• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    全球现代海底块状硫化物战略性金属富集机理及资源前景初探

    罗洪明 韩喜球 王叶剑 吴雪停 蔡翌旸 杨铭

    罗洪明, 韩喜球, 王叶剑, 吴雪停, 蔡翌旸, 杨铭, 2021. 全球现代海底块状硫化物战略性金属富集机理及资源前景初探. 地球科学, 46(9): 3123-3138. doi: 10.3799/dqkx.2020.396
    引用本文: 罗洪明, 韩喜球, 王叶剑, 吴雪停, 蔡翌旸, 杨铭, 2021. 全球现代海底块状硫化物战略性金属富集机理及资源前景初探. 地球科学, 46(9): 3123-3138. doi: 10.3799/dqkx.2020.396
    Luo Hongming, Han Xiqiu, Wang Yejian, Wu Xueting, Cai Yiyang, Yang Ming, 2021. Preliminary Study on the Enrichment Mechanism of Strategic Metals and Their Resource Prospects in Global Modern Seafloor Massive Sulfide Deposits. Earth Science, 46(9): 3123-3138. doi: 10.3799/dqkx.2020.396
    Citation: Luo Hongming, Han Xiqiu, Wang Yejian, Wu Xueting, Cai Yiyang, Yang Ming, 2021. Preliminary Study on the Enrichment Mechanism of Strategic Metals and Their Resource Prospects in Global Modern Seafloor Massive Sulfide Deposits. Earth Science, 46(9): 3123-3138. doi: 10.3799/dqkx.2020.396

    全球现代海底块状硫化物战略性金属富集机理及资源前景初探

    doi: 10.3799/dqkx.2020.396
    基金项目: 

    国家重点研发专项 2018YFC0309903

    国家自然科学基金项目 91951201

    国家自然科学基金项目 41976076

    “十三五”大洋专项 DY135-S2-1

    自然资源部第二海洋研究所所基本科研业务费专项 JZ1901

    自然资源部第二海洋研究所青年英才计划项目 QNYC1701

    详细信息
      作者简介:

      罗洪明(1994-), 男, 硕士研究生, 主要从事海底资源与成矿系统研究工作.ORCID: 0000-0003-1726-3168.E-mail: hmluo@sio.org.cn

      通讯作者:

      韩喜球, ORCID: 0000-0001-9285-0915.E-mail: xqhan@sio.org.cn

      王叶剑, ORCID: 0000-0002-8089-0706.E-mail: yjwang@sio.org.cn

    • 中图分类号: P736.3

    Preliminary Study on the Enrichment Mechanism of Strategic Metals and Their Resource Prospects in Global Modern Seafloor Massive Sulfide Deposits

    • 摘要: 海底块状硫化物(SMS)蕴藏有丰富的Cu、Cd、Au、Fe、Ag、Co等战略性金属,是未来可供人类开发利用的战略资源.本文搜集了全球3 946组SMS化学成分数据,根据构造环境可将其分成4类(快速、中速、慢速、超慢速扩张)洋中脊型和2类(弧后扩张中心和弧火山)岛弧型SMS矿床.利用多元统计方法分析了SMS战略性金属的分布特征和主控因素,探讨了其资源前景.结果表明:洋中脊型SMS矿床富集Cu+Fe+Co±Mo,而岛弧型普遍富集Zn+Pb+Cd+Sb+Ag±Au等关键元素.分析表明,成矿温度、成矿物质来源、酸碱度和氧化还原条件是战略性金属富集的主要影响因素,其中流体温度主要受水深条件控制,成矿物质来源主要受控于构造地质环境,酸碱度和氧化还原性主要受控于围岩类型.Cu+Au+Fe+Co在水深超过约2 650 m的慢速—超慢速扩张脊非转换不连续带和拆离断层带等区域具较好的勘查前景;而Cu+Au+Cd+Ag在水深约1 080~2 160 m的弧后扩张中心区域具较好的勘查前景.

