The Temporal-Spatial Distribution and Deep Structure of the Zhongnan- Liyue Fault Zone in the North of the South China Sea Basin
-
摘要: 中南-礼乐断裂带是协调南海各次海盆扩张的重要断裂.深入研究中南-礼乐断裂带时空展布和深部结构对于认识南海海盆多期次海底扩张和构造演化具有重要意义.本文主要基于深反射多道地震的精细剖析,结合重力、磁力与地形等地质与地球物理资料,揭示了中南-礼乐断裂带在南海海盆北部的时空展布特征、内部构造形变及其深部结构特征.结果表明:中南-礼乐断裂带在西北次海盆与东部次海盆之间宽约25~35 km,北延于珠江海谷西侧(18.7°N,115.5°E),南消失于中沙地块东北侧(17.2°N,116.0°E),主要呈NNW向延伸.该断裂带的主控断裂沿大型海山和侵入岩体分布,主要发育时期是渐新世至早中新世,中中新世至晚中新世为继承性活动,其内部断裂对早中新世及以前的地层具有控制作用,表现为正断层.深部结构上,中南-礼乐断裂带两侧Moho面埋深不一,两侧次海盆的沉积厚度和洋壳厚度存在明显差异,表明该断裂带至少是一条地壳级断裂,甚至可能是岩石圈级断裂.Abstract: The Zhongnan-Liyue fault zone (ZLFZ) is an important fault zone that coordinated the spread of the sub-oceanic basins in the South China Sea (SCS). In-depth study of the temporal-spatial distribution and deep structures of the ZLFZ is of great significance for understanding the multi-phase spread and tectonic evolution of the SCS Basin. Based on the geological and geophysical data including multi-channel seismic, gravity, magnetic and topographic data, this study reveals the temporal-spatial distribution, internal structural deformation and deep structures about the north segment of ZLFZ in SCS basin. The results show that (1) the width of the ZLFZ between the northwest sub-basin and the eastern sub-basin is about 25-35 km. It starts from the west side of the Zhujiang Sea valley (18.7°N, 115.5°E) and disappears at the northeast of Zhongsha bank (17.2°N, 116.0°E), and is mainly distributed in the NNW direction. The main fault of the ZLFZ is distributed along the seamounts ridge and intrusive body. The faults are mainly developed in the early stage, which are normal faults. (2) The ZLFZ was mainly developed in Oligocene to Early-Miocene and Mid-Miocene to Late-Miocene, the development was mainly inherited. (3) In the deep structures, there are not only different burial depths of the Moho on the west and east sides of the ZLFZ, but also different sedimentary thickness and oceanic crust thickness in the northwest sub-basin and eastern sub-basin. It is speculated that the ZLFZ is at least a crustal-level fault, which may even break through the lithosphere.
