Highly Fractionated Granitic Pegmatite of Early Stage of Early Cretaceous in Liaodong Peninsula: Petrogenesis and Tectonic Setting
-
摘要: 包括辽东半岛在内的华北克拉通北缘早白垩世早期岩浆活动极其稀少,研究程度较低,导致该时期的地质背景限定缺乏直接证据.对辽东半岛三股流地区新发现的花岗伟晶岩开展了岩石学、锆石U-Pb年代学、锆石阴极发光(CL)成像技术、锆石微量元素、全岩地球化学和锆石Lu-Hf同位素等方面的研究,以期为研究区早白垩世早期构造背景提供制约.花岗伟晶岩锆石阴极发光微弱甚至不发光,大多数锆石内部结构为斑杂状分带或海绵状分带,少见岩浆震荡环带,Th/U < 0.1,其锆石稀土元素特征也与岩浆锆石明显不同,显示出热液锆石特征.锆石U-Pb年代学结果表明花岗伟晶岩的形成年龄为144.3±2.7 Ma,属早白垩世早期.花岗伟晶岩以富Si、Al、碱,贫Fe、Mg,富集大离子亲石元素,亏损高场强元素,以及显示出一定的四分组效应为特征.其εHf(t)为-27.4~-24.7,二阶段模式年龄为2.91~2.74 Ga,与五龙中晚侏罗世花岗岩Hf同位素组成相类似.综合以上研究,认为三股流花岗伟晶岩经历了较高程度的分异结晶,与五龙中晚侏罗世花岗岩存在成因联系,其成岩介质为富含热液的岩浆-热液共存体系.辽东半岛早白垩世早期岩浆活动形成于伸展背景,该伸展背景可能与蒙古-鄂霍茨克洋后碰撞伸展和太平洋俯冲相关.Abstract: The early stage of Early Cretaceous magmatic activity in the Liaodong Peninsula was extremely rare and the research has been inadequate, which leads to the lack of direct evidence for constraints on the tectonic setting. Here, it presents new petrological, whole-rock geochemical, zircon U-Pb geochronological, cathodoluminescence (CL) imaging, trace element and Lu-Hf isotopic data for granitic pegmatite of the Sanguliu region, Liaodong Peninsula. Most of the zircon grains show very weak cathodoluminescence, with few oscillatory zoning, low Th/U ratios(< 0.1), and the zircon REEs are also markedly different from magmatic zircons, which is typical of hydrothermal zircon. Zircon U-Pb dating shows that the granitic pegmatite was formed at 144.3 ±2.7 Ma. The granitic pegmatite is characterized by enrichment in Si, Al and alkali, and depletion in Fe and Mg. In addition, the granitic pegmatite is enriched in lithophile elements and depleted in high-field strength elements, with REE tetrad effect. The zircon grains from the granitic pegmatite have εHf(t) values of -27.4 to -24.7, with two-stage Hf model ages ranging from 2.91 to 2.74 Ga, which is similar to the Wulong Middle-Late Jurassic granites. It can infer that Sanguliu granitic pegmatite may have genetic relationship with Wulong Middle-Late Jurassic granites, and Sanguliu granitic pegmatite may be originated from the hybrid of hydrothermal fluid and magma after the highly fractional crystallization of parental magma. By combining these findings with the previous research results, this study proposes that the early stage of Early Cretaceous magmation was formed at extension setting in the Liaodong Peninsula, which is related to the post-collision of the Mongol-Okhotsk Ocean and the back-arc basin of the Pacific plate subduction.
-
Key words:
- granitic pegmatite /
- extension setting /
- Mongol-Okhotsk Ocean /
- Pacific plate /
- Liaodong Peninsula /
- mineral deposits
-
图 1 辽东半岛构造分区(a)和辽东半岛中生代侵入体分布地质图(b)
据Wu et al.(2005a, 2005b); Liu et al.(2011)
Fig. 1. Tectonic subdivisions of the Liaodong Peninsula(a) and geological map showing distribution of Mesozoic intrusions in the Liaodong Peninsula (b)
图 7 A/NK-A/CNK图(a)和K2O-SiO2图(b)
a.据Maniar and Piccoli(1989);b.据Peccerillo and Taylor(1976);A/CNK = Al2O3/(CaO+Na2O+K2O);A/NK = Al2O3/(Na2O+K2O)
Fig. 7. A/NK-A/CNK (a) and K2O-SiO2 (b) diagrams
图 8 稀土元素球粒陨石标准化配分曲线图(a)和微量元素原始地幔标准化蛛网(b)
a.标准化数值据Boynton(1984); b.标准化数值据Sun and McDonough(1989)
Fig. 8. Chondrite-normalized REE-pattern (a) and primitive-mantle normalized trace elements spider diagrams (b)
图 11 锆石(Sm/La)N-La图(a)和锆石Ce/Ce*-(Sm/La)N图(b.据Hoskin, 2005)
Fig. 11. Zircon (Sm/La)N-La diagram (a) and Ce/Ce*-(Sm/La)N diagram(b.after Hoskin, 2005)
表 1 锆石LA⁃ICP⁃MS U⁃Pb同位素分析结果
Table 1. LA-ICP-MS zircon U-Pb dating data
