• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示

    薛江凯 邓娅敏 杜尧 罗义鹏 程一涵

    薛江凯, 邓娅敏, 杜尧, 罗义鹏, 程一涵, 2021. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示. 地球科学, 46(11): 4140-4149. doi: 10.3799/dqkx.2020.398
    引用本文: 薛江凯, 邓娅敏, 杜尧, 罗义鹏, 程一涵, 2021. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示. 地球科学, 46(11): 4140-4149. doi: 10.3799/dqkx.2020.398
    Xue Jiangkai, Deng Yamin, Du Yao, Luo Yipeng, Cheng Yihan, 2021. Molecular Characterization of Dissolved Organic Matter (DOM) in Shallow Aquifer along Middle Reach of Yangtze River and Its Implications for Iodine Enrichment. Earth Science, 46(11): 4140-4149. doi: 10.3799/dqkx.2020.398
    Citation: Xue Jiangkai, Deng Yamin, Du Yao, Luo Yipeng, Cheng Yihan, 2021. Molecular Characterization of Dissolved Organic Matter (DOM) in Shallow Aquifer along Middle Reach of Yangtze River and Its Implications for Iodine Enrichment. Earth Science, 46(11): 4140-4149. doi: 10.3799/dqkx.2020.398

    长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示

    doi: 10.3799/dqkx.2020.398
    基金项目: 

    国家自然科学基金面上项目 41977174

    中国地质调查局二级项目委托项目 2020040010

    详细信息
      作者简介:

      薛江凯(1998-), 男, 硕士研究生, 主要从事地下水污染与防治、碘的水文生物地球化学循环等方面的研究工作.ORCID: 0000-0002-6583-575X.E-mail: 929213415@qq.com

      通讯作者:

      邓娅敏, ORCID: 0000-0002-4815-7176.E-mail: yamin.deng@cug.edu.cn

    • 中图分类号: P641

    Molecular Characterization of Dissolved Organic Matter (DOM) in Shallow Aquifer along Middle Reach of Yangtze River and Its Implications for Iodine Enrichment

    • 摘要: 长期摄入高碘地下水(碘浓度>100 μg/L)会造成人体甲状腺机能损伤.天然有机质被认为是影响高碘地下水形成的关键组分,为研究地下水中溶解性有机质(DOM)分子组成对碘富集的影响,选取长江中游沿岸浅层地下水作为研究对象,运用傅立叶变换离子回旋共振质谱仪(FT-ICR-MS)表征不同碘浓度地下水中DOM分子组成差异.研究发现碘易富集在还原环境的浅层地下水中,地下水中碘的浓度与溶解性有机碳(DOC)浓度无显著关系,DOM分子总数越多碘浓度越高;高碘地下水较低碘水DOM分子均一性、多样性更强,氧化程度和不饱和程度更高,含更多芳香性结构.长江中游沿岸高碘地下水的形成受DOM分子组成控制,主要与不饱和程度高尤其是含芳香性结构的大分子DOM有关,含芳香性结构的DOM分子与碘络合在高碘地下水的形成过程中起重要作用.

       

    • 图  1  研究区采样点位置和地下水碘浓度分布情况

      Fig.  1.  Location of sampling sites and spatial distribution of iodine concentration in shallow groundwater in the study area

      图  2  地下水中碘浓度与DOC浓度的关系

      Fig.  2.  Relationship between iodine concentration and DOC concentration in groundwater

      图  3  不同碘浓度的地下水中DOM分子总数柱状图

      Fig.  3.  Histogram of the total number of DOM molecules in groundwater with different iodine concentrations

      图  4  不同碘浓度的地下水DOM的质谱分析谱图

      a,b,c,d分别对应碘浓度为24.6 μg/L,33.5 μg/L,93.1 μg/L和230 μg/L的地下水样

      Fig.  4.  Mass spectrum analysis of DOM in groundwater with different iodine concentrations