-
图 1 南海地形图和研究区位置及中南‒礼乐断裂在海盆中的分布
南海地形图据杨胜雄等(2015);红色框为研究区, 黄色实线是姚伯初(1995)的研究结果, 红色虚线是Ruan et al. (2016)的研究结果, 橙色虚线是Sibuet et al. (2016)的研究结果, 紫色实线是Franke (2013)和Barckhausen et al. (2014)的研究结果, 白色和红色实线为徐子英等(2019)研究结果, 白色实线为断裂带的宽度范围, 红色实线为断裂带的主控断裂
Fig. 1. The bathymetric map of the SCS, the location of study area and distribution of Zhongnan-Liyue fault zone in the SCS basin
图 2 研究区地形图和剖面位置及中南‒礼乐断裂空间展布
地形图据杨胜雄等(2015);红色实线为本文研究的中南‒礼乐断裂带的展布方向和宽度, 黄色实线是姚伯初(1995)的研究结果, 橙色虚线为Sun et al. (2019)研究结果, 黑色实线为剖面测线, 紫色虚线为古扩张脊据Li et al.(2014), 绿色实线为重震联合反演剖面
Fig. 2. The bathymetric map of the study area, profile location and the distribute of Zhongnan-Liyue fault
-
Andersen, O. B., Knudsen, P., Berry, P. A. M., 2010. The DNSC08GRA Global Marine Gravity Field from Double Retracked Satellite Altimetry. Journal of Geodesy, 84(3): 191-199. https://doi.org/10.1007/s00190-009-0355-9 Ao, W., Zhao, M. H., Qiu, X. L., et al., 2012. Crustal Structure of the Northwest Sub-Basin of the South China Sea and Its Tectonic Implication. Earth Science, 37(4): 779-790 (in Chinese with English abstract). http://www.researchgate.net/publication/286203459_Crustal_structure_of_the_Northwest_Sub-Basin_of_the_South_China_Sea_and_its_tectonic_implication Barckhausen, U., Engels, M., Franke, D., et al., 2014. Evolution of the South China Sea: Revised Ages for Breakup and Seafloor Spreading. Marine and Petroleum Geology, 58: 599-611. https://doi.org/10.1016/j.marpetgeo.2014.02.022 Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92JB02280 Ding, W. W., Schnabel, M., Franke, D., et al., 2012. Crustal Structure across the Northwestern Margin of South China Sea: Evidence for Magma-Poor Rifting from a Wide-Angle Seismic Profile. Acta Geologica Sinica (English Edition), 86(4): 854-866. https://doi.org/10.1111/j.1755-6724.2012.00711.x Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic AccretionaryProcesses. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011 Franke, D., 2013. Rifting, Lithosphere Breakup and Volcanism: Comparison of Magma-Poor and Volcanic Rifted Margins. Marine and Petroleum Geology, 43: 63-87. https://doi.org/10.1016/j.marpetgeo.2012.11.003 Jiang, T., Gao, H. F., He, J. K., et al., 2019. Post-Spreading Volcanism in the Central South China Sea: Insights from Zircon U-Pb Dating on Volcaniclastic Breccia and Seismic Features. Marine Geophysical Research, 40(2): 185-198. https://doi.org/10.1007/s11001-018-9368-1 Koppers, A. A. P., 2014. On the 40Ar/39Ar Dating of Low-Potassium Ocean Crust Basalt from IODP Expedition 349, South China Sea. American Geophysical Union, Fall Meeting 2014, San Francisco. Li, C. F., Li, J. B., Ding, W. W., et al., 2015a. Seismic Stratigraphy of the Central South China Sea Basin and Implications for Neotectonics. Journal of Geophysical Research: Solid Earth, 120(3): 1377-1399. https://doi.org/10.1002/2014JB011686 Li, C. F., Lin, J., Kulhanek, D. K., et al., 2015b. Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics. International Ocean Discovery Program, College Station. http://dx.doi.org/10.14379/iodp.proc.349.2015 Li, C. F., Song, T. R., 2012. Magnetic Recording of the Cenozoic Oceanic Crustal Accretion and Evolution of the South China Sea Basin. Chinese Science Bulletin, 57(24): 3165-3181. https://doi.org/10.1007/s11434-012-5063-9 Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014GC005567 Li, J. B., Ding, W. W., Gao, J. Y., et al., 2011. Cenozoic Evolution Model of the Sea-Floor Spreading in South China Sea: New Constraints from High Resolution Geophysical Data. Chinese Journal of Geophysics, 54(12): 