• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    安宁地热田浅部热储水化学特征及补给通道位置

    徐梓矿 徐世光 张世涛

    徐梓矿, 徐世光, 张世涛, 2021. 安宁地热田浅部热储水化学特征及补给通道位置. 地球科学, 46(11): 4175-4187. doi: 10.3799/dqkx.2020.401
    引用本文: 徐梓矿, 徐世光, 张世涛, 2021. 安宁地热田浅部热储水化学特征及补给通道位置. 地球科学, 46(11): 4175-4187. doi: 10.3799/dqkx.2020.401
    Xu Zikuang, Xu Shiguang, Zhang Shitao, 2021. Hydro-Geochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir. Earth Science, 46(11): 4175-4187. doi: 10.3799/dqkx.2020.401
    Citation: Xu Zikuang, Xu Shiguang, Zhang Shitao, 2021. Hydro-Geochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir. Earth Science, 46(11): 4175-4187. doi: 10.3799/dqkx.2020.401

    安宁地热田浅部热储水化学特征及补给通道位置

    doi: 10.3799/dqkx.2020.401
    基金项目: 

    云南联合基金项目“若干植物类群的演化、灭绝及其对亚洲季风气候的响应” U1502231

    详细信息
      作者简介:

      徐梓矿(1990-), 男, 博士研究生, 从事水文地质、地热、地下水环境方面研究.ORCID: 0000-0001-7210-3592.E-mail: xzk99882008@vip.qq.com

      通讯作者:

      张世涛, ORCID: 0000-0002-8901-9255.E-mail: taogezhang@hotmail.com

    • 中图分类号: P314;P641

    Hydro-Geochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir

    • 摘要: 碳酸盐岩淡水热储层在我国西南地区广泛分布,安宁地热田毗邻昆明地热田西侧约40 km,是具有垂向双层热储结构的低温地热田.在深部地层缺乏钻探资料时,为了探究地热田成因,寻找深部热储向浅部热储的补给通道,使用了以下研究方法:(1)通过类比昆明地热田确定灯影组深部热储的水化学特征,(2)从水岩作用、水化学类型和主要离子相关性分析方面入手,阐述深部热储与浅部栖霞茅口组热储水化学特征的区别与联系,发现可用钠离子作为热水通道的指示因子,(3)以包括开采现状、实测温度和通道位置的数值反演模型验证通道的合理性.分析显示,浅部地热水为混合水,水化学类型(HCO3-Ca·Mg型)明显受同层冷水控制,与深部地热水离子浓度差别大.浅部热储水各点的地热水化学特征差异小,仅钠离子浓度分布可与地热田温度分区和开发利用情况相呼应.对于补给通道的水化学数据分析结果和数值模拟结果嵌合较好,说明采用以钠离子分布为主的综合分析方法所推断的补给通道位置较为合理.

       

    • 图  1  1991年降水量、螳螂川河水位和泉水水位

      Fig.  1.  Precipitation and water level of Tanglang river and hot spring in 1991

      图  2  安宁地热田地层结构与成因剖面

      Fig.  2.  Stratigraphic texture and genetic mechanism of Anning geothermal field

      图  3  研究区水文地质条件与水样点分布

      Fig.  3.  Hydrogeology conditions and sampling locations

      图  4  安宁地热田地下热水氢氧同位素组成

      Fig.  4.  Oxygen and hydrogen isotopic compositions of Anning geothermal field

      图  5  安宁地热田浅部热储地下水Gibbs图

      Fig.  5.  Gibbs diagrams of shallow geothermal reservoir of Anning geothermal field

      图  6  安宁地热田浅部热储地下水Piper图

      Fig.  6.  Piper diagram of water samples from upper geothermal reservoir

      图  7  七大离子浓度与浅层地热水温度关系

      Fig.  7.  Relationship between seven ions concentration and upper geothermal water temperature

      图  8  浅部地热水的γ(Ca2++Mg2+)与γ(HCO3+ SO42‒)关系图

      Fig.  8.  γ(Ca2++Mg2+) and γ(HCO3+ SO42‒) of upper geothermal water

      图  9  浅部热储钠离子等值线、地热显示与推测补给通道分布

      Fig.  9.  Sodium concentration contour, geothermal manifestations and inferred flow channels of upper geothermal reservoir