      图  5  地下水中DOM分子组成的相对丰度分布

      a,b,c,d分别对应碘浓度为24.6 μg/L,33.5 μg/L,93.1 μg/L和230 μg/L的地下水样

      Fig.  5.  Relative abundance distribution of DOM in groundwater

      图  6  不同碘浓度地下水中DOM基本参数指标箱型图

      Fig.  6.  DOM diagrams of DOM basic parameters and indicators

      a. H/C; b. O/C; c.DBE

      图  7  不同碘浓度地下水中DOM分子DBE和氧原子个数之间的关系

      Fig.  7.  Relationship between DBE and oxygen atom number of DOM molecules in groundwater with different iodine concentrations

      图  8  高碘地下水和低碘地下水样品中DBE-O的频数分布

      Fig.  8.  Frequency distribution of DBE-O in high iodine groundwater and low iodine groundwater samples

      图  9  地下水中C原子数与DOM摩尔质量(范围在300~600 m/z之间)的关系

      a,b,c,d分别对应碘浓度为24.6 μg/L,33.5 μg/L,93.1 μg/L和230 μg/L的地下水样

      Fig.  9.  The relationship between the number of C atoms in groundwater and the molar mass of DOM (ranging from 300 m/z to 600 m/z)

      表  1  研究区地下水主要水化学组分特征统计

      Table  1.   Statistical summary of basic groundwater hydrochemistry in the study area

      样品数(n=32) 最大值 最小值 平均值
      I (μg/L) 1 590.0 2.2 189.0
      pH 8.04 6.85 7.19
      Eh (mV) 157.0 ‒171.0 ‒104.1
      TDS(mg/L) 1 308.0 90.0 503.0
      Ca2+(mg/L) 273.0 41.7 154.0
      Na+(mg/L) 98.0 9.7 20.9
      K+(mg/L) 136.0 0.4 6.4
      Mg2+(mg/L) 128.0 10.1 42.1
      NO3-(mg/L) 79.6 0.3 5.1
      NO2-(mg/L) 3.0 < 0.01
      Cl- (mg/L) 77.4 0.3 7.6
      HCO3-(mg/L) 1 753.0 127.0 769.0
      SO42-(mg/L) 880.0 < 0.01
      NH4+(mg/L) 22.7 0.01 7.0
      As (μg/L) 588 2.4 171.0
      注:“‒”指绝大多数水样的浓度低于检测限.
      下载: 导出CSV

      表  2  不同碘浓度地下水DOM芳香指数计算结果

      Table  2.   Results of DOM aromatic index in groundwater samples with different iodine concentrations