3004-3015 (in Chinese with English abstract). doi: 10.1002/cjg2.1672/full Li, Y. H., Liu, H. L., Zhu, R. W., et al., 2017. Extension of the Zhongnan-Siling Fault Zone in South China Sea and Its Bearing on Seafloor Spreading. Marine Geology & Quaternary Geology, 37(2): 82-98 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201702009.htm Lin, J., Li, J. B., Xu, Y. G., et al., 2019. Ocean Drilling and Major Advances in Marine Geological and Geophysical Research of the South China Sea. Acta Oceanologica Sinica, 41(10): 125-140 (in Chinese with English abstract). Mao, Y. H., Zhao, Z. X., Sun, Z., 2020. Extensional Thinning Mechanism of the Western Continental Margin of the Pearl River Mouth Basin. Earth Science, 45(5): 1622-1635 (in Chinese with English abstract). Meyer, B., Saltus, R., Chulliat, A., 2017. EMAG2: Earth Magnetic Anomaly Grid (2-Arc-Minute Resolution) Version 3. National Centers for Environmental Information, NOAA, Washington D.C. . Ouyang, Q., Wu, Z. L., Wei, X. D., et al., 2017. Comparison of Crustal Structures in the Fossil Spreading Center of South China Sea Basins and the Tectonic Significance. Chinese Science Bulletin, 62(21): 2380-2391. https://doi.org/10.1360/n972017-00079 Qiu, Y., Wang, Y. M., Huang, W. K., et al., 2016. Jump Event of Mid-Ocean Ridge during the Eastern Subbasin Evolution of the South China Sea. Interpretation, 4(3): SP67-SP77. https://doi.org/10.1190/int-2015-0154.1 Ren, J. Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201501009 Ruan, A. G., Wei, X. D., Niu, X. W., et al., 2016. Crustal Structure and Fracture Zone in the Central Basin of the South China Sea from Wide Angle Seismic Experiments Using OBS. Tectonophysics, 688: 1-10. https://doi.org/10.1016/j.tecto.2016.09.022 Schlüter, H. U., Hinz, K., Block, M., 1996. Tectono-Stratigraphic Terranes and Detachment Faulting of the South China Sea and Sulu Sea. Marine Geology, 130(1-2): 39-78. https://doi.org/10.1016/0025-3227(95)00137-9 Sibuet, J. C., Yeh, Y. C., Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98-119. https://doi.org/10.1016/j.tecto.2016.02.022 Sun Z., Jian Z. M., Stock J. M., et al., 2018. South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program, 367/368. International Ocean Discovery Program. College Station. https://doi.org/10.14379/iodp.proc.367368.2018. Sun, Z., Ding, W. W., Zhao, X. X., et al., 2019. The Latest Spreading Periods of the South China Sea: New Constraints from Macrostructure Analysis of IODP Expedition 349 Cores and Geophysical Data. Journal of Geophysical Research: Solid Earth, 124(10): 9980-9998. https://doi.org/10.1029/2019jb017584 Sun, Z., Zhou, D., Zhong, Z. H., et al., 2006. Research on the Dynamics of the South China Sea Opening: Evidence from Analogue Modeling. Science China Earth Sciences, 49(3): 258-271. https://doi.org/10.1007/s11430-006-1053-6 Taylor, B., Hayes, D. E., 1983. Origin and History of the South China Sea Basin. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union, Washington, D. C. . https://doi.org/10.1029/gm027p0023 Wang, Q., Zhao, M. H., Zhang, H. Y., et al., 2020. Crustal Velocity Structure of the Northwest Sub-Basin of the South China Sea Based on Seismic Data Reprocessing. Science China Earth Sciences, 63(11): 1791-1806. https://doi.org/10.1007/s11430-020-9654-4 Wang, Y. J., Han, X. Q., Luo, Z. H., et al., 2009. Late Miocene Magmatism and Evolution of Zhenbei-Huangyan Seamount in the South China Sea: Evidence from Petrochemistry and Chronology. Acta Oceanologica Sinica, 31(4): 93-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC200904010.htm