      图  10  有限元网格与计算水位

      Fig.  10.  Finite-element mesh and simulating hydraulic head

      图  11  地热田模型主要井点温度误差

      Fig.  11.  Temperature error between simulated and measured values of main thermal wells

      图  12  浅部热储的模拟地温场、地热显示与推测补给通道

      Fig.  12.  Simulated temperature field, geothermal manifestations and inferred flow channels of upper geothermal reservoir

      表  1  安宁地热田15组地下冷热水样分析结果

      Table  1.   Chemical composition of 15 groundwater samples of Anning geothermal field

      编号 名称 水温(℃) $ \mathrm{p}\mathrm{H} $ $ \mathrm{\delta }{}^{2}\mathrm{H} $ $ \mathrm{\delta }{}^{18}\mathrm{O} $ $ \mathrm{T}\mathrm{D}\mathrm{S} $ $ \mathrm{H}\mathrm{C}{\mathrm{O}}_{3}^{-} $ $ \mathrm{C}{\mathrm{l}}^{-} $ $ \mathrm{S}{\mathrm{O}}_{4}^{2-} $ $ {\mathrm{K}}^{+} $ $ \mathrm{N}{\mathrm{a}}^{+} $ $ \mathrm{C}{\mathrm{a}}^{2+} $ $ \mathrm{M}{\mathrm{g}}^{2+} $ 离子平衡检验(%)
      (mg/L)
      1 军区疗养院 43.0
      2 云南省干部疗养院1 41.0 7.4 ‒57.5 ‒13.8 277.6 262.8 7.9 20.9 1.8 14.9 53.5 23.5 3.28
      3 云南省干部疗养院2 39.7
      4 云南省干部疗养院3 38.5 7.5 ‒53.9 ‒16.0 293.0 273.8 9.9 22.1 2.0 19.0 55.3 24.1 3.67
      5 停车场井 42.4 7.4 ‒58.8 ‒14.0 260.8 256.5 9.9 14.9 1.9 7.9 43.3 29.1 1.62
      6 天下第一汤 44.5 7.5 ‒52.2 ‒11.7 291.2 258.1 9.9 31.6 2.0 17.6 54.4 21.8 1.55
      7 温泉别墅 44.0
      8 温泉宾馆 43.5 7.1 ‒63.4 ‒12.8 265.9 258.1 9.9 16.4 2.0 8.5 54.4 21.8 0.85
      9 会议中心 35.0 7.6 ‒53.5 ‒17.3 275.5 264.4 9.9 19.9 2.2 7.3 59.0 20.1 ‒0.50
      10 温泉小村 31.5 7.2 ‒58.3 ‒15.6 259.5 234.5 9.9 21.4 2.2 12.2 49.8 21.8 3.20
      11 温泉街道办 38.0 7.4 ‒67.5 ‒14.0 303.7 275.4 11.9 25.2 2.8 22.2 58.1 21.8 3.25
      12 云涛酒店 40.0 7.5 ‒54.0 ‒16.3 278.3 251.8 9.9 22.8 1.8 14.2 55.3 21.3 2.98
      13 摩崖石刻1 32.0 7.5 ‒61.6 ‒14.0 284.6 269.1 11.9 24.8 1.5 23.8 35.0 33.6 3.00
      14 摩崖石刻2 36.5 7.3 ‒51.3 ‒11.1 266.7 266.0 10.9 25.7 2.0 24.8 56.2 19.6 3.25
      15 牧羊火车站 20.0 7.8 171.5 192.0 1.0 7.1 0.8 3.9 32.3 21.3 3.41
      16 铁路武装部 21.0 7.5 310.9 350.9 2.0 26.0 0.8 5.7 25.8 61.0 1.77
      17 猎人苑 18.0 7.7 196.4 215.6 < 0.99 9.5 0.7 12.0 36.9 19.0 2.81
      18 珍泉村 19.0 7.2 233.7 245.5 3.0 14.3 0.7 10.0 38.7 28.5 3.57
      下载: 导出CSV

      表  2  昆明地热田地下热水常规指标

      Table  2.   Chemical compositions of thermal water in Kunming geothermal field

      矿化度(mg/L) $ \mathrm{p}\mathrm{H} $ K+ Na+ Ca2+ Mg2+ HCO3 SO42‒ Cl-
      (mg/L)
      130~720 6.8~8.2 6.0~24 1.7~135.0 15.24~88.32 7.08~40.94 299.79~462.9 2.0~196.0 1.15~40.13
      注:改自徐世光(2001).
      下载: 导出CSV