      地下水碘浓度 DBE-O=3 (%) DBE-O=7 (%) DBE-O=11 (%)
      AImod > 0. 5 AImod≥0. 67 AImod > 0. 5 AImod≥0. 67 AImod > 0. 5 AImod≥0. 67
      24.6 μg/L 6.25 60.22 4.304 60.00 40.00
      33.5 μg/L 11.67 0.57 75.86 10.34
      93.1 μg/L 13.28 0.59 68.42 11.96 93.33 68.89
      230 μg/L 36.12 4.90 86.34 28.29 92.86 35.71
      下载: 导出CSV
    • [1] Andersen, S., Guan, H. X., Teng, W. P., et al., 2008. Speciation of Iodine in High Iodine Groundwater in China Associated with Goitre and Hypothyroidism. Biological Trace Element Research, 128(2): 95-103. https://doi.org/10.1007/s12011-008-8257-x
      [2] Andersen, S., Petersen, S.B., Laurberg, P., 2002. Iodine in Drinking Water in Denmark is Bound in Humic Substances. European Journal of Endocrinology, 147(5): 663-670. https://doi.org/10.1530/eje.0.1470663
      [3] Assemi, S., Erten, H. N., 1994. Sorption of Radioiodine on Organic Rich Soil, Clay Minerals and Alumina. Journal of Radioanalytical and Nuclear Chemistry, 178(1): 193-204. https://doi.org/10.1007/BF02068670
      [4] Bae, E., Yeo, I. J., Jeong, B., et al., 2011. Study of Double Bond Equivalents and the Numbers of Carbon and Oxygen Atom Distribution of Dissolved Organic Matter with Negative-Mode FT-ICR MS. Analytical Chemistry, 83(11): 4193-4199. https://doi.org/10.1021/ac200464q
      [5] Chen, R. F., Zhang, Y., Vlahos, P., et al., 2002. The Fluorescence of Dissolved Organic Matter in the Mid-Atlantic Bight. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 49(20): 4439-4459. https://doi.org/10.1016/S0967-0645(02)00165-0
      [6] Deng, Y. M., Wang, Y. X., Li, H.J., et al., 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science, 40(11): 1876-1886 (in Chinese with English abstract). http://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain
      [7] Du, Y., Deng, Y. M., Ma, T., et al., 2020. Enrichment of Geogenic Ammonium in Quaternary Alluvial-Lacustrine Aquifer Systems: Evidence from Carbon Isotopes and DOM Characteristics. Environmental Science & Technology, 54(10): 6104-6114. https://doi.org/10.1021/acs.est.0c00131
      [8] Du, Y., Ma, T., Deng, Y. M., et al., 2017. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science Processes & Impacts, 19(2): 161-172. https://doi.org/10.1039/c6em00531d
      [9] Fuge, R., Johnson, C. C., 2015. Iodine and Human Health, the Role of Environmental Geochemistry and Diet: A Review. Applied Geochemistry, 63: 282-302. https://doi.org/10.1016/j.apgeochem.2015.09.013
      [10] Hansen, V., Roos, P., Aldahan, A., et al., 2011. Partition of Iodine (129I and 127I) Isotopes in Soils and Marine Sediments. Journal of Environmental Radioactivity, 102(12): 1096-1104. https://doi.org/10.1016/j.jenvrad.2011.07.005
      [11] Henjum, S., Barikmo, I., Gjerlaug, A. K., et al., 2010. Endemic Goitre and Excessive Iodine in Urine and Drinking Water among Saharawi Refugee Children. Public Health Nutrition, 13(9): 1472-1477. https://doi.org/10.1017/s1368980010000650
      [12] Henjum, S., Barikmo, I., Strand, T. A., et al., 2012. Iodine-Induced Goitre and High Prevalence of Anaemia among Saharawi Refugee Women. Public Health Nutrition, 15(8): 1512-1518. https://doi.org/10.1017/S1368980011002886
      [13] Kaiser, K., Kalbitz, K., 2012. Cycling Downwards-Dissolved Organic Matter in Soils. Soil Biology and Biochemistry, 52: 29-32. https://doi.org/10.1016/j.soilbio.2012.04.002
      [14] Kaplan, D. I., Denham, M. E., Zhang, S., et al., 2014. Radioiodine Biogeochemistry and Prevalence in Groundwater. Critical Reviews in Environmental Science and Technology, 44(20): 2287-2335. https://doi.org/10.1080/10643389.2013.828273
      [15] Kellerman, A. M., Guillemette, F., Podgorski, D. C., et al., 2018. Unifying Concepts Linking Dissolved Organic Matter Composition to Persistence in Aquatic Ecosystems. Environmental Science & Technology, 52(5): 2538-2548. https://doi.org/10.1021/acs.est.7b05513