样品 Th(10-6) U(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 协和度 比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 花岗伟晶岩 D18-A-N-03 693 16 203 0.04 0.056 98 0.001 24 0.196 54 0.004 56 0.025 15 0.000 72 500.0 48 182.2 4 160.1 5 87% D18-A-N-04 484 16 303 0.03 0.063 82 0.001 15 0.216 83 0.007 39 0.024 56 0.000 77 744.5 37 199.3 6 156.4 5 75% D18-A-N-05 968 17 051 0.06 0.056 30 0.001 18 0.194 88 0.005 63 0.025 07 0.000 63 464.9 46 180.8 5 159.6 4 87% D18-A-N-06 366 16 785 0.02 0.054 11 0.000 73 0.193 33 0.004 02 0.025 78 0.000 37 376.0 30 179.5 3 164.1 2 91% D18-A-N-07 412 13 013 0.03 0.056 93 0.000 93 0.212 61 0.004 27 0.027 15 0.000 63 500.0 35 195.7 4 172.7 4 87% D18-A-N-08 354 19 102 0.02 0.050 85 0.000 71 0.174 92 0.003 42 0.024 93 0.000 47 235.3 27 163.7 3 158.7 3 96% D18-A-N-09 1 200 23 785 0.05 0.064 26 0.001 25 0.221 47 0.007 47 0.024 93 0.000 75 750.0 41 203.1 6 158.8 5 75% D18-A-N-10 950 11 653 0.08 0.056 30 0.001 54 0.172 66 0.005 00 0.022 35 0.000 62 464.9 29 161.7 4 142.5 4 87% D18-A-N-11 322 15 103 0.02 0.055 61 0.001 12 0.206 30 0.006 13 0.026 83 0.000 68 435.2 44 190.4 5 170.7 4 89% D18-A-N-12 482 21 104 0.02 0.052 32 0.000 94 0.162 43 0.002 67 0.022 49 0.000 37 298.2 41 152.8 2 143.4 2 78% D18-A-N-13 1 255 33 513 0.04 0.067 54 0.001 94 0.209 11 0.008 73 0.022 39 0.000 71 853.7 64 192.8 7 142.7 4 70% D18-A-N-14 418 12 257 0.03 0.072 45 0.002 14 0.247 27 0.008 68 0.024 65 0.000 47 998.2 59 224.4 7 157.0 3 64% D18-A-N-15 419 15 747 0.03 0.075 37 0.001 57 0.232 33 0.008 29 0.022 43 0.000 84 1 079.6 43 212.1 7 143.0 5 61% D18-A-N-17 707 18 546 0.04 0.057 17 0.001 33 0.175 60 0.003 63 0.022 57 0.000 56 498.2 47 164.3 3 143.9 4 86% D18-A-N-18 278 15 691 0.02 0.061 25 0.001 47 0.202 75 0.005 46 0.024 06 0.000 55 647.9 52 187.5 5 153.3 3 79% D18-A-N-19 598 21 370 0.03 0.058 42 0.000 90 0.193 33 0.003 16 0.024 08 0.000 42 546.3 33 179.5 3 153.4 3 84% D18-A-N-20 351 14 563 0.02 0.059 39 0.001 09 0.202 61 0.005 30 0.024 68 0.000 52 581.2 39 187.3 4 157.1 3 82% D18-A-N-21 517 14 653 0.04 0.059 54 0.000 94 0.199 26 0.003 88 0.024 31 0.000 38 587.1 33 184.5 3 154.8 2 82% D18-A-N-22 685 16 764 0.04 0.058 95 0.001 30 0.186 09 0.004 25 0.023 05 0.000 60 564.9 48 173.3 4 146.9 4 83% D18-A-N-23 576 13 593 0.04 0.067 15 0.001 82 0.204 60 0.006 78 0.022 11 0.000 65 842.6 57 189.0 6 140.9 4 70% D18-A-N-24 886 12 649 0.07 0.076 20 0.003 12 0.255 35 0.009 63 0.024 40 0.000 68 1 101.9 86 230.9 8 155.4 4 60% D18-A-N-26 1 094 18 019 0.06 0.067 68 0.001 27 0.231 86 0.004 88 0.024 99 0.000 55 858.9 39 211.7 4 159.1 3 71% D18-A-N-27 428 19 853 0.02 0.050 07 0.001 04 0.161 36 0.005 23 0.023 37 0.000 74 198.2 53 151.9 5 148.9 5 98% D18-A-N-28 365 12 845 0.03 0.060 07 0.001 13 0.198 74 0.004 26 0.024 04 0.000 45 605.6 45 184.1 4 153.2 3 81% D18-A-N-29 439 16 042 0.03 0.050 48 0.000 85 0.157 37 0.003 79 0.022 56 0.000 52 216.7 39 148.4 3 143.8 3 96% 表 2 锆石微量元素组成(10-6)
Table 2. zircon trace elements (10-6) data
样品 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE δCe Hf Y Nb Ta 花岗伟晶岩 D18-A-N-03 34.27 59.43 9.59 52.18 91.82 0.13 274 88 817 198 921 261 4 117 718 7 642 0.78 102 788 9 877 154 617 D18-A-N-04 13.48 16.92 5.10 33.96 65.92 0.71 252 93 891 197 766 171 2 033 280 4 819 0.49 83 643 10 540 381 109 D18-A-N-05 19.57 39.50 9.11 52.50 77.36 0.90 206 81 881 235 1 100 279 3 724 585 7 290 0.71 89 998 10 808 599 346 D18-A-N-06 5.04 13.13 3.76 21.85 51.51 0.76 213 82 857 210 881 218 2 873 440 5 870 0.69 97 588 11 118 179 240 D18-A-N-07 2.76 