       

    • 图  1  全球108个SMS矿床分布

      海底扩张速率参考DeMets et al.(2010).单位矿石价值估值:按照美国联邦地质调查局2020年公布的金属价格和所选元素在各矿床的中值作为品位估算,据U.S. Geological Survey(2020).底图数据来自GEBCO Compilation Group (2020) GEBCO 2020 Grid (https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9),采用Goode等积投影

      Fig.  1.  Global distribution of 108 SMS deposits

      图  2  全球108个SMS矿床类型统计

      Fig.  2.  Pie chart of 108 SMS deposits in the world

      图  3  全球不同构造环境中SMS矿床的浅表层硫化物样品组成箱线图

      图上的数字表示有数据的样品数量

      Fig.  3.  Whisker-and-box-plot of shallow samples collected from seafloor massive sulfide deposits in different tectonic settings

      图  4  SMS斯皮尔曼秩相关系数矩阵

      圆的大小和颜色表示相关系数的大小,圆上数值是显著性 > 0.05时的显著性值(显著性 < 0.05时表明显著相关,故未标出);下三角矩阵显示的是相关系数的值

      Fig.  4.  Seafloor massive sulfide Spearman's rank correlation coefficients matrix

      图  5  经中心对数比变换后的SMS化学数据因子分析双标图:F1 vs. F2(a、b、c);F1 vs. F3(d、e、f)

      Fig.  5.  Biplots for distribution of the factor analysis of centered log-ratio (clr) transformed SMS geochemistry data: F1 vs. F2 (a, b, c); F1 vs. F3 (d, e, f)

      图  6  现代SMS矿床结构简图

      a. TAG矿床,据Lehrmann et al.(2018);b. Bent Hill矿床,据Zierenberg et al.(1998);c. Pacmanus/Roman Ruins矿床,据Petersen et al.(2005);d. Solwara 12矿床,据Lipton et al.(2018)

      Fig.  6.  Schematic cross sections of the modern SMS deposits

      图  7  F1与热液流体温度(a)、SMS矿床的水深(b)和样品中Ag (c)、Co (d)含量相关图

      Fig.  7.  The scatter plots of approximations to the F1 vs. temperature (a) of hydrothermal fluids, the water depth (b) of the SMS deposit and the content of Ag (c), Co (d) in SMS

      图  8  SMS样品Co-Sb-Au×10相对质量分数

      形状和颜色代表了不同的构造环境

      Fig.  8.  Relative contents for Co-Sb-Au×10 in samples of SMS deposits

      图  9  F3与热液流体pH(a)、lgfO2 (b)和SMS中Cu (c)、Au (d)相关关系

      热液流体数据见附录B

      Fig.  9.  The scatter plots of approximations to the F3 vs. pH (a), lgfO2 (b) of hydrothermal fluids and the content of Cu (c), Au (d) in SMS

      图  10  SMS矿床品位‒吨位关系

      VMS矿床数据来自Mosier et al. (2009);SMS矿床数据同表 3

      Fig.  10.  Relation of grade-tonnage of SMS deposits

      图  11  全球各SMS矿床战略性金属含量中值频率累积曲线

      灰色虚线分别表示10%、50%、90%的位置.黑色实线表示最低工业品位,引自矿业行业标准DZ/T0214- 2002,其中Cd、Mo和Sb为Zn-Pb伴生矿的最低工业品位

      Fig.  11.  Cumulative frequency of strategic metals median content of 108 SMS deposits

      图  12  全球各SMS矿床战略性金属含量中值与水深散点图

      水深与各SMS矿床Cu (a)、Fe (b)、Co (c)、Au (d)、Cd (e)、Ag (f)含量中值散点图,浅粉红色表示慢速‒超慢速扩张洋脊型SMS矿床较高潜力的水深范围,浅青色代表弧后扩张中心型SMS矿床较高潜力的水深范围.因为洋中脊型和到岛弧型SMS矿床中Au的中值趋势差异较大,所以对其分别与水深进行拟合

      Fig.  12.  Scatter plot of median strategic metals content and water depth of global SMS deposits

      表  1  我国可能的及现代海底潜在的战略性金属对比

      Table  1.   List of possible "strategic metals" in China and the potential strategic metals on the seafloor

