, J., et al., 2015. Changes in Marine Productivity and Redox Conditions during the Late Ordovician Hirnantian Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 420: 223-234. https://doi.org/10.1016/j.palaeo.2014.12.012
      Zou, C. N., Zhu, R. K., Chen, Z. Q., et al., 2019. Organic-Matter-Rich Shales of China. Earth-Science Reviews, 189: 51-78. https://doi.org/10.1016/j.earscirev.2018.12.002
      陈旭, 1990. 论笔石的深度分带. 古生物学报, 29(5): 507-526. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX199005000.htm
      陈旭, 肖承协, 陈洪冶, 1987. 华南五峰期笔石动物群的分异及缺氧环境. 古生物学报, 26(3): 326-338. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198703013.htm
      冯增昭, 彭勇民, 金振奎, 等, 2003. 中国中奥陶世岩相古地理. 古地理学报, 5(3): 263-278. doi: 10.3969/j.issn.1671-1505.2003.03.001
      李娟, 于炳松, 郭峰, 2013. 黔北地区下寒武统底部黑色页岩沉积环境条件与源区构造背景分析. 沉积学报, 31(1): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201301004.htm
      梁狄刚, 郭彤楼, 边立曾, 等, 2009. 中国南方海相生烃成藏研究的若干新进展(三) 南方四套区域性海相烃源岩的沉积相及发育的控制因素. 海相油气地质, 14(2): 1-19. doi: 10.3969/j.issn.1672-9854.2009.02.001
      陆扬博, 马义权, 王雨轩, 等, 2017. 上扬子地区五峰组-龙马溪组主要地质事件及岩相沉积响应. 地球科学, 42(7): 1169-1184. doi: 10.3799/dqkx.2017.095
      牟传龙, 葛祥英, 许效松, 等, 2014. 中上扬子地区晚奥陶世岩相古地理及其油气地质意义. 古地理学报, 16(4): 427-440. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201404001.htm
      牟传龙, 周恳恳, 梁薇, 等, 2011. 中上扬子地区早古生代烃源岩沉积环境与油气勘探. 地质学报, 85(4): 526-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104009.htm
      戎嘉余, 1984. 上扬子区晚奥陶世海退的生态地层证据与冰川活动影响. 地层学杂志, 8(1): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ198401002.htm
      戎嘉余, 陈旭, 王怿, 等, 2011. 奥陶-志留纪之交黔中古陆的变迁: 证据与启示. 中国科学(D辑), 41(10): 1407-1415. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201110003.htm
      戎嘉余, 詹仁斌, 1999. 华南奥陶、志留纪腕足动物群的更替兼论奥陶纪末冰川活动的影响. 现代地质, 13(4): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199904004.htm
      田巍, 王传尚, 白云山, 等, 2019. 湘中涟源凹陷上泥盆统佘田桥组页岩地球化学特征及有机质富集机理. 地球科学, 44(11): 3794-3811. doi: 10.3799/dqkx.2019.156
      王中刚, 于学元, 赵振华, 1989. 稀土元素地球化学. 北京: 科学出版社.
      严德天, 王清晨, 陈代钊, 等, 2008. 扬子及周缘地区上奥陶统-下志留统烃源岩发育环境及其控制因素. 地质学报, 82(3): 321-327. doi: 10.3321/j.issn:0001-5717.2008.03.005
      张春明, 张维生, 郭英海, 2012. 川东南-黔北地区龙马溪组沉积环境及对烃源岩的影响. 地学前缘, 19(1): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201201016.htm
      赵晨君, 康志宏, 侯阳红, 等, 2019. 下扬子二叠系泥页岩稀土元素地球化学特征及地质意义. 地球科学, 44(11): 4118-4127. doi: 10.3799/dqkx.2019.274
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  941
    • HTML全文浏览量:  822
    • PDF下载量:  113
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-06-27
    • 网络出版日期:  2021-10-14
    • 刊出日期:  2021-10-14

    目录

      /

      返回文章
      返回