      [16] Konno, N., Makita, H., Yuri, K., et al., 1994. Association between Dietary Iodine Intake and Prevalence of Subclinical Hypothyroidism in the Coastal Regions of Japan. The Journal of Clinical Endocrinology and Metabolism, 78(2): 393-397. https://doi.org/10.1210/jcem.78.2.8106628
      [17] Laurberg, P., Cerqueira, C., Ovesen, L., et al., 2010. Iodine Intake as a Determinant of Thyroid Disorders in Populations. Best Practice & Research Clinical Endocrinology & Metabolism, 24(1): 13-27. https://doi.org/10.1016/j.beem.2009.08.013
      [18] Laurberg, P., Jørgensen, T., Perrild, H., et al., 2006. The Danish Investigation on Iodine Intake and Thyroid Disease, DanThyr: Status and Perspectives. European Journal of Endocrinology, 155(2): 219-228. https://doi.org/10.1530/eje.1.02210
      [19] Li, J.X., Wang, Y.X., Guo, W., et al., 2014. Iodine Mobilization in Groundwater System at Datong Basin, China: Evidence from Hydrochemistry and Fluorescence Characteristics. Science of the Total Environment, 468-469: 738-745. https://doi.org/10.1016/j.scitotenv.2013.08.092
      [20] Liu, B., He, Y. X., Zhang, Y. Z., et al., 2020. Natural and Anthropogenic Organic Matter Cycling between Coastal Wetlands and Rivers: A Case Study from Liao River Delta. Estuarine, Coastal and Shelf Science, 236: 106610. https://doi.org/10.1016/j.ecss.2020.106610
      [21] Lu, Q. Y., He, D., Pang, Y., et al., 2020. Processing of Dissolved Organic Matter from Surface Waters to Sediment Pore Waters in a Temperate Coastal Wetland. Science of the Total Environment, 742: 140491. https://doi.org/10.1016/j.scitotenv.2020.140491
      [22] Lu, Z.J., Deng, Y. M., Du, Y., et al., 2017. EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain. Earth Science, 42(5): 771-782 (in Chinese with English abstract). http://www.researchgate.net/publication/318835931_EEMs_Characteristics_of_Dissolved_Organic_Matter_and_Their_Implication_in_High_Arsenic_Groundwater_of_Jianghan_Plain
      [23] McDonough, L. K., O'Carroll, D. M., Meredith, K., et al., 2020. Changes in Groundwater Dissolved Organic Matter Character in a Coastal Sand Aquifer Due to Rainfall Recharge. Water Research, 169: 115201. https://doi.org/10.1016/j.watres.2019.115201
      [24] Niu, X. Z., Harir, M., Schmitt-Kopplin, P., et al., 2018. Characterisation of Dissolved Organic Matter Using Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry: Type-Specific Unique Signatures and Implications for Reactivity. Science of the Total Environment, 644: 68-76. https://doi.org/10.1016/j.scitotenv.2018.06.351
      [25] Qiao, W., Guo, H. M., He, C., et al., 2020. Molecular Evidence of Arsenic Mobility Linked to Biodegradable Organic Matter. Environmental Science & Technology, 54(12): 7280-7290. https://doi.org/10.1021/acs.est.0c00737
      [26] Santschi, P. H., Schwehr, K. A., 2004. 129I/127I as a New Environmental Tracer or Geochronometer for Biogeochemical or Hydrodynamic Processes in the Hydrosphere and Geosphere: The Central Role of Organo-Iodine. Science of the Total Environment, 321(1/2/3): 257-271. https://doi.org/10.1016/j.scitotenv.2003.09.003
      [27] Schmidt, F., Koch, B. P., Goldhammer, T., et al., 2017. Unraveling Signatures of Biogeochemical Processes and the Depositional Setting in the Molecular Composition of Pore Water DOM across Different Marine Environments. Geochimica et Cosmochimica Acta, 207: 57-80. https://doi.org/10.1016/j.gca.2017.03.005
      [28] Sun, D.J., Gao, Y.H., Liu, H., 2019. Achievements and Prospects of Endemic Disease Prevention and Control in China in Past 70 Years. Chinese Journal of Public Health, 35(7): 793-796 (in Chinese with English abstract).