      类别 战略性金属1 现代海底
      多金属结核2 富钴结壳3 块状硫化物4
      稀有金属 Li, Be, Nb, Ta, Rb, Sr, Zr, Hf, Cs Li, Zr Zr, Nb Sr
      稀土金属 REE REE REE -
      稀散金属 Ga, Ge, In, Tl, Cd, Se, Te, Re Tl Te, Tl Cd, Ga, Ge, In, Se, Te, Tl
      稀贵金属 Os, Ir, Ru, Rh, Pd, Pt, Au, Ag Ru, Rh, Pd, Pt, Au, Ag Os, Ir, Ru, Rh, Pd, Pt, Au, Ag Au, Ag
      能源金属 U - - -
      其他 Fe, Cu, Al, Mn, Cr, V, Ti, Mg, Ni, Co, W, Sn, Bi, Mo, Sb, Hg, Se Fe, Mn, Ni, Cu, Co, Mo, W Fe, Mn, Co, Mo,
      Bi, W
      Cu, Fe, Bi, Hg, Co, Mo, Ti, Sb, Hg, Se
      下载: 导出CSV

      表  2  不同构造环境海底块状硫化物矿床浅表层样品战略性金属含量统计结果

      Table  2.   Element content of shallow samples collected from seafloor massive sulfide deposits located in different tectonic settings

      构造环境 Ⅰ.快速扩张洋脊 Ⅱ.中速扩张洋脊 Ⅲ.慢速扩张洋脊 Ⅳ.超慢速扩张洋脊 Ⅴ.弧后扩张中心 Ⅵ.弧火山 全部
      Cu (%)
      中值 1.65 1.04 2.97 0.77 1.25 0.29 1.21
      均值 5.43 3.42 9.85 1.94 5.06 2.84 5.20
      75% 6.75 2.30 12.98 1.75 4.93 1.76 4.80
      25% 0.34 0.31 0.55 0.32 0.38 0.07 0.32
      N 478 813 645 276 1 270 256 3 738
      Fe (%)
      中值 28.3 23.9 29.3 18.7 10.4 10.0 19.8
      均值 27.0 23.8 28.1 21.4 13.8 13.6 20.7
      75% 36.6 33.1 37.9 31.2 21.1 19.1 31.3
      25% 16.80 13.50 18.40 9.90 3.73 2.60 8.00
      N 512 828 637 274 1 261 272 3 784
      Zn (%)
      中值 1.54 4.60 0.54 2.84 11.70 3.39 4.17
      均值 8.74 11.30 6.81 7.08 17.10 8.18 11.60
      75% 11.50 20.70 6.58 9.12 30.50 12.40 19.70
      25% 0.16 0.43 0.10 0.23 1.45 0.25 0.31
      N 485 831 669 276 1 291 267 3 819
      Pb (%)
      中值 0.03 0.07 0.02 0.03 0.17 0.50 0.06
      均值 0.17 0.37 0.04 0.18 2.46 2.49 1.17
      75% 0.07 0.20 0.05 0.15 0.70 3.47 0.26
      25% 0.02 0.02 0.01 0.01 0.04 0.05 0.02
      N 409 750 495 262 1 158 249 3 323
      Cd (10‒6)
      中值 133 347 40 115 420 144 209
      均值 338 532 259 309 668 430 493
      75% 557 913 297 328 1 115 575 804
      25% 33.00 35.50 8.82 9.86 48.00 20.80 23.00
      N 336 567 427 242 1 085 235 2 892
      Co (10‒6)
      中值 190.0 21.0 147.0 98.0 9.0 10.8 37.0
      均值 565.0 152.0 925.0 142.0 63.6 36.4 365.0
      75% 529.0 87.8 615.0 194.0 37.0 29.0 218.0
      25% 30.00 3.85 24.00 11.30 2.00 4.00 6.00
      N 390 626 579 245 560 140 2 540
      Mo (10‒6)
      中值 85.0 61.0 41.0 19.8 35.5 53.5 48.0
      均值 108.0 90.6 67.0 54.2 92.1 82.2 87.2
      75% 139 123 73 43 97 99 106
      25% 38.0 24.0 20.0 11.0 15.0 19.6 19.0
      N 278 606 330 112 718 208 2 252
      Sb (10‒6)
      中值 6.5 17.0 5.0 14.4 110.0 222.0 31.0
      均值 14.1 153.0 27.5 79.1 852.0 1 387.0 474.0
      75% 15.0 71.5 25.0 52.5 469.0 898.0 150.0
      25% 2.55 6.33 2.09 3.83 34.40 70.00 7.10
      N 267 680 312 207 907 240 2 613
      Ag (10‒6)
      中值 33.9 52.0 30.0 66.0 105.0 100.0 62.0
      均值 63.1 145.0 133.0 149.0 300.0 206.0 193.0
      75% 83.5 121.0 100.0 122.0 240.0 272.0 163.0
      25% 13.5 17.3 10.2 19.6 36.6 41.0 20.0
      N 403 730 462 243 1 146 235 3 219
      Au (10‒9)
      中值 200 170 1 100 1 965 3 370 1 685 970
      均值 641 844 4 110 4 639 7 163 6 294 4 054
      75% 506 770 3 662 3 770 8 250 4 765 3 738
      25% 66.8 70.0 430.0 705.0 1 200.0 471.0 178.0
      N 320 687 439 198 856 222 2 722
      注:N为分析的样品数,表中元素含量未统计其样品的大小.
      下载: 导出CSV