      表  3  数值模型水头计算值与观测值(m)

      Table  3.   Simulating hydraulic head of numerical model and observing head

      编号 名称 观测水头 计算水头 误差
      3 云南省干部疗养院2 1 823.8 1 822.05 ‒1.75
      5 停车场井 1 823.6 1 823.26 ‒0.34
      6 天下第一汤 1 823.1 1 823.34 0.24
      10 温泉小村 1 821.5 1 822.54 1.04
      12 云涛酒店 1 822.7 1 822.09 ‒0.61
      14 摩崖石刻2 1 821.5 1 822.39 0.89
      下载: 导出CSV
    • [1] An, Q.S., Wang, Y.Z., Zhao, J., et al., 2016. Direct Utilization Status and Power Generation Potential of Low-Medium Temperature Hydrothermal Geothermal Resources in Tianjin, China: A Review. Geothermics, 64: 426-438. https://doi.org/10.1016/j.geothermics.2016.06.005
      [2] Burns, E.R., Ingebritsen, S.E., Manga, M., et al., 2016. Evaluating Geothermal and Hydrogeologic Controls on Regional Groundwater Temperature Distribution. Water Resources Research, 52: 1328-1344. https://doi.org/10.1002/2015WR018204
      [3] Chen, B. C., Perdana, T., Kuo, L.W., 2021. Fluid Flow and Fault-Related Subsurface Fractures in Flate and Metasandstone Formations: A Case Study of the Jentse Geothermal Area, Taiwan. Geothermics, 89. https://doi.org/10.1016/j.geothermics.2020.101986
      [4] Chen, M.X., Wang, J.Y., 1994. Review and Prospect on Geothermal Studies in China. Acta Geophysica Sinica, 37(S1): 320-338 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX4S1.029.htm
      [5] Cheng, X.F., Xu, S.G., Zhang, S.T., 2008. Characteristics of Geothermal Geology and Genetic Model of the Anning Hot Spring in Yunnan Province. Hydrogeology & Engineering Geology, 5: 124-128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200805032.htm
      [6] Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
      [7] Fabbri, P., Pola, M., Piccinini, L., et al., 2017. Monitoring, Utilization and Sustainable Development of a Low-Temperature Geothermal Resource: A Case Study of the Euganean Geothermal Field (NE, Italy). Geothermics, 70: 281-294. https://doi.org/10.1016/j.geothermics.2017.07.002
      [8] Guo, S.S., Zhu, C.Q., Qiu, N.S., et al., 2020. Formation Conditions and Favorable Areas for the Deep Geothermal Resources in the Xiong'an New Area. Acta Geologica Sinica, 94(7): 2026-2035 (in Chinese with English abstract).
      [9] Hu, H., Wang, J.L., 2015. On Characteristics of Hydrogen and Oxygen Isotope in Precipitation in Yunnan and Analysis of Moisture Sources. Journal of Southwest China Normal University (Natural Science Edition), 40(5): 142-149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XNZK201505025.htm
      [10] Ji, H.C., Li, H.Q., Chen, L., et al., 2017. Composition and Resource Prediction of the Nanxiang Basin Geothermal System: A Case Study from the Biyang and Nanyang Sags. Earth Science Frontiers, 24(3): 199-209 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201703023.htm
      [11] Rao, N. S., 2002. Geochemistry of Groundwater in Parts of Guntur District, Andhra Pradesh, India. Environmental Geology, 41(5): 552-562. https://doi.org/10.1007/s002540100431
      [12] Song, X. Q., Peng, Q., Duan, Q.S., et al., 2019. Hydrochemistry Characteristics and Origin of Geothermal Water in Nothereastern Guizhou. Earth Science, 44(9): 2874-2886 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909006.htm
      [13] Sun, Z.J., Gao, Z.J., Wang, X.F., et al., 2018. Exploration of Mineral Water Outcropping Pattern in the Mountainous Area of South Jiangxi. Acta Geoscientica Sinica, 39(5): 565-572 (in Chinese with English abstract). http://www.researchgate.net/publication/331686443_Exploration_of_Mineral_Water_Outcropping_Pattern_in_the_Mountainous_Area_of_South_Jiangxi
      [14] Wang, G.L., Zhang, W., Liang, J.Y., et al., 2017. Evaluation of Geothermal Resources Potential in China. Acta Geoscientica Sinica, 38(4): 449-459 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201704002.htm
      [15] Wang, J.A., Xu, Q., Zhang, W.R., 1990. Heat Flow Data and Some Geologic-Geothermal Problems in Yunnan Province. Seismology and Geology, 12(4): 367-377 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ199004012.htm
      [16] Wang, J.Y., 2015. Geothermics and Its Applications. Science Press, Beijing, 58 (in Chinese with English Foreword).
      [17] Wang, X.W., Wang, T.H., Zhang, X., et al., 2019. Genetic Mechanism of Xiwenzhuang Geothermal Field in Taiyuan Basin. Earth Science, 44(3): 1042-1056 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201903030.htm
      [18] Wang, Y., Kang, X.B., Zhang, H., et al., 2016. The Genesis and Extension of Kunming Geothermal Field. Carsologica Sinica, 35(2): 125-133 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR201602001.htm
      [19] Xu, Q., Wang, J.A., Wang, J.Y., 1992. A Compound and Superimposed Thermal Structure of the Lithosphere in the Continental Collision Orogens-A Case Study of the Sanjiang Region of Yunnan. Geological Review, 38(6): 540-545 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199206011.htm
      [20] Xu, S.G., 2001. Modeling Study on Kunming Geothermal Field (Dissertation). China University of Geosciences, Beijing, 28-42 (in Chinese with English abstract).
      [21] Xu, Z.P., Wang, F.Y., Jiang, L., et al., 2018. The Depth of Moho Interface and Crustal Thickness in Sichuan-Yunnan Region, China. Seismology and Geology, 40(6): 1318-1331 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201806009.htm
      [22] Yang, J.H., Gao, J.C., 2008. Geothermal Geological Feature Analysis and Research of Anning Hot Spring. Journal of Kunming University of Science and Technology (Science and Technology), 33(5): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KMLG200805000.htm
      [23] Yu, N., Hu, X.Y., Li, J., et al., 2017. Electrical Structure of the Longling Area in Western Yunnan and Its Effect on Route Selection of the Dali-Ruili Railway. Chinese Journal of Geophysics, 60(6): 2442-2455 (in Chinese with English abstract). http://www.researchgate.net/publication/319245174_Electrical_structure_of_the_Longling_area_in_western_Yunnan_and_its_effect_on_route_selection_of_the_Dali-Ruili_railway
      [24] Yuan, J.F., Deng, G.S., Xu, F., et al., 2016. Hydrogeochemical Characteristics of Karst Groundwater in Northern Part of the City of Bijie. Hydrogeology & Engineering Geology, 43(1): 12-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG201601004.htm
      [25] Zhang, G.Y., Liu, D.M., Zhang, J.Q., et al., 2020. Analysis of Structural Controls of Geothermal Resources in the NW-SE Trending Boluo-Dayawan Fault Depression in Huizhou City, Guangdong Province. Earth Sciences Frontiers, 27(1): 63-71 (in Chinese with English abstract).