Wu, Z. L., Li, J. B., Ruan, A. G., et al., 2012. Crustal Structure of the Northwestern Sub-Basin, South China Sea: Results from a Wide-Angle Seismic Experiment. Science China Earth Sciences, 55(1): 159-172. https://doi.org/10.1007/s11430-011-4324-9 Xu, X., Wang, X. Q., Peng, D., et al., 2018. Characteristics and Research of Heat Flow in the Northwest Sub-Basin and Its Adjacent Areas of the South China Sea. Earth Science, 43(10): 3391-3398 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810005.htm Xu, Y. G., Wei, J. X., Qiu, H. N., et al., 2012. Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks: Preliminary Results and a Research Design. ChineseScienceBulletin, 57(24): 3150-3164. https://doi.org/10.1007/s11434-011-4921-1 Xu, Z. Y., Wang, J., Gao, H. F., et al., 2019. Research Progress on the Zhongnan-Liyue Fault Zone in the South China Sea Basin. Journal of Tropical Oceanography, 38(2): 86-94 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-RDHY201902010.htm Xu, Z. Y., Wang, J., Gao, H. F., et al., 2020. The Characteristics and Formation Mechanism of the Faults in the Southern Part of the Zhongsha Bank. Geology in China, 47(5): 1438-1446 (in Chinese with English abstract). Yan, P., Wang, Y. L., Liu, H. L., 2008. Topography of Oceanic Basin in South China Sea and NW-Directed Faults. Journal of Tropical Oceanography, 27(3): 30-37 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-tropical-oceanography_thesis/0201252196736.html Yang, S. X., Qiu, Y., Zhu, B. D., et al., 2015. Atlas of Geology and Geophysics of the South China Sea. China Navigation Publications Press, Tianjin (in Chinese with English abstract). Yao, B. C., 1995. Characteristics and Tectonic Meaning of Zhongnan-Liyue Fault. Geological Research of South China Sea, 7: 1-14 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHDZ199500000.htm Zhang, Y. Z., Qi, J. F., Wu, J. F., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2): 603-625 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX201902023.htm 敖威, 赵明辉, 丘学林, 等, 2012. 南海西北次海盆及其邻区地壳结构和构造意义. 地球科学, 37(4): 779-790. http://www.earth-science.net/article/id/2284 黎雨晗, 刘海龄, 朱荣伟, 等, 2017. 南海中南-司令断裂带的延伸特征及其与南海扩张演化的关系. 海洋地质与第四纪, 37(2): 82-98. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201702009.htm 李家彪, 丁巍伟, 高金耀, 等, 2011. 南海新生代海底扩张的构造演化模式: 来自高分辨率地球物理数据的新认识. 地球物理学报, 54(12): 3004-3015. doi: 10.3969/j.issn.0001-5733.2011.12.003 林间, 李家彪, 徐义刚, 等, 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破. 海洋学报, 41(10): 125-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201910008.htm 毛云华, 赵中贤, 孙珍, 2020. 珠江口盆地西部陆缘伸展-减薄机制. 地球科学, 45(5): 1622-1635. doi: 10.3799/dqkx.2019.160 任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm 王叶剑, 韩喜球, 罗照华, 等, 2009. 晚中新世南海珍贝-黄岩海山岩浆活动及其演化: 岩石地球化学和年代学证据. 海洋学报, 31(4): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200904010.htm 徐行, 王先庆, 彭登, 等, 2018. 南海西北次海盆及其邻区的地热流特征与研究. 地球科学, 43(10): 3391-3398. doi: 10.3799/dqkx.2017.606 徐子英, 汪俊, 高红方, 等, 2019. 南海海盆中南-礼乐断裂带研究进展. 热带海洋学报, 38(2): 86-94. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201902010.htm 徐子英, 汪俊, 高红芳, 等, 2020. 中沙地块南部断裂发育特征及其成因机制. 中国地质, 47(5): 1438-1446. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202005012.htm 阎贫, 王彦林, 刘海龄, 2008. 南海海盆地形与NW向断裂. 热带海洋学报, 27(3): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY200803007.htm 杨胜雄, 邱燕, 朱本铎, 等, 2015. 南海地质地球物理图系. 天津: 中国航海图书出版社. 姚伯初, 1995. 中南-礼乐断裂的特征及其构造意义. 南海地质研究, 7: 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-NHDZ199500000.htm 张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625. doi: 10.3799/dqkx.2018.542