      表  3  全球已钻探SMS矿床的品位和吨位

      Table  3.   The grade and tonnage of SMS deposits in world's oceans obtained by drilling

      矿床 区域 钻孔数(个) 总长(m) 吨位(Mt) Cu (%) Zn (%) Pb (%) Ag (g/t) Au (g/t)
      Bent Hill1 胡安德富卡脊 7 1 918 10~15 1.65 1.29 0.008 3 4.48 0.05
      TAG2 北大西洋脊 5 304 3.9 2.83 0.42 0.006 5 14.0 0.534
      Izena3 冲绳海槽 176 3 785 7.4 0.41 5.75 1.44 95.6 1.45
      Hakurei3 伊豆小笠原岛弧 41 405 0.1 0.82 15.84 1.30 294.2 8.63
      Solwara 14 帕克马努斯海盆 247 2 779 2.6 7.74 0.7 29.59 5.84
      Solwara 124 帕克马努斯海盆 28 329 0.2 7.3 3.6 56 3.6
      注:1 Fouquet et al.(1998)Zierenberg et al.(1998)2 Hannington et al.(1998)3 JOGMEC官网(海底热液矿床开发计划综合评价报告书);4 Lipton et al.(2018).
      下载: 导出CSV
    • Cathles, L. M., 2011. What Processes at Mid-Ocean Ridges Tell Us about Volcanogenic Massive Sulfide Deposits. Mineralium Deposita, 46(5-6): 639-657. https://doi.org/10.1007/s00126-010-0292-9
      Charlou, J. L., Donval, J. P., Konn, C., et al., 2010. High Production and Fluxes of H2and CH4and Evidence of Abiotic Hydrocarbon Synthesis by Serpentinization in Ultramafic-Hosted Hydrothermal Systems on the Mid-Atlantic Ridge. In: Rona, P. A., Devey, C. W., Dyment, J., et al., eds., Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. American Geophysical Union, Washington, D. C. .
      Chen, Y., Han, X. Q., Wang, Y. J., et al., 2020. Precipitation of Calcite Veins in Serpentinized Harzburgite at Tianxiu Hydrothermal Field on Carlsberg Ridge (3.67°N), Northwest Indian Ocean: Implications for Fluid Circulation. Journal of Earth Science, 31(1): 91-101. https://doi.org/10.1007/s12583-020-0876-y
      de Ronde, C. E. J., Massoth, G. J., Butterfield, D. A., et al., 2011. Submarine Hydrothermal Activity and Gold-Rich Mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Mineralium Deposita, 46(5-6): 541-584. https://doi.org/10.1007/s00126-011-0345-8
      DeMets, C., Gordon, R. G., Argus, D. F, 2010. Geologically Current Plate Motions. Geophysical Journal International, 181(1): 1-80. https://doi.org/10.1111/j.1365-246X.2009.04491.x
      Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., et al., 2003. Isometric Logratio Transformations for Compositional Data Analysis. Mathematical Geology, 35(3): 279-300. https://doi.org/10.1023/A:1023818214614
      Fouquet, Y., Cambon, P., Etoubleau, J., et al., 2010. Geodiversity of Hydrothermal Processes along the Mid-Atlantic Ridge and Ultramafic-Hosted Mineralization: A New Type of Oceanic Cu-Zn-Co-Au Volcanogenic Massive Sulfide Deposit. In: Rona, P. A., Devey, C. W., Dyment, J., et al., eds., Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. American Geophysical Union, Washington, D. C. .
      Fouquet, Y., Zierenberg, R. A., Miller, D. J., et al., 1998. Shipboard Scientific Party, Middle Valley: Bent Hill Area (Site 1035). In: Fouquet, Y., Zierenberg, R. A., Miller, D. J., et al., eds., Proceedings of the Ocean Drilling Program-Initial Reports 169. The Ocean Drilling Program, College Station.
      Fuchs, S., Hannington, M. D., Petersen, S., 2019. Divining Gold in Seafloor Polymetallic Massive Sulfide Systems. Mineralium Deposita, 54(6): 789-820. https://doi.org/10.1007/s00126-019-00895-3
      Graedel, T. E., Harper, E. M., Nassar, N. T., et al., 2015. Criticality of Metals and Metalloids. PNAS, 112(14): 4257-4262. https://doi.org/10.1073/pnas.1500415112