9.44 2.02 16.44 32.98 0.33 121 50 588 165 789 214 3 008 489 5 488 0.92 82 844 6 781 275 368 D18-A-N-08 2.73 22.03 1.60 12.21 24.16 0.33 108 53 691 208 981 246 3 173 483 6 007 2.48 83 519 8 468 224 156 D18-A-N-09 10.85 21.22 7.53 53.70 146.38 0.75 548 183 1 632 358 1 408 324 4 105 624 9 422 0.54 81 360 17 318 404 147 D18-A-N-10 2.15 7.31 2.09 21.41 52.11 0.27 187 69 662 152 682 213 3 616 631 6 299 0.75 86 474 8 022 141 463 D18-A-N-11 1.99 5.65 1.07 7.06 19.36 0.19 96 41 492 145 721 200 2 822 469 5 021 0.92 96 520 6 318 333 439 D18-A-N-12 3.94 17.87 2.74 20.26 41.12 0.65 183 83 939 240 1 036 251 3 197 473 6 488 1.26 116 478 11 492 374 242 D18-A-N-13 23.09 52.75 11.92 80.58 201.70 0.56 717 236 2 147 473 1 871 438 5 575 859 12 686 0.76 86 362 22 290 373 181 D18-A-N-14 4.54 13.68 3.54 34.96 85.44 0.23 296 92 880 219 940 229 3 009 468 6 275 0.78 105 307 11 051 265 310 D18-A-N-15 5.88 13.81 3.88 33.18 76.86 0.42 281 86 829 202 898 240 3 488 572 6 729 0.67 90 817 9 451 248 302 D18-A-N-17 6.91 16.36 4.22 30.20 67.68 0.51 235 89 931 238 1 094 285 3 957 620 7 575 0.71 93 199 10 883 294 391 D18-A-N-18 2.93 8.25 2.01 13.92 40.55 0.37 156 70 742 183 873 264 4 241 735 7 331 0.79 83 828 9 699 262 337 D18-A-N-19 4.91 14.75 4.38 33.79 90.09 0.42 298 103 961 210 813 186 2 292 319 5 332 0.71 104 082 10 216 176 172 D18-A-N-20 5.26 9.74 3.80 26.77 54.73 0.69 205 77 786 192 800 184 2 282 334 4 960 0.5 106 096 9 365 300 173 D18-A-N-21 6.51 18.73 4.76 34.61 72.02 0.74 298 106 1 064 264 1 119 260 3 280 501 7 031 0.77 82 809 15 362 603 271 D18-A-N-22 7.54 13.85 3.93 29.07 81.23 0.35 282 106 1 019 254 1 128 288 3 959 627 7 800 0.61 104 976 12 978 335 461 D18-A-N-23 7.81 16.65 7.19 73.62 177.51 2.87 490 139 1 215 285 1 250 334 4 933 861 9 793 0.49 81 202 15 599 418 341 D18-A-N-24 7.12 22.89 3.91 26.69 32.69 0.49 119 45 530 153 779 225 3 332 557 5 834 1.03 87 503 7 550 860 469 D18-A-N-26 25.88 25.25 11.25 72.77 126.02 1.56 406 138 1 277 288 1 117 246 2 958 415 7 107 0.36 81 714 14 225 550 187 D18-A-N-27 3.42 10.92 1.65 9.46 18.25 0.20 127 70 792 198 821 197 2 381 329 4 959 1.10 110 957 10 310 284 231 D18-A-N-28 7.60 17.27 3.46 21.14 34.52 0.46 136 55 592 155 696 180 2 461 402 4 761 0.81 81 636 8 239 385 268 D18-A-N-29 1.43 5.26 1.73 11.88 33.75 0.07 131 54 559 140 606 147 1 860 277 3 827 0.69 100 547 6 518 160 209 花岗闪长岩 D18-B-N-01 5.44 85.03 1.93 15.36 18.43 2.17 86 26 319 111 520 103 1 117 180 2 590 6.31 32 593 4 034 5.10 2.15 D18-B-N-02 6.24 55.89 2.35 18.72 17.33 3.06 78 24 271 93 424 81 840 141 2 054 3.51 25 757 3 324 2.18 1.02 D18-B-N-03 2.09 44.94 0.65 4.15 6.19 0.96 29 9 120 43 207 42 470 79 1 058 9.20 28 869 1 573 3.36 1.29 D18-B-N-04 28.96 142.02 8.92 45.40 19.02 1.52 64 21 254 93 448 91 993 167 2 376 2.11 33 076 3 293 7.03 3.05 D18-B-N-05 0.02 43.29 0.14 3.18 6.36 1.26 34 11 137 50 238 48 519 88 1 179 87.87 30 321 1 772 3.32 1.33 D18-B-N-07 18.18 115.83 5.62 24.72 12.58 1.43 51 17 211 77 374 75 829 138 1 950 2.74 30 378 2 770 6.64 2.32 D18-B-N-08 24.99 163.2 8.99 49.52 23.98 1.81 82 25 313 111 539 108 1 204 200 2 853 2.62 34 464 4 046 16.4 6.53 D18-B-N-09 8.89 77.31 2.96 16.14 11.12 1.44 44 13 168 59 278 55 615 102 1 454 3.61 29 376 2 139 4.39 1.72 D18-B-N-10 7.72 80.97 3.00 21.57 20.67 2.59 86 26 310 111 513 99 1 063 176 2 519 4.05 28 861 3 820 4.89 1.72 D18-B-N-11 16.34 99.89 4.71 24.43 13.21 1.59 54 18 218 81 394 81 889 151 2 045 2.71 31 426 2 894 6.15 2.67 D18-B-N-12 4.29 60.32 2.25 23.87 26.77 4.23 99 27 305 98 411 77 785 124 2 047 4.62 25 135 3 362 2.45 0.96 D18-B-N-13 46.89 201.51 13.79 68.68 20.66 1.54 69 20 259 93 440 89 978 163 2 465 1.89 32 787 3 293 9.52 3.81 D18-B-N-14 0.27 52.68 0.38 5.43 10.49 1.47 50 15 194 70 332 65 719 124 1 639 32.91 28 415 2 521 4.15 1.82 D18-B-N-15 10.11 90.54 3.57 19.75 12.16 1.13 52 18 234 87 424 88 993 166 2 200 3.62 33 521 3 185 9.63 4.51 D18-B-N-17 9.64 81.41 2.90 14.84 9.36 0.94 42 13 173 63 305 63 704 118 1 600 3.67 33 309 2 321 6.55 2.96 D18-B-N-18 16.46 127.37 5.75 31.09 19.63 2.01 80 25 311 111 531 106 1 149 191 2 707 3.14 33 558 3 932 7.87 3.30 D18-B-N-19 6.98 90.07 2.08 13.24 9.97 0.98 51 17 214 79 380 79 867 147 1 956 5.64 34 296 2 951 9.73 3.88 D18-B-N-20 39.21 160.95 10.94 51.27 16.07 1.53 53 15 191 70 334 67 749 122 1 881 1.84 31 522 2 542 6.68 2.61 D18-B-N-21 2.19 81.39 1.00 8.22 10.51 1.23 57 19 235 85 412 83 918 152 2 065 13.19 31 579 3 087 7.26 2.88 D18-B-N-22 1.01 66.89 0.50 7.34 10.57 1.25 48 15 187 69 334 68 749 128 1 684 22.60 32 672 2 473 5.96 2.76 D18-B-N-25 0.50 49.83 0.31 4.64 7.62 1.35 41 11 140 49 233 45 502 82 1 166 29.63 29 476 1 818 3.16 1.19 D18-B-N-26 33.09 161.92 11.18 52.37 20.43 1.71 64 19 238 85 407 80 906 149 2 230 2.02 31 947 3 120 7.56 2.96 D18-B-N-27 75.67 244.60 21.68 96.66 25.07 2.17 62 16 203 72 335 67 734 124 2 079 1.44 30 668 2 589 5.74 2.29 D18-B-N-28 5.29 63.96 1.54 12.19 11.56 1.62 50 16 195 70 328 66 709 119 1 649 5.34 30 643 2 516 4.30 1.62 D18-B-N-29 2.22 50.86 0.82 6.97 7.93 1.12 33 11 131 46 211 41 463 75 1 081 9.08 27 551 1 624 2.90 1.08 D18-B-N-30 0 56.62 0.15 2.94 6.76 0.96 35 12 152 57 275 57 643 105 1 403 110.67 30 801 2 121 6.72 2.38 黑云母二长花岗岩 D18-J-N-03 1.44 28.99 0.97 6.96 7.34 2.18 48 21 315 122 605 129 1 429 220 2 936 5.68 46 063 4 384 38.99 16.34 D18-J-N-04 5.17 24.97 1.10 5.16 5.98 0.50 49 25 397 163 854 187 2 094 332 4 144 2.40 49 134 5 976 38.31 24.65 D18-J-N-05 1.55 23.77 1.15 7.40 8.23 2.94 53 25 398 160 840 181 2 035 314 4 052 4.09 50 244 5 956 44.86 24.73 D18-J-N-06 0 9.12 0.05 0.57 2.66 0.22 30 18 295 120 640 149 1 748 285 3 298 59.45 55 533 4 492 32.80 25.32 D18-J-N-09 3.35 66.68 3.00 16.58 25.43 6.15 126 46 605 206 940 182 1 863 274 4 363 4.67 41 150 7 422 80.46 20.25 D18-J-N-10 2.36 15.89 1.57 8.36 8.74 2.14 56 30 504 192 1 083 288 3 891 664 6 747 1.92 58 823 7 592 61.43 42.62 D18-J-N-11 0.15 58.19 0.32 5.88 11.73 3.64 57 19 222 79 367 71 748 120 1 763 47.00 28 568 2 794 6.41 1.85 D18-J-N-15 0.78 15.14 0.84 5.14 5.97 0.96 40 18 288 115 597 128 1 427 224 2 866 3.99 50 373 4 222 30.03 17.92 D18-J-N-16 0.26 9.48 0.30 2.04 3.03 0.52 33 21 361 154 852 195 2 256 359 4 246 7.05 55 870 5 713 38.20 28.46 D18-J-N-17 0.07 24.66 0.48 10.62 17.15 2.36 80 23 277 98 452 86 926 151 2 149 14.72 26 447 3 456 5.64 1.05 D18-J-N-19 0.01 22.18 0.07 0.88 6.84 0.75 66 30 460 184 928 192 2 093 318 4 301 88.93 39 309 6 647 48.41 16.96 D18-J-N-20 0.08 64.06 0.57 10.46 21.36 6.53 122 41 499 170 766 142 1 454 223 3 520 31.94 27 441 5 967 16.17 3.29 D18-J-N-23 0.10 31.75 0.50 7.25 14.79 3.54 59 19 239 83 392 76 824 134 1 883 17.72 28 348 2 970 6.82 2.32 D18-J-N-24 0 12.26 0.04 0.55 3.34 0.35 33 18 296 121 642 138 1 552 245 3 062 102.05 49 551 4 437 29.89 19.72 D18-J-N-27 0.09 35.71 0.36 7.33 15.64 4.12 79 25 323 116 532 101 1 052 166 2 458 27.30 29 387 4 106 8.14 2.63 D18-J-N-30 0.01 9.92 0.02 0.65 2.22 0.34 29 15 251 104 553 120 1 350 214 2 649 130.60 46 694 3 884 26.57 17.27 表 3 全岩主量元素(%)、微量元素(10-6)组成
Table 3. Major elements (%) and trace elements (10-6) data
样品 D18-A-Q1 D18-A-Q2 D18-A-Q3 D18-A-Q4 花岗伟晶岩 SiO2 74.7 73.9 72.8 74.1 Al2O3 14.3 15.2 14.5 14.2 Fe2O3 0.42 0.24 0.28 0.27 FeO 0.63 0.59 0.36 0.81 CaO 0.65 1.04 0.09 0.33 MgO 0.10 0.13 0.07 0.08 K2O 2.10 3.08 8.28 4.82 Na2O 6.19 5.17 2.82 4.53 TiO2 0.02 0.05 0.01 0.01 P2O5 0.02 0.03 0.02 0.02 MnO 0.20 0.08 0.06 0.13 LOI 0.57 0.51 0.37 0.33 Total 99.90 99.92 99.64 99.57 Na2O+K2O 8.29 8.25 11.10 9.35 FeOT 1.01 0.81 0.61 1.05 Mg# 17 25 19 14 A/CNK 1.05 1.10 1.05 1.07 Li 0.16 0.52 0.75 0.45 Be 5.92 2.35 1.65 2.54 B 3.49 4.93 4.74 3.16 Sc 1.69 1.66 1.20 0.61 V 1.99 1.53 2.30 1.49 Cr 6.64 8.93 19.04 17.20 Mn 1 481 565 362 965 Co 1.16 0.83 0.88 2.06 Ni 4.01 3.17 4.00 4.57 Cu 9.40 3.26 4.63 8.57 Zn 6.85 11.14 4.63 7.26 Ga 17.67 20.85 16.97 21.70 Ge 3.25 2.32 2.77 3.43 As 1.68 1.16 1.21 1.40 Se 1.58 1.36 0.73 0.90 Rb 94 114 502 224 Sr 22 196 17 18 Y 19.46 15.30 2.58 5.51 Zr 18 7 4 49 Nb 24.54 7.57 7.50 9.79 Mo 0.57 0.52 1.24 1.13 Ag 0.06 0.05 0.08 0.11 Cd 0.15 0.00 -0.01 0.26 Sn 1.04 2.72 2.68 2.05 Sb 1.07 0.92 0.86 1.23 Cs 0.59 0.56 3.16 0.65 Ba 27 192 17 29 La 4.26 6.20 1.23 1.59 Ce 13.16 13.54 2.39 4.17 Pr 1.14 1.27 0.30 0.40 Nd 3.90 4.37 0.93 1.30 Sm 1.53 1.20 0.32 0.59 Eu 0.12 0.37 0.07 0.05 Gd 1.89 1.61 0.39 0.64 Tb 0.55 0.40 0.11 0.16 Dy 3.55 2.56 0.47 0.84 Ho 0.78 0.57 0.12 0.19 Er 2.47 1.63 0.28 0.56 Tm 0.57 0.29 0.07 0.13 Yb 4.45 1.65 0.28 0.86 Lu 0.71 0.25 0.06 0.15 Hf 1.63 0.46 0.34 4.92 Ta 5.51 0.49 1.08 1.46 W 0.86 0.57 0.58 0.71 Tl 0.45 0.56 2.60 1.03 Pb 11.32 19.57 33.26 20.83 Bi 0.07 0.03 0.07 0.04 Th 4.59 3.61 0.79 1.90 U 5.80 1.53 0.63 2.18 ΣREE 39.06 35.90 7.02 11.61 δEu 0.23 0.86 0.65 0.26 Nb/Ta 4.45 15.53 6.95 6.72 Zr/Hf 10.93 14.76 12.67 9.86 (La/Yb)N 0.65 2.54 2.94 1.24 TE1 0.95 0.80 0.78 0.90 TE3 1.16 1.05 1.03 1.05 TE1, 3 1.05 0.92 0.90 0.97 Di 94 92 98 95 表 4 锆石Lu-Hf同位素组成
Table 4. Zircon Lu-Hf isotopic compositions
样品 年龄(Ma) 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf TDM1 (Ma) TDM2 (Ma) D18-A-N-06 164.1 0.021 215 0.000 240 0.000 617 0.000 006 0.281 898 0.000 014 -27.4 1 883 2 913 D18-A-N-07 172.7 0.028 498 0.000 188 0.000 872 0.000 008 0.281 953 0.000 010 -25.3 1 819 2 790 D18-A-N-08 158.7 0.031 113 0.000 217 0.001 003 0.000 007 0.281 935 0.000 013 -26.2 1 851 2 839 D18-A-N-12 143.4 0.033 118 0.001 447 0.000 914 0.000 035 0.281 949 0.000 011 -26.1 1 828 2 817 D18-A-N-17 143.9 0.026 125 0.000 466 0.000 834 0.000 015 0.281 956 0.000 011 -25.8 1 814 2 800 D18-A-N-19 153.4 0.017 279 0.000 103 0.000 462 0.000 001 0.281 960 0.000 008 -25.4 1 792 2 785 D18-A-N-20 157.1 0.022 471 0.000 318 0.000 612 0.000 008 0.281 968 0.000 011 -25.0 1 787 2 765 D18-A-N-21 154.8 0.024 482 0.000 468 0.000 738 0.000 018 0.281 968 0.000 011 -25.1 1 793 2 767 D18-A-N-28 153.2 0.024 285 0.000 500 0.000 737 0.000 011 0.281 981 0.000 011 -24.7 1 775 2 741 D18-A-N-29 143.8 0.034 584 0.000 624 0.001 059 0.000 017 0.281 957 0.000 011 -25.8 1 823 2 799 -
Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. NbTa Fractionation in Peraluminous Granites:A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3):231-234. https://doi.org/10.1130/g37475.1 Boynton, W. V., 1984. Chapter 3-Cosmochemistry of the Rare Earth Elements:Meteorite Studies. Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3 Cao, H. H., Xu, W. L., Pei, F. P., et al., 2013. Zircon U-Pb Geochronology and Petrogenesis of the Late Paleozoic-Early Mesozoic Intrusive Rocks in the Eastern Segment of the Northern Margin of the North China Block. Lithos, 170/171:191-207. doi: 10.1016/j.lithos.2013.03.006 Chen, B., Li, Z., Wang, J. L., et al., 2016. Liaodong Peninsula~2. 2 Ga Magmatic Event and lts Geological Significance. Journal of Jilin University (Earth Science Edition), 46(2):303-320 (in Chinese with English abstract). http://www.morebooks.de/store/cn/book/liaodong-peninsula/isbn/978-613-5-77129-9 Dai, H.Z., Wang, D.H., Liu, L.J., et al., 2018. Geochronology, Geochemistry and Their Geological Significances of No.308 Pegmatite Vein in the Jiajika Deposit, Western Sichuan, China. Earth Science, 43(10):3664-3681 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810027.htm Dill, H. G., 2017. An Overview of the Pegmatitic Landscape from the Pole to the Equator-Applied Geomorphology and Ore Guides. Ore Geology Reviews, 91:795-823. doi: 10.1016/j.oregeorev.2017.08.020 Fan, W. B., Jiang, N., Xu, X. Y., et al., 2017. Petrogenesis of the Middle Jurassic Appinite and Coeval Granitoids in the Eastern Hebei Area of North China Craton. Lithos, 278/279/280/281:331-346. https://doi.org/10.1016/j.lithos.2017.01.030 Fan, W.B., Jiang, N., Zhai, M.G., et al., 2019. Phanerozoic Garnet-Bearing Leucogranite in the Northern Margin of North China Craton:Characters, Timing and Preliminary Petrogenesis Study. Acta Petrologica Sinica, 35(7):2237-2258 (in Chinese with Enhlish abstract). doi: 10.18654/1000-0569/2019.07.18 Gu, Y., 2019. The Mesozoic Tectonic-Magmatic Constraints on the Gold Mineralization in Wulong Gold Mining Area, Eastern Liaoning (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3):637-648. https://doi.org/10.1016/j.gca.2004.07.006 Jahns, R. H., Burnham, C. W., 1969. Experimental Studies of Pegmatite Genesis:A Model for the Derivation and Crystallization of Granitic Pegmatites. Economic Geology, 64(8):843-864. https://doi.org/10.2113/gsecongeo.64.8.843 Li, P., Li, J.K., Pei, R.F., et al., 2017. Multistage Magmatic Evolution and Cretaceous Peak Metallogenic Epochs of Mufushan Composite Granite Mass:Constrains from Geochronological Evidence. Earth Science, 42(10):1684-1696 (in Chinese with English abstract). http://www.researchgate.net/publication/320879090_Multistage_Magmatic_Evolution_and_Cretaceous_Peak_Metallogenic_Epochs_of_Mufushan_Composite_Granite_Mass_Constrains_from_Geochronological_Evidence Li, Y., Ding, L.L., Xu, W.L., et al., 2015. Geochronology and Geochemistry of Muscovite Granite in Sunwu Area, NE China:Implications for the Timing of Closure of the Mongol-Okhotsk Ocean. Acta Petrologica Sinica, 31(1):56-66 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252015454.html Liu, J. L., Ji, M., Shen, L., et al., 2011. Early Cretaceous Extensional Structures in the Liaodong Peninsula:Structural Associations, Geochronological Constraints and Regional Tectonic Implications. Science China Earth Sciences, 54(6):823-842. https://doi.org/10.1007/s11430-011-4189-y Liu, J.X., Guo, W., Zhu, K., 2016. Geochronology, Geochemistry and Geological Significance of the Early Cretaceous Intrusive Rocks from Xiuyan Area, Eastern Liaoning Province. Acta Petrologica Sinica, 32(9):2889-2900 (in Chinese with English). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252014998.html Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101:635-643 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 Münker, C., Pfnder, J. A., Weyer, S., et al., 2003. Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics. Science, 301(5629):84-87. https://doi.org/10.1126/science.1084662 Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 Qian, Y., Sun, F.Y., Li, B.L., et al., 2012. Geochemistry and U-Pb Geochrony of Zircon from Granite Porphyry of Jinchang Gold Deposit in Heilongjiang, China and Its Geological Significance. Journal of Chengdu University of Technology (Science & Technology Edition), 39(4):362-371 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cdlgxyxb201204003 Rudnick, R. L., Gao, S., 2004. Composition of the Continental Crust. In:Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Mineralogical Magzine, 3:1-64. Sánchez-Muoz, L., Müller, A., Andrés, S. L., et al., 2017. The P-Fe Diagram for K-Feldspars:A Preliminary Approach in the Discrimination of Pegmatites. Lithos, 272-273:116-127 http://smartsearch.nstl.gov.cn/paper_detail.html?id=8476f660c4193e71da3abf5e718da7bc Sun, D.Y., Li, N., Wu, F.Y., et al., 2005. CHIME Dating and Its Application for Mesozoic Granites of Huanggoushan, Jilin Province. Geochimica, 34(4):305-314 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQHX200504001.htm Sun, J.G., Lian, C.Y., 1997. Preliminary Discusion on the Establishment of Proterozoic Stratigraphic Framework of Fanhe Area, Tieling. Liaoning Geology, (1):24-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LOAD701.003.htm Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Sun, W. D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 262(3/4):533-542. https://doi.org/10.1016/j.epsl.2007.08.021 Tang, J., Xu, W. L., Wang, F., et al., 2018. Subduction History of the Paleo-Pacific Slab beneath Eurasian Continent:Mesozoic-Paleogene Magmatic Records in Northeast Asia. Science China Earth Sciences, 61(5):527-559. https://doi.org/10.1007/s11430-017-9174-1 Tang, Y., Zhang, H., Lv, Z.H., 2012. Characteristics of Zircon Cathodoluminescence and Trace Elements of Granite and Pegmatite from Altai Mountains, Northwest China. Journal of Mineralogy and Petrology, 32(1):8-15 (in Chinese with English abstract). http://www.researchgate.net/publication/288996308_Characteristics_of_zircon_cathodoluminescence_and_trace_elements_of_granite_and_pegmatite_from_altai_mountains_North_WesT_China?ev=auth_pub Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China:Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10):2609-2636. doi: 10.1016/j.gca.2007.03.008 Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 Wu, F., Lin, J., Wilde, S., et al., 2005a. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2):103-119. https://doi.org/10.1016/j.epsl.2005.02.019 Wu, F. Y., Yang, J. H., Wilde, S. A., et al., 2005b. Geochronology, Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1/2):127-156. https://doi.org/10.1016/j.chemgeo.2005.04.010 Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.oalib.com/paper/1492671 Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites:Recognition and Research. Science China Earth Sciences, 60(7):1201-1219. https://doi.org/10.1007/s11430-016-5139-1 Wu, F.Y., Yang, J.H., Liu, X.M., 2005. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 11(3):305-317 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200503003.htm Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2):105-126. http://www.sciencedirect.com/science/article/pii/S0009254106002452 Xu, W.L., Wang, F., Pei, F.P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2):339-353 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical_ysxb98201302001.aspx Xue, J. X., Liu, Z. H., Liu, J. X., et al., 2020. Geochemistry, Geochronology, Hf Isotope and Tectonic Significance of the Late Jurassic Huangdi Pluton in Xiuyan, Liaodong Peninsula. Earth Science (in Chinese with English abstract). Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3):353-370 doi: 10.1111/j.1751-908X.2004.tb00755.x Zeng, T., Wang, T., Guo, L., et al., 2011. Ages, Origin and Geological Implications of Late Mesozoic Granitoids in Xinkailing Region, NE China. Journal of Jilin University (Earth Science Edition), 41(6):1881-1900 (in Chinese with English abstract). http://www.researchgate.net/publication/281478053_Ages_origin_and_geological_implications_of_late_mesozoic_granitoids_in_Xinkailing_region_NE_China Zhang, H. H., Wang, F., Xu, W. L., et al., 2016. Petrogenesis of Early-Middle Jurassic Intrusive Rocks in Northern Liaoning and Central Jilin Provinces, Northeast China:Implications for the Extent of Spatial-Temporal Overprinting of the Mongol-Okhotsk and Paleo-Pacific Tectonic Regimes. Lithos, 256-257:132-147. doi: 10.1016/j.lithos.2016.04.004 Zhang, P., Zhao, Y., Kou, L.L., et al., 2019. Zircon U-Pb Ages, Hf Isotopes and Geological Significance of Mesozoic Granites in Dandong Area, Liaodong Peninsula. Earth Science, 44(10):3297-3313 (in Chinese with English). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910010.htm Zhang, X. H., Mao, Q., Zhang, H. F., et al., 2008. A Jurassic Peraluminous Leucogranite from Yiwulüshan, Western Liaoning, North China Craton:Age, Origin and Tectonic Significance. Geological Magazine, 145(3):305-320. https://doi.org/10.1017/s0016756807004311 陈斌, 李壮, 王家林, 等, 2016.辽东半岛~2.2 Ga岩浆事件及其地质意义.吉林大学学报(地球科学版), 46(2):303-320. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201602001.htm 代鸿章, 王登红, 刘丽君, 等, 2018.川西甲基卡308号伟晶岩脉年代学和地球化学特征及其地质意义.地球科学, 43(10):3664-3681. doi: 10.3799/dqkx.2018.528 范文博, 姜能, 翟明国, 等, 2019.华北克拉通北缘显生宙含石榴石淡色花岗岩:特征、时代及成因初探.岩石学报, 35(7):2237-2258. http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201272958548.html 顾玉超, 2019.辽东五龙金矿区中生代构造-岩浆作用对金成矿制约(博士学位论文).北京: 中国地质大学. 李鹏, 李建康, 裴荣富, 等, 2017.幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰:年代学依据.地球科学, 42(10):1684-1696. doi: 10.3799/dqkx.2017.114 李宇, 丁磊磊, 许文良, 等, 2015.孙吴地区中侏罗世白云母花岗岩的年代学与地球化学:对蒙古-鄂霍茨克洋闭合时间的限定.岩石学报, 31(1):56-66. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201501004.htm 刘杰勋, 郭巍, 朱凯, 2016.辽东岫岩地区早白垩世侵入岩的年代学、地球化学及地质意义.岩石学报, 32(9):2889-2900. 钱烨, 孙丰月, 李碧乐, 等, 2012.黑龙江金厂金矿花岗斑岩锆石地球化学、U-Pb年代学及地质意义.成都理工大学学报(自然科学版), 39(4):362-371. http://d.wanfangdata.com.cn/Periodical/cdlgxyxb201204003 孙德有, 铃木和博, 吴福元, 等, 2005.吉林省南部荒沟山地区中生代花岗岩CHIME定年.地球化学, 34(4):305-314. http://www.cnki.com.cn/Article/CJFDTotal-DQHX200504001.htm 孙景贵, 连长云, 1997.辽西地区花岗岩的形成时代.辽宁地质, (1):24-29. http://www.cqvip.com/Main/Detail.aspx?id=2483926 唐勇, 张辉, 吕正航, 2012.不同成因锆石阴极发光及微量元素特征:以新疆阿尔泰地区花岗岩和伟晶岩为例.矿物岩石, 32(1):8-15. http://d.wanfangdata.com.cn/Periodical/kwys201201002 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200702002.htm 吴福元, 杨进辉, 柳小明, 2005.辽东半岛中生代花岗质岩浆作用的年代学格架.高校地质学报, 11(3):305-317. http://www.cnki.com.cn/Article/CJFDTotal-GXDX200503003.htm 许文良, 王枫, 裴福萍, 等, 2013.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约.岩石学报, 29(2):339-353. http://www.cqvip.com/QK/94579X/201302/45349949.html 薛吉祥, 刘正宏, 刘杰勋, 等, 2020.辽东岫岩晚侏罗世荒地岩体的地球化学、年代学与Hf同位素及构造意义.地球科学. doi: 10.3799/dqkx.2018.528 曾涛, 王涛, 郭磊, 等, 2011.东北新开岭地区晚中生代花岗岩类时代、成因及地质意义.吉林大学学报(地球科学版), 41(6):1881-1900. http://d.wanfangdata.com.cn/Periodical/cckjdxxb201106019 张朋, 赵岩, 寇林林, 等, 2019.辽东半岛丹东地区中生代花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义.地球科学, 44(10):3297-3313. doi: 10.3799/dqkx.2019.129