      [26] Zhang, L.H., Guo, F.G., Sano, Y., et al., 2017. Flux and Genesis of CO2 Degassing from Volvanic-Geothermal Fields of Gulu-Yadong Rift in the Lhasa Terrane, South Tibet: Constraints on Characteristics of Deep Carbon Cycle in the India-Aisa Continent Subduction Zone. Journal of Asian Earth Sciences, 149: 110-123. https://doi.org/10.1016/j.jseaes.2017.05.036
      [27] Zhang, X. B., Hu, Q. H., 2018. Development of Geothermal Resources in China: A Review. Journal of Earth Science, 29(2): 452-467. https://doi.org/10.1007/s12583-018-0838-9
      [28] Zhang, Y., Feng, J.Y., He, Z.L., et al., 2017. Classification of Geothermal Systems and Their Formation Key Factors. Earth Science Frontiers, 24(3): 190-198 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201703022.htm
      [29] 陈墨香, 汪集旸, 1994. 中国地热研究的回顾与展望. 地球物理学报, 37(S1): 320-338.
      [30] 程先锋, 徐世光, 张世涛, 2008. 云南省安宁温泉地热地质特征及成因模式. 水文地质工程地质, 5: 124-128. http://www.cnki.com.cn/Article/CJFDTotal-SWDG200805032.htm
      [31] 郭飒飒, 朱传庆, 邱楠生, 等, 2020. 雄安新区深部地热资源形成条件与有利区预测地质学报, 94(7): 2026-2035. http://www.cqvip.com/QK/95080X/202007/7102425304.html
      [32] 胡菡, 王建力, 2015. 云南地区大气降水中氢氧同位素特征及水汽来源分析. 西南师范大学学报(自然科学版), 40(5): 142-149.
      [33] 季汉成, 李海泉, 陈亮, 等, 2017. 南襄盆地地热系统构成及资源量预测: 以泌阳、南阳凹陷为例. 地学前缘, 24(3): 199-209. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201703023.htm
      [34] 宋小庆, 彭钦, 段启杉, 等, 2019. 黔东北地区地热水化学特征及起源. 地球科学, 44(9): 2974-2886. doi: 10.3799/dqkx.2019.146
      [35] 孙智杰, 高宗军, 王新峰, 等, 2018. 赣南山区矿泉水出露模式探讨. 地球学报, 39(5): 565-572. http://www.cnki.com.cn/Article/CJFDTotal-DQXB201805007.htm
      [36] 王贵玲, 张薇, 梁继运, 等, 2017. 中国地热资源潜力评价. 地球学报, 38(4): 449-459. http://www.cnki.com.cn/Article/CJFDTotal-DQXB201704002.htm
      [37] 汪缉安, 徐青, 张文仁, 1990. 云南大地热流及地热地质问题. 地震地质, 12(4): 367-377.
      [38] 汪集旸, 2015. 地热学及其应用. 北京: 科学出版社, 58.
      [39] 汪新伟, 王婷灏, 张瑄, 等, 2019. 太原盆地西温庄地热田的成因机制. 地球科学, 44(3): 1042-1056. doi: 10.3799/dqkx.2018.387
      [40] 王宇, 康晓波, 张华, 等, 2016. 昆明地热田的成因与外延. 中国岩溶, 35(2): 125-133. http://www.cnki.com.cn/Article/CJFDTotal-ZGYR201602001.htm
      [41] 徐青, 汪缉安, 汪集旸, 1992. 大陆碰撞造山带复合叠加型岩石圈热结构——以云南三江地区为例. 地质论评, 38(6): 540-545. doi: 10.3321/j.issn:0371-5736.1992.06.012
      [42] 徐世光, 2001. 昆明地热田模型研究(博士学位论文). 北京: 中国地质大学, 28-42.
      [43] 徐志萍, 王夫运, 姜磊, 等, 2018. 川滇地区莫霍面深度和地壳厚度. 地震地质, 40(6): 1318-1331. http://www.cnki.com.cn/Article/CJFDTotal-DZDZ201806009.htm
      [44] 杨金和, 高俊彩, 2008. 安宁温泉地热区地热地质特征分析与研究. 昆明理工大学学报(理工版), 33(5): 1-6. doi: 10.3969/j.issn.1007-855X.2008.05.001
      [45] 余年, 胡祥云, 李坚, 等, 2017. 滇西龙陵地区地壳电性结构及其对大瑞铁路地质选线影响研究. 地球物理学报, 60(6): 2442-2455. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201706033.htm
      [46] 袁建飞, 邓国仕, 徐芬, 等, 2016. 毕节市北部岩溶地下水水文地球化学特征. 水文地质工程地质, 43(1): 12-20. http://www.cnki.com.cn/Article/CJFDTotal-SWDG201601004.htm
      [47] 张根袁, 刘德民, 张婧琪, 等, 2020. 广东省惠州市博罗-大亚湾NW-SE向断陷系统地热资源分析. 地学前缘, 27(1): 63-71. http://www.cnki.com.cn/Article/CJFDTotal-DXQY202001009.htm
      [48] 张英, 冯建赟, 何治亮, 等, 2017. 地热系统类型划分与主控因素分析. 地学前缘, 24(3): 190-198. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201703022.htm
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  98
    • HTML全文浏览量:  93
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-28
    • 网络出版日期:  2021-12-04
    • 刊出日期:  2021-11-30

    目录

      /

      返回文章
      返回