      Hannington, M. D., 2014. Volcanogenic Massive Sulfide Deposits. Treatise on Geochemistry, 47(5): 463-488. https://doi.org/10.1016/b978-0-08-095975-7.01120-7
      Hannington, M. D., de Ronde, C. E., Petersen S., 2005. Sea-Floor Tectonics and Submarine Hydrothermal Systems. In: Hedenquist, J., Thompson, G., Goldfarb, R. J., Richards, J. P., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton
      Hannington, M. D., Galley, A. G., Herzig, P. M., et al., 1998. Comparison of the TAG Mound and Stockwork Complex with Cyprus-Type, Massive Sulfide Deposits. In: Herzig, P. M., Humphris, S. E., Miller, D. J., et al., eds., Proceedings of the Ocean Drilling Program-Scientific Results. The Ocean Drilling Program, College Station.
      Hannington, M. D., Jamieson, J., Monecke, T., et al., 2011. The Abundance of Seafloor Massive Sulfide Deposits. Geology, 39(12): 1155-1158. https://doi.org/10.1130/g32468.1
      Hannington, M. D., Petersen, S., Herzig, P. M., et al., 2004. A Global Database of Seafloor Hydrothermal Systems, Including a Digital Database of Geochemical Analyses of Seafloor Polymetallic Sulfides. Geological Survey of Canada, Ottawa.
      Hein, J. R., Mizell, K., Koschinsky, A., et al., 2013. Deep-Ocean Mineral Deposits as a Source of Critical Metals for High- and Green-Technology Applications: Comparison with Land-Based Resources. Ore Geology Reviews, 51: 1-14. https://doi.org/10.1016/j.oregeorev.2012.12.001
      Kawasumi, S., Chiba, H., 2017. Redox State of Seafloor Hydrothermal Fluids and Its Effect on Sulfide Mineralization. Chemical Geology, 451: 25-37. https://doi.org/10.1016/j.chemgeo.2017.01.001
      Large, R. R., 1992. Australian Volcanic-Hosted Massive Sulfide Deposits; Features, Styles, and Genetic Models. Economic Geology, 87(3): 471-510. https://doi.org/10.2113/gsecongeo.87.3.471
      Lehrmann, B., Stobbs, I. J., Lusty P. A., et al., 2018. Insights into Extinct Seafloor Massive Sulfide Mounds at the TAG, Mid-Atlantic Ridge. Minerals, 8(7): 302. https://doi.org/10.3390/min8070302
      Levin, L. A., Amon, D. J., Lily, H, 2020. Challenges to the Sustainability of Deep-Seabed Mining. Nature Sustainability, 3(10): 784-794. https://doi.org/10.1038/s41893-020-0558-x
      Lipton, I., Gleeson, E., Munro, P., 2018. Preliminary Economic Assessment of the Solwara Project, Bismarck Sea, PNG. Nautilus Minerals Niugini Limited, Vancouver.
      Lusty, P. A. J., Hein, J. R., Josso, P., 2018. Formation and Occurrence of Ferromanganese Crusts: Earth's Storehouse for Critical Metals. Elements, 14(5): 313-318. https://doi.org/10.2138/gselements.14.5.313
      Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201904001.htm
      Melekestseva, I. Y., Maslennikov, V. V., Tret'yakov, G. A., et al., 2017. Gold- and Silver-Rich Massive Sulfides from the Semenov-2 Hydrothermal Field, 13°31.13'N, Mid-Atlantic Ridge: A Case of Magmatic Contribution? Economic Geology, 112(4): 741-773. https://doi.org/10.2113/econgeo.112.4.741
      Monecke, T., Petersen, S., Hannington, M. D., 2014. Constraints on Water Depth of Massive Sulfide Formation: Evidence from Modern Seafloor Hydrothermal Systems in Arc-Related Settings. Economic Geology, 109(8): 2079-2101. https://doi.org/10.2113/econgeo.109.8.2079
