• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    富碲化物金矿床中碲的成矿作用研究进展

    胡新露 姚书振 何谋惷 俎波 曾丽平 丁振举

    胡新露, 姚书振, 何谋惷, 俎波, 曾丽平, 丁振举, 2021. 富碲化物金矿床中碲的成矿作用研究进展. 地球科学, 46(11): 3807-3817. doi: 10.3799/dqkx.2021.002
    引用本文: 胡新露, 姚书振, 何谋惷, 俎波, 曾丽平, 丁振举, 2021. 富碲化物金矿床中碲的成矿作用研究进展. 地球科学, 46(11): 3807-3817. doi: 10.3799/dqkx.2021.002
    Hu Xinlu, Yao Shuzhen, He Mouchun, Zu Bo, Zeng Liping, Ding Zhenju, 2021. An Overview of Advances in Tellurium Mineralization in Telluