• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    张裂陆缘地壳结构特征与张裂模式

    袁野 赵明辉 贺恩远 关慧心 高金尉 张佳政

    袁野, 赵明辉, 贺恩远, 关慧心, 高金尉, 张佳政, 2021. 张裂陆缘地壳结构特征与张裂模式. 地球科学, 46(3): 801-816. doi: 10.3799/dqkx.2020.361
    引用本文: 袁野, 赵明辉, 贺恩远, 关慧心, 高金尉, 张佳政, 2021. 张裂陆缘地壳结构特征与张裂模式. 地球科学, 46(3): 801-816. doi: 10.3799/dqkx.2020.361
    Yuan Ye, Zhao Minghui, He Enyuan, Guan Huixin, Gao Jinwei, Zhang Jiazheng, 2021. The Crustal Structures and Rift-Breakup Models of Typical Rifted Margins. Earth Science, 46(3): 801-816. doi: 10.3799/dqkx.2020.361
    Citation: Yuan Ye, Zhao Minghui, He Enyuan, Guan Huixin, Gao Jinwei, Zhang Jiazheng, 2021. The Crustal Structures and Rift-Breakup Models of Typical Rifted Margins. Earth Science, 46(3): 801-816. doi: 10.3799/dqkx.2020.361

    张裂陆缘地壳结构特征与张裂模式

    doi: 10.3799/dqkx.2020.361
    基金项目: 

    国家自然科学基金项目 41730532

    国家自然科学基金项目 91958212

    国家自然科学基金项目 42002222

    国家自然科学基金项目 91858207

    国家自然科学基金项目 91858212

    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 GML2019ZD0204

    广东省基金团队项目 2017A030312002

    详细信息
      作者简介:

      袁野(1995-), 男, 在读博士研究生, 研究方向为海洋深部地球物理.ORCID: 0000-0002-0651-4593.E-mail: yy@scsio.ac.cn

      通讯作者:

      赵明辉, E-mail: mhzhao@scsio.ac.cn

    • 中图分类号: P736.15

    The Crustal Structures and Rift-Breakup Models of Typical Rifted Margins

    • 摘要: 张裂陆缘作为威尔逊旋回中关键的一环,是研究地球板块构造及其演化过程的重要构造单元.本文阐述了3种类型张裂陆缘(富岩浆型、贫岩浆型和中间型)的地壳结构特征,总结了它们的演化过程与机制,分析表明构造作用、岩浆活动程度、先存结构等是形成不同类型张裂陆缘的主要控制因素.针对南海北部陆缘复杂的构造属性与演化机制问题,提出了今后重点研究方向:南海北部陆缘是否同时具有贫岩浆型与富岩浆型的部分特征;南海北部陆缘丰富的岩浆活动与蛇纹石化地幔剥露能否共存.在南海北部陆缘同时开展三维深地震探测、物理模拟和数值模拟几种手段联合研究,相互约束,共同验证,是建立科学可信的张裂-破裂机制地质模型的必要途径.

       

    • 图  1  不同张裂大陆边缘类型的3种岩石圈结构

      a. 典型富岩浆型陆缘(如南大西洋南部), 参考Geoffroy et al.(2015);b. 典型贫岩浆型陆缘(如北大西洋中部), 参考Franke (2013)Sawyer et al.(2007);c. 中间型陆缘(如南海中北部), 参考Gao et al.(2015)

      Fig.  1.  Schematic of the lithospheric architectures of three-type rifted margins (not to scale)

      图  2  佩洛塔斯-纳米比亚共轭陆缘地壳结构

      a. 共轭地震剖面PS1-0090和Transect2位置, 褐色部分为SDR范围, FZ为断裂带;b. PS1-0090和Transect2共轭测线地壳结构, 据Geoffroy et al.(2015)修改, LC1为岩浆侵入的塑性流动的中-下地壳, 速度一般大于7.1 km/s;LC2为岩浆侵入到镁铁质下地壳形成的高速体, 速度一般大于7.3 km/s

      Fig.  2.  The crustal structure of the Pelotas-Namibia conjugate continental margin

      图  3  富岩浆型陆缘构造演化模式

      Geoffroy et al.(2015, 2020).LC1:岩浆侵入的塑性流动的中-下地壳, 速度一般大于7.1 km/s;LC2:岩浆侵入到镁铁质下地壳形成的高速体, 速度一般大于7.3 km/s

      Fig.  3.  Tectonic evolution of magma-rich margin

      图  4  伊比利亚-纽芬兰共轭陆缘地壳结构

      a. 共轭地震剖面位置, FZ为断裂带;b. SCREECH1和ISE1共轭测线的地壳结构, 据Sutra et al.(2012)修改

      Fig.  4.  Conjugated seismic profiles from Iberia-Newfoundland

      图  5  坎波斯-安哥拉(Campos-Angola)共轭陆缘地壳结构

      a. 共轭地震测线位置FZ:断裂带; b. TGS和GXT共轭测线地壳结构, 据Unternehr et al.(2010)修改

      Fig.  5.  Conjugated seismic profiles from Campos-Angola

      图  6  贫岩浆型张裂陆缘Ⅰ型和Ⅱ型的特征

      Huismans and Beaumont(2011).图a中:1.主要的盆地控制断层贯穿地壳;2.在狭窄的范围内(小于100 km)地壳急剧减薄;3.通常出现几何形状不对称和裂谷侧翼抬升;4.地壳岩石圈早于地幔岩石圈破裂;5.蛇纹石化地幔橄榄岩被剥露、暴露在洋陆转换带之间;6.破裂期间的岩浆作用有限, 形成贫岩浆型陆缘;7.地壳裂开后缓慢形成新生洋中脊或地壳体系.图b中:A.宽阔的减薄陆壳区域;B.同裂陷早期发育沉积盆地断层;C.同裂陷晚期不发生构造变形的沉积物;D.在“凹陷”盆地的浅水环境下, 这些同裂陷晚期沉积物被蒸发岩和其他沉积物盖住;E.软流圈驱动地幔物质上涌底侵, 导致裂陷期沉降有限;F.同裂陷期, 裂谷侧翼未发生抬升;G.没有明显的地幔岩石圈暴露, 但在同裂陷期存在岩浆活动;H.地壳下部区域的地震速度与岩浆底侵一致;I.地壳裂开后迅速形成新生洋中脊或地壳体系

      Fig.  6.  Characteristic of type I and type II magma-poor rifted margins

      图  7  1555测线地震剖面解释图及IODP钻探井位

      p为投影到剖面上的井, 据Sun et al.(2018)修改

      Fig.  7.  Interpretation of the reflective seismic line 1555 and IODP drilling sites

      图  8  南海IODP钻探井位图和北部陆缘洋陆转换带三维OBS深地震探测实验

      a. IODP349、367和368航次钻探井位平面图.前人地震探测(图中黑线)据赵明辉等(2018), 磁异常条带(图中黄线)据Briais et al.(1993).黑色方框为图 8b的范围.b. 南海北部陆缘洋陆转换带三维OBS深地震探测图.红色圆圈为OBS位置, 黑色直线为放炮测线, 白色星星为IODP钻孔位置, 黄线为磁异常条带, 据Briais et al.(1993)

      Fig.  8.  IODP drilling sites in the northern margin of the South China Sea and 3D OBS seismic experiment at COT zone in northern SCS margin

      表  1  不同类型张裂陆缘特征对比

      Table  1.   Contrasts on the structural and tectonic features of the different rifted continental margins

      张裂陆缘类型 贫岩浆型陆缘 富岩浆型陆缘 南海北部陆缘
      形成机制 构造伸展为主, 铲式正断层、拆离断层发育 岩浆活动为主, LIPs和SDRs发育 张裂期以构造拉张为主, 张裂后期-破裂期存在岩浆活动
      向海倾斜反射层(SDR) 内SDR和外SDR发育
      岩浆活动 少量 岩浆底侵, 下地壳高速层发育 东西两侧存在分布差异, 东多西少
      蛇纹石化地幔 拆离断层和蛇纹石化地幔发育 IODP并未钻遇, 东北部推测可能存在
      下载: 导出CSV
    • [1] Bauer, K., Neben, S., Schreckenberger, B., et al., 2000. Deep Structure of the Namibia Continental Margin as Derived from Integrated Geophysical Studies. Journal of Geophysical Research: Solid Earth, 105(B11): 25829-25853. https://doi.org/10.1029/2000JB900227
      [2] Bhattacharya, G. C., Chaubey, A. K., Murty, G. P. S., et al., 1994. Evidence for Seafloor Spreading in the Laxmi Basin, Northeastern Arabian Sea. Earth and Planetary Science Letters, 125(1-4): 211-220. https://doi.org/10.1016/0012-821X(94)90216-X
      [3] Blaich, O. A., Faleide, J. I., Tsikalas, F., 2011. Crustal Breakup and Continent-Ocean Transition at South Atlantic Conjugate Margins. Journal of Geophysical Research: Solid Earth, 116(B1): B01402. https://doi.org/10.1029/2010JB007686
      [4] Boillot, G., Agrinier, P., Beslier, M.O., et al., 1995. A Lithospheric Syn-Rift Shear Zone at the Ocean-Continent Transition: Preliminary Results of the GALINAUTE II Cruise (Nautile Dives on the Galicia Bank, Spain). Comptes Rendus - Academie Des Sciences, Serie II: Sciences De La Terre et Des Planetes, 321(12): 1171-1178 http://www.researchgate.net/publication/284977955_A_lithospheric_syn-rift_shear_zone_at_the_ocean-continent_transition_Preliminary_results_of_the_GALINAUTE_II_cruise_Nautile_dives_on_the_Galicia_Bank_Spain
      [5] Bradley, D. C., 2008. Passive Margins through Earth History. Earth-Science Reviews, 91(1-4): 1-26. https://doi.org/10.1016/j.earscirev.2008.08.001
      [6] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92JB02280
      [7] Brune, S., Heine, C., Clift, P. D., et al., 2017. Rifted Margin Architecture and Crustal Rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine and Petroleum Geology, 79: 257-281. https://doi.org/10.1016/j.marpetgeo.2016.10.018
      [8] Campbell, I. H., 2005. Large Igneous Provinces and the Mantle Plume Hypothesis. Elements, 1(5): 265-269. https://doi.org/10.2113/gselements.1.5.265
      [9] Clift, P.D., Lin, J., 2001b. Preferential Mantle Lithospheric Extension under the South China Margin. Marine and Petroleum Geology, 18(8): 929-945. https://doi.org/10.1016/S0264-8172(01)00037-X
      [10] Clift, P. D., Lin, J., Party, O.L.S., 2001a. Patterns of Extension and Magmatism along the Continent-Ocean Boundary, South China Margin. Geological Society, London, Special Publications, 187(1): 489-510. https://doi.org/10.1144/gsl.sp.2001.187.01.24
      [11] Coffin, M. F., Eldholm, O., 1994. Large Igneous Provinces: Crustal Structure, Dimensions, and External Consequences. Reviews of Geophysics, 32(1): 1-36. https://doi.org/10.1029/93RG02508
      [12] Coltice, N., Phillips, B. R., Bertrand, H., et al., 2007. Global Warming of the Mantle at the Origin of Flood Basalts over Supercontinents. Geology, 35(5): 391-394. https://doi.org/10.1130/g23240a.1
      [13] Contrucci, I., Matias, L., Moulin, M., et al., 2004. Deep Structure of the West African Continental Margin (Congo, Zaïre, Angola), between 5°S and 8°S, from Reflection/Refraction Seismics and Gravity Data. Geophysical Journal International, 158(2): 529-553. https://doi.org/10.1111/j.1365-246X.2004.02303.x
      [14] Cowie, L., Angelo, R. M., Kusznir, N., et al., 2017. Structure of the Ocean-Continent Transition, Location of the Continent-Ocean Boundary and Magmatic Type of the Northern Angolan Margin from Integrated Quantitative Analysis of Deep Seismic Reflection and Gravity Anomaly Data. Geological Society, London, Special Publications, 438(1): 159-176. https://doi.org/10.1144/sp438.6
      [15] Cowie, P. A., Underhill, J. R., Behn, M. D., et al., 2005. Spatio-Temporal Evolution of Strain Accumulation Derived from Multi-Scale Observations of Late Jurassic Rifting in the Northern North Sea: A Critical Test of Models for Lithospheric Extension. Earth and Planetary Science Letters, 234(3-4): 401-419. https://doi.org/10.1016/j.epsl.2005.01.039
      [16] Davison, I., 2007. Geology and Tectonics of the South Atlantic Brazilian Salt Basins. Geological Society, London, Special Publications, 272(1): 345-359. https://doi.org/10.1144/gsl.sp.2007.272.01.18
      [17] Dean, S. M., Minshull, T. A., Whitmarsh, R. B., et al., 2000. Deep Structure of the Ocean-Continent Transition in the Southern Iberia Abyssal Plain from Seismic Refraction Profiles: The IAM-9 Transect at 40°20'N. Journal of Geophysical Research: Solid Earth, 105(B3): 5859-5885. https://doi.org/10.1029/1999JB900301
      [18] Demercian, S., Szatmari, P., Cobbold, P. R., 1993. Style and Pattern of Salt Diapirs due to Thin-Skinned Gravitational Gliding, Campos and Santos Basins, Offshore Brazil. Tectonophysics, 228(3-4): 393-433. https://doi.org/10.1016/0040-1951(93)90351-J
      [19] Ding, W. W., Sun, Z., Mohn, G., et al., 2020. Lateral Evolution of the Rift-to-Drift Transition in the South China Sea: Evidence from Multi-Channel Seismic Data and IODP Expeditions 367 & 368 Drilling Results. Earth and Planetary Science Letters, 531: 115932. https://doi.org/10.1016/j.epsl.2019.115932
      [20] Dupré, S., Cloetingh, S., Bertotti, G., 2011. Structure of the Gabon Margin from Integrated Seismic Reflection and Gravity Data. Tectonophysics, 506(1-4): 31-45. https://doi.org/10.1016/j.tecto.2011.04.009
      [21] Eldholm, O., Grue, K., 1994. North Atlantic Volcanic Margins: Dimensions and Production Rates. Journal of Geophysical Research: Solid Earth, 99(B2): 2955-2968. https://doi.org/10.1029/93JB02879
      [22] Eldholm, O., Skogseid, J., Planke, S., et al., 1995. Volcanic Margin Concepts. In: Banda, E., Torné, M., Talwani, M., eds., Rifted Ocean-Continent Boundaries. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0043-4_1
      [23] Elkins-Tanton, L. T., Hager, B. H., 2005. Giant Meteoroid Impacts can Cause Volcanism. Earth and Planetary Science Letters, 239(3-4): 219-232. https://doi.org/10.1016/j.epsl.2005.07.029
      [24] Fan, C. Y., Xia, S. H., Zhao, F., et al., 2017. New Insights into the Magmatism in the Northern Margin of the South China Sea: Spatial Features and Volume of Intraplate Seamounts. Geochemistry, Geophysics, Geosystems, 18(6): 2216-2239. https://doi.org/10.1002/2016GC006792
      [25] Fernandez, O., Olaiz, A., Cascone, L., et al., 2020. Geophysical Evidence for Breakup Volcanism in the Angola and Gabon Passive Margins. Marine and Petroleum Geology, 116: 104330. https://doi.org/10.1016/j.marpetgeo.2020.104330
      [26] Franke, D., 2013. Rifting, Lithosphere Breakup and Volcanism: Comparison of Magma-Poor and Volcanic Rifted Margins. Marine and Petroleum Geology, 43: 63-87. https://doi.org/10.1016/j.marpetgeo.2012.11.003
      [27] Gao, J. W., Wu, S. G., McIntosh, K., et al., 2015. The Continent-Ocean Transition at the Mid-Northern Margin of the South China Sea. Tectonophysics, 654: 1-19. https://doi.org/10.1016/j.tecto.2015.03.003
      [28] Geoffroy, L., 2005. Volcanic Passive Margins. Comptes Rendus Geoscience, 337(16): 1395-1408. https://doi.org/10.1016/j.crte.2005.10.006
      [29] Geoffroy, L., Burov, E. B., Werner, P., 2015. Volcanic Passive Margins: Another Way to Break up Continents. Scientific Reports, 5(1): 1-12. https://doi.org/10.1038/srep14828
      [30] Geoffroy, L., Guan, H. X., Gernigon, L., et al., 2020. The Extent of Continental Material in Oceans: C-Blocks and the Laxmi Basin Example. Geophysical Journal International, 222(3): 1471-1479. https://doi.org/10.1093/gji/ggaa215
      [31] González-Fernández, A., Dañobeitia, J. J., Delgado-Argote, L. A., et al., 2005. Mode of Extension and Rifting History of Upper Tiburón and Upper Delfín Basins, Northern Gulf of California. Journal of Geophysical Research: Solid Earth, 110(B1): B01313. https://doi.org/10.1029/2003JB002941
      [32] Guan, H. X., Geoffroy, L., Gernigon, L., et al., 2019. Magmatic Ocean-Continent Transitions. Marine and Petroleum Geology, 104: 438-450. https://doi.org/10.1016/j.marpetgeo.2019.04.003
      [33] Huang, C., Zhang, N., Li, Z. X., et al., 2019. Modeling the Inception of Supercontinent Breakup: Stress State and the Importance of Orogens. Geochemistry, Geophysics, Geosystems, 20(11): 4830-4848. https://doi.org/10.1029/2019GC008538
      [34] Huismans, R., Beaumont, C., 2011. Depth-Dependent Extension, Two-Stage Breakup and Cratonic Underplating at Rifted Margins. Nature, 473(7345): 74-78. https://doi.org/10.1038/nature09988
      [35] Larsen, H. C., Mohn, G., Nirrengarten, M., et al., 2018. Rapid Transition from Continental Breakup to Igneous Oceanic Crust in the South China Sea. Nature Geoscience, 11(10): 782-789. https://doi.org/10.1038/s41561-018-0198-1
      [36] Li, C.F., Lin, J., Kulhanek, D.K., et al., 2015. Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics. International Ocean Discovery Program, College Station.
      [37] Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014GC005567
      [38] Li, J.B., Ding, W.W., Gao, J.Y., et al., 2011. Cenozoic Evolution Model of the Sea-Floor Spreading in South China Sea: New Constraints from High Resolution Geophysical Data. Chinese Journal of Geophysics, 54(12): 3004-3015(in Chinese with English abstract). doi: 10.1002/cjg2.1672/full
      [39] Menzies, M. A., Klemperer, S. L., Ebinger, C. J., et al., 2002. Characteristics of Volcanic Rifted Margins. In: Menzies, M. A., Klemperer, S. L., Ebinger, C. J., et al., eds., Volcanic Rifted Margins. Geological Society of America, Boulder. https://doi.org/10.1130/0-8137-2362-0.1
      [40] Minshull, T. A., 2009. Geophysical Characterisation of the Ocean-Continent Transition at Magma-Poor Rifted Margins. Comptes Rendus Geoscience, 341(5): 382-393. https://doi.org/10.1016/j.crte.2008.09.003
      [41] Mohriak, W. U., Bassetto, M., Vieira, I. S., 1998. Crustal Architecture and Tectonic Evolution of the Sergipe-Alagoas and Jacuípe Basins, Offshore Northeastern Brazil. Tectonophysics, 288(1-4): 199-220. https://doi.org/10.1016/S0040-1951(97)00294-1
      [42] Moulin, M., Aslanian, D., Olivet, J. L., et al., 2005. Geological Constraints on the Evolution of the Angolan Margin Based on Reflection and Refraction Seismic Data (ZaïAngo Project). Geophysical Journal International, 162(3): 793-810. https://doi.org/10.1111/j.1365-246X.2005.02668.x
      [43] Mutter, J. C., Talwani, M., Stoffa, P. L., 1982. Origin of Seaward-Dipping Reflectors in Oceanic Crust off the Norwegian Margin by "Subaerial Sea-Floor Spreading". Geology, 10(7): 353-357. https://doi.org/10.1130/0091-7613(1982)10353: oosrio>2.0.co;2 doi: 10.1130/0091-7613(1982)10353:oosrio>2.0.co;2
      [44] Norton, I. O., Carruthers, D. T., Hudec, M. R., 2016. Rift to Drift Transition in the South Atlantic Salt Basins: a New Flavor of Oceanic Crust. Geology, 44(1): 55-58. https://doi.org/10.1130/g37265.1
      [45] Paton, D. A., Pindell, J., McDermott, K., et al., 2017. Evolution of Seaward-Dipping Reflectors at the Onset of Oceanic Crust Formation at Volcanic Passive Margins: Insights from the South Atlantic. Geology, 45(5): 439-442. https://doi.org/10.1130/g38706.1
      [46] Pérez-Gussinyé, M., 2013. A Tectonic Model for Hyperextension at Magma-Poor Rifted Margins: an Example from the West Iberia-Newfoundland Conjugate Margins. Geological Society, London, Special Publications, 369(1): 403-427. https://doi.org/10.1144/sp369.19
      [47] Pérez-Gussinyé, M., Morgan, J. P., Reston, T. J., et al., 2006. The Rift to Drift Transition at Non-Volcanic Margins: Insights from Numerical Modelling. Earth and Planetary Science Letters, 244(1-2): 458-473. https://doi.org/10.1016/j.epsl.2006.01.059
      [48] Pérez-Gussinyé, M., Ranero, C. R., Reston, T. J., et al., 2003. Mechanisms of Extension at Nonvolcanic Margins: Evidence from the Galicia Interior Basin, West of Iberia. Journal of Geophysical Research: Solid Earth, 108(B5): 2245. https://doi.org/10.1029/2001JB000901
      [49] Pérez-Gussinyé, M., Reston, T. J., 2001. Rheological Evolution during Extension at Nonvolcanic Rifted Margins: Onset of Serpentinization and Development of Detachments Leading to Continental Breakup. Journal of Geophysical Research: Solid Earth, 106(B3): 3961-3975. https://doi.org/10.1029/2000JB900325
      [50] Péron-Pinvidic, G., Manatschal, G., Masini, E., et al., 2015. Unravelling the Along-Strike Variability of the Angola-Gabon Rifted Margin: A Mapping Approach. Geological Society, London, Special Publications, 438. https://doi.org/10.1144/SP438.1
      [51] Péron-Pinvidic, G., Manatschal, G., Minshull, T. A., et al., 2007. Tectonosedimentary Evolution of the Deep Iberia-Newfoundland Margins: Evidence for a Complex Breakup History. Tectonics, 26(2): TC2011. https://doi.org/10.1029/2006TC001970
      [52] Pickup, S. L. B., Whitmarsh, R. B., Fowler, C. M. R., et al., 1996. Insight into the Nature of the Ocean-Continent Transition off West Iberia from a Deep Multichannel Seismic Reflection Profile. Geology, 24(12): 1079-1082. https://doi.org/10.1130/0091-7613(1996)0241079: iitnot>2.3.co;2 doi: 10.1130/0091-7613(1996)0241079:iitnot>2.3.co;2
      [53] Planke, S., Eldholm, O, 1994. Seismic Response and Construction of Seaward Dipping Wedges of Flood Basalts: Vøring Volcanic Margin. Journal of Geophysical Research: Solid Earth, 99(B5): 9263-9278. https://doi.org/10.1029/94JB00468
      [54] Qiu, X. L., Ye, S. Y., Wu, S. M., et al., 2001. Crustal Structure across the Xisha Trough, Northwestern South China Sea. Tectonophysics, 341(1-4): 179-193. https://doi.org/10.1016/S0040-1951(01)00222-0
      [55] Quirk, D. G., Hertle, M., Jeppesen, J. W., et al., 2013. Rifting, Subsidence and Continental Breakup above a Mantle Plume in the Central South Atlantic. Geological Society, London, Special Publications, 369(1): 185-214. https://doi.org/10.1144/sp369.20
      [56] Quirk, D. G., Shakerley, A., Howe, M. J., 2014. A Mechanism for Construction of Volcanic Rifted Margins during Continental Breakup. Geology, 42(12): 1079-1082. https://doi.org/10.1130/g35974.1
      [57] Ranero, C. R., Pérez-Gussinyé, M., 2010. Sequential Faulting Explains the Asymmetry and Extension Discrepancy of Conjugate Margins. Nature, 468(7321): 294-299. https://doi.org/10.1038/nature09520.[PubMed]
      [58] Ren, J.Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra-Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201812016.htm
      [59] Reston, T. J., 2005. Polyphase Faulting during the Development of the West Galicia Rifted Margin. Earth and Planetary Science Letters, 237(3-4): 561-576. https://doi.org/10.1016/j.epsl.2005.06.019
      [60] Reston, T. J., 2007. The Formation of Non-Volcanic Rifted Margins by the Progressive Extension of the Lithosphere: The Example of the West Iberian Margin. Geological Society, London, Special Publications, 282(1): 77-110. https://doi.org/10.1144/sp282.5
      [61] Reston, T. J., 2009. The Structure, Evolution and Symmetry of the Magma-Poor Rifted Margins of the North and Central Atlantic: A Synthesis. Tectonophysics, 468(1-4): 6-27. https://doi.org/10.1016/j.tecto.2008.09.002
      [62] Reston, T.J., McDermott, K., 2014. An Assessment of the Cause of the 'Extension Discrepancy' with Reference to the West Galicia Margin. Basin Research, 26(1): 135-153. https://doi.org/10.1111/bre.12042
      [63] Ru, K., Pigott, J.D., 1986. Episodic Rifting and Subsidence in the South China Sea. AAPG Bulletin. 70(9): 1136-1155. http://ci.nii.ac.jp/naid/80003134760
      [64] Sawyer, D. S., Coffin, M. F., Reston, T. J., et al., 2007. COBBOOM: The Continental Breakup and Birth of Oceans Mission. Scientific Drilling, 5: 13-25. https://doi.org/10.5194/sd-5-13-2007
      [65] Sibuet, J. C., Srivastava, S., Manatschal, G., 2007. Exhumed Mantle-Forming Transitional Crust in the Newfoundland-Iberia Rift and Associated Magnetic Anomalies. Journal of Geophysical Research: Solid Earth, 112(B6): B06105. https://doi.org/10.1029/2005JB003856
      [66] Stica, J. M., Zalán, P. V., Ferrari, A. L., 2014. The Evolution of Rifting on the Volcanic Margin of the Pelotas Basin and the Contextualization of the Paraná-Etendeka LIP in the Separation of Gondwana in the South Atlantic. Marine and Petroleum Geology, 50: 1-21. https://doi.org/10.1016/j.marpetgeo.2013.10.015
      [67] Sun, Z., Jian, Z., Stock, J.M., et al., 2018. Proceedings of the International Ocean Discovery Program, vol. 367/368, South China Sea Rifted Margin. International Ocean Discovery Program, College Station.
      [68] Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      [69] Sutra, E., Manatschal, G., 2012. How does the Continental Crust Thin in a Hyperextended Rifted Margin? Insights from the Iberia Margin. Geology, 40(2): 139-142. https://doi.org/10.1130/g32786.1
      [70] Talwani, M., Abreu, V., 2000. Inferences Regarding Initiation of Oceanic Crust Formation from the US East Coast Margin and Conjugate South Atlantic Margins. In: Mohriak, W., Talwani, M., eds., Atlantic Rifts and Continental Margins. AGU, Washington, D. C. . http://doi.org/10.1029/GM115p0211
      [71] Tucholke, B. E., Sawyer, D. S., Sibuet, J. C., 2007. Breakup of the Newfoundland-Iberia Rift. Geological Society, London, Special Publications, 282(1): 9-46. https://doi.org/10.1144/sp282.2
      [72] Unternehr, P., Péron-Pinvidic, G., Manatschal, G., et al., 2010. Hyper-Extended Crust in the South Atlantic: In Search of a Model. Petroleum Geoscience, 16(3): 207-215. https://doi.org/10.1144/1354-079309-904
      [73] Wan, X. L., Li, C. F., Zhao, M. H., et al., 2019. Seismic Velocity Structure of the Magnetic Quiet Zone and Continent-Ocean Boundary in the Northeastern South China Sea. Journal of Geophysical Research: Solid Earth, 124(11): 11866-11899. https://doi.org/10.1029/2019JB017785
      [74] Wang, P.X., 2012. Tracing the Life History of a Marginal Sea—On the "South China Sea Deep" Research Program. Chinese Science Bulletin, 57(20): 1807-1826 (in Chinese). doi: 10.1360/csb2012-57-20-1807
      [75] Wang, P. X., Huang, C. Y., Lin, J., et al., 2019. The South China Sea is not a Mini-Atlantic: Plate-Edge Rifting vs Intra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135
      [76] Wang, P.X., Jian, Z.M., 2019. Exploring the Deep South China Sea: Retrospects and Prospects. Science in China (Series D), 49(10): 1590-1606 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JDXG201910001
      [77] Wang, T. K., Chen, M. K., Lee, C. S., et al., 2006. Seismic Imaging of the Transitional Crust across the Northeastern Margin of the South China Sea. Tectonophysics, 412(3-4): 237-254. https://doi.org/10.1016/j.tecto.2005.10.039
      [78] Wei, X.D., Ruan, A.G. Zhao, M.H., et al., 2011. A Wide-Angle OBS Profile across the Dongsha Uplift and Chaoshan Depression in the Mid-Northern South China Sea. Chinese Journal of Geophysics, 54(6): 1149-1160. https://doi.org/10.1002/cjg2.1691
      [79] White, R.S., McKenzie, D., 1989. Magmatism at Rift Zones: The Generation of Volcanic Continental Margins and Flood Basalts. Journal of Geophysical Research: Solid Earth, 94(B6): 7685-7729. https://doi.org/10.1029/JB094iB06p07685
      [80] White, R. S., Smith, L. K., 2009. Crustal Structure of the Hatton and the Conjugate East Greenland Rifted Volcanic Continental Margins, NE Atlantic. Journal of Geophysical Research: Solid Earth, 114(B2): B02305. https://doi.org/10.1029/2008JB005856
      [81] Whitmarsh, R. B., Manatschal, G., Minshull, T. A., 2001. Evolution of Magma-Poor Continental Margins from Rifting to Seafloor Spreading. Nature, 413(6852): 150-154. https://doi.org/10.1038/35093085
      [82] Whitmarsh, R. B., White, R. S., Horsefield, S. J., et al., 1996. The Ocean-Continent Boundary off the Western Continental Margin of Iberia: Crustal Structure West of Galicia Bank. Journal of Geophysical Research: Solid Earth, 101(B12): 28291-28314. https://doi.org/10.1029/96JB02579
      [83] Xia, S. H., Zhao, D. P., Sun, J. L., et al., 2016. Teleseismic Imaging of the Mantle BeneathSouthernmost China: New Insights into the Hainan Plume. Gondwana Research, 36: 46-56. https://doi.org/10.1016/j.gr.2016.05.003
      [84] Xia, S. H., Zhao, F., Zhao, D. P., et al., 2018. Crustal Plumbing System of Post-Rift Magmatism in the Northern Margin of South China Sea: New Insights from Integrated Seismology. Tectonophysics, 744: 227-238. https://doi.org/10.1016/j.tecto.2018.07.002
      [85] Yang, F.D., Zhang, J.Z., Du, F., et al., 2020. A New Method for Shots and OBSs' Relocation Applying in Three-Dimensional Seismic Survey. Chinese Journal of Geophysics, 63(2): 766-777 (in Chinese with English abstract).
      [86] Yu, X., Liu, Z. F., 2020. Non-Mantle-Plume Process Caused the Initial Spreading of the South China Sea. Scientific Reports, 10: 8500. https://doi.org/10.1038/s41598-020-65174-y
      [87] Zhang, Z. J., Wang, Y. H., 2007. Crustal Structure and Contact Relationship Revealed from Deep Seismic Sounding Data in South China. Physics of the Earth and Planetary Interiors, 165(1-2): 114-126. https://doi.org/10.1016/j.pepi.2007.08.005
      [88] Zhao, M.H., Du, F., Wang, Q., et al., 2018. Current Status and Challenges for Three-Dimensional Deep Seismic Survey in the South China Sea. Earth Science, 43(10): 3749-3761 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810034.htm
      [89] Zhao, M. H., Qiu, X. L., Xia, S. H., et al., 2010. Seismic Structure in the Northeastern South China Sea: S-Wave Velocity and Vp/Vs Ratios Derived from Three-Component OBS Data. Tectonophysics, 480(1-4): 183-197. https://doi.org/10.1016/j.tecto.2009.10.004
      [90] Zhou, D., Ru, K., Chen, H. Z., 1995. Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region. Tectonophysics, 251(1-4): 161-177. https://doi.org/10.1016/0040-1951(95)00018-6
      [91] Zhu, J. J., Qiu, X. L., Kopp, H., et al., 2012. Shallow Anatomy of a Continent-Ocean Transition Zone in the Northern South China Sea from Multichannel Seismic Data. Tectonophysics, 554-557: 18-29. https://doi.org/10.1016/j.tecto.2012.05.027
      [92] 李家彪, 丁巍伟, 高金耀, 等, 2011. 南海新生代海底扩张的构造演化模式: 来自高分辨率地球物理数据的新认识. 地球物理学报, 54(12): 3004-3015. doi: 10.3969/j.issn.0001-5733.2011.12.003
      [93] 任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水-超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. doi: 10.6038/cjg2018L0558
      [94] 汪品先, 2012. 追踪边缘海的生命史: "南海深部计划"的科学目标. 科学通报, 57(20): 1807-1826. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220002.htm
      [95] 汪品先, 翦知湣, 2019. 探索南海深部的回顾与展望. 中国科学(D辑), 49(10): 1590-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910006.htm
      [96] 杨富东, 张佳政, 杜峰, 等, 2020. 三维OBS探测实验中炮点和OBS位置校正新方法. 地球物理学报, 63(2): 766-777. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202002042.htm
      [97] 赵明辉, 杜峰, 王强, 等, 2018. 南海海底地震仪三维深地震探测的进展及挑战. 地球科学, 43(10): 3749-3761. doi: 10.3799/dqkx.2018.573
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  804
    • HTML全文浏览量:  252
    • PDF下载量:  128
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-11-15
    • 刊出日期:  2021-03-01

    目录

      /

      返回文章
      返回