      Monecke, T., Petersen, S., Hannington, M. D., et al., 2016. The Minor Element Endowment of Modern Sea-Floor Massive Sulfides and Comparison with Deposits Hosted in Ancient Volcanic Successions. In: Verplanck, P. L., Hitzman, M. W., eds., Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, Littleton.
      Mosier, D. L., Berger, V. I., Singer, D. A., 2009. Volcanogenic Massive Sulfide Deposits of the World; Database and Grade and Tonnage Models. U.S. Geological Survey, Reston.
      Murton, B. J., Lehrmann, B., Dutrieux, A. M., et al., 2019. Geological Fate of Seafloor Massive Sulphides at the TAG Hydrothermal Field (Mid-Atlantic Ridge). Ore Geology Reviews, 107: 903-925. https://doi.org/10.1016/j.oregeorev.2019.03.005
      Padyar, F., Rahgoshay, M., Tarantola, A., et al. 2020. High ƒH2-ƒS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite. Journal of Earth Science, 31(3): 523-535. https://doi.org/10.1007/s12583-019-1023-6
      Pak, S. J., Seo, I., Lee, K. Y., et al., 2019. Rare Earth Elements and Other Critical Metals in Deep Seabed Mineral Deposits: Composition and Implications for Resource Potential. Minerals, 9(1): 3-22. https://doi.org/10.3390/min9010003
      Petersen, S., Herzig, P. M., Kuhn, T., et al., 2005. Shallow Drilling of Seafloor Hydrothermal Systems Using the BGS Rockdrill: Conical Seamount (New Ireland Fore-Arc) and PACMANUS (Eastern Manus Basin), Papua New Guinea. Marine Georesources & Geotechnology, 23(3): 175-193. https://doi.org/10.1080/10641190500192185
      Petersen, S., Lehrmann, B., Murton, B. J., 2018. Modern Seafloor Hydrothermal Systems: New Perspectives on Ancient Ore-Forming Processes. Elements, 14(5): 307-312. https://doi.org/10.2138/gselements.14.5.307
      Toffolo, L., Nimis, P., Tretyakov, G. A., et al., 2020. Seafloor Massive Sulfides from Mid-Ocean Ridges: Exploring the Causes of Their Geochemical Variability with Multivariate Analysis. Earth-Science Reviews, 201: 102958. https://doi.org/10.1016/j.earscirev.2019.102958
      U.S. Geological Survey, 2020. Mineral Commodity Summaries 2020. U.S. Geological Survey, Reston.
      Wang, D. H., 2019. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract).
      Wang, Y. J., Han, X. Q., Petersen, S., et al., 2014. Mineralogy and Geochemistry of Hydrothermal Precipitates from Kairei Hydrothermal Field, Central Indian Ridge. Marine Geology, 354: 69-80. https://doi.org/10.1016/j.margeo.2014.05.003
      Yang, K., Scott, S. D., 2006. Magmatic Fluids as a Source of Metals in Seafloor Hydrothermal Systems. In: Christie, D. M., Fisher, C. R., Lee, S. M., et al., eds., Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D. C. .
      Zierenberg, R. A., Fouquet, Y., Miller, D. J., et al., 1998. The Deep Structure of a Sea-Floor Hydrothermal Deposit. Nature, 392(6675): 485-488. https://doi.org/10.1038/33126
      毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产: 国际动向与思考. 矿床地质, 38(4): 689-698. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904001.htm
      王登红, 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003
    • dqkxzx-46-9-3123-附录B.xlsx
      dqkxzx-46-9-3123-附表1.xlsx
      dqkxzx-46-9-3123-附录A.docx
      dqkxzx-46-9-3123-附表2.xlsx
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  1147
    • HTML全文浏览量:  954
    • PDF下载量:  111
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-11-11
    • 网络出版日期:  2021-10-14
    • 刊出日期:  2021-10-14

    目录

      /

      返回文章
      返回