      [29] Voutchkova, D. D., Kristiansen, S. M., Hansen, B., et al., 2014. Iodine Concentrations in Danish Groundwater: Historical Data Assessment 1933-2011. Environmental Geochemistry and Health, 36(6): 1151-1164. https://doi.org/10.1007/s10653-014-9625-4
      [30] Waite, T. J., Truesdale, V. W., 2003. Iodate Reduction by Isochrysis Galbana is Relatively Insensitive to De-Activation of Nitrate Reductase Activity-Are Phytoplankton Really Responsible for Iodate Reduction in Seawater?. Marine Chemistry, 81(3-4): 137-148. https://doi.org/10.1016/S0304-4203(03)00013-6
      [31] Wang, W., Dou, W.Y., He, C., et al., 2020. Characterization of Surface Water Dissolved Organic Matter by Stepwise Elution Solid Phase Extraction Followed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Chinese Journal of Analysis Laboratory, 39(5): 521-526 (in Chinese with English abstract).
      [32] Wang, Y. X., Zheng, C. M., Ma, R., 2018. Review: Safe and Sustainable Groundwater Supply in China. Hydrogeology Journal, 26(5): 1301-1324. https://doi.org/10.1007/s10040-018-1795-1
      [33] Xu, L., Song, F.H., Qin, S., et al., 2019. Characterization of IHSS Nordic Lake Fulvic Acid by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Chinese Journal of Analysis Laboratory, 38(6): 637-642 (in Chinese with English abstract).
      [34] Yang, H.X., Chen, J.L., Gao, J.X., et al., 2017. Characterization of Molecular Composition and Seasonal Variation of Natural Organic Matter in Source Water Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Chinese Journal of Ecology, 36(4): 1053-1059 (in Chinese with English abstract).
      [35] Zeng, C.P., Wu, F.W., Dong, J., et al., 2017. Molecular Characterization of Dissolved Organic Matter in Underground Water by ESI FT-ICR MS. Journal of Instrumental Analysis, 36(5): 679-683 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TEST201705020.htm
      [36] Zhang, E. Y., Wang, Y. Y., Qian, Y., et al., 2013. Iodine in Groundwater of the North China Plain: Spatial Patterns and Hydrogeochemical Processes of Enrichment. Journal of Geochemical Exploration, 135: 40-53. https://doi.org/10.1016/j.gexplo.2012.11.016
      [37] Zhang, H.F., Zhang, Y.H., Shi, Q., et al., 2012. Characterization of Low Molecular Weight Dissolved Natural Organic Matter along the Treatment Trait of a Waterworks Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Water Research, 46(16): 5197-5204. https://doi.org/10.1016/j.watres.2012.07.004
      [38] Zhang, X. Y., Wu, Y. G., Hu, S. H., et al., 2016. Effects of the Release of Soil Organic Matter on Phenanthrene Sorption by Sediments. Water Environment Research, 88(4): 346-354. https://doi.org/10.2175/106143016X14504669768219
      [39] 邓娅敏, 王焰新, 李慧娟, 等, 2015. 江汉平原砷中毒病区地下水砷形态季节性变化特征. 地球科学, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168
      [40] 鲁宗杰, 邓娅敏, 杜尧, 等, 2017. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义. 地球科学, 42(5): 771-782. doi: 10.3799/dqkx.2017.065
      [41] 孙殿军, 高彦辉, 刘辉, 2019. 中国70年地方病防治成效及展望. 中国公共卫生, 35(7): 793-796. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGW201907002.htm
      [42] 王威, 窦文渊, 何晨, 等, 2020. 多步洗脱固相萃取-傅立叶变换离子回旋共振质谱表征地表水可溶有机质. 分析试验室, 39(5): 521-526. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202005006.htm
      [43] 徐磊, 宋凡浩, 秦帅, 等, 2019. 电喷雾离子源傅立叶变换离子回旋共振质谱分析IHSS Nordic湖富里酸的分子结构. 分析试验室, 38(6): 637-642. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201906001.htm
      [44] 杨红霞, 陈俊良, 高津旭, 等, 2017. 利用傅立叶变换离子回旋共振质谱测定不同季节水源水中天然有机质分子结构. 生态学杂志, 36(4): 1053-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201704022.htm
      [45] 曾纯品, 武法伟, 董军, 等, 2017. 电喷雾电离源结合傅立叶变换离子回旋共振质谱分析地下水中可溶性有机质分子组成. 分析测试学报, 36(5): 679-683. doi: 10.3969/j.issn.1004-4957.2017.05.018
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  427
    • HTML全文浏览量:  219
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-11-25
    • 网络出版日期:  2021-12-04
    • 刊出日期:  2021-11-30

    目录

      /

      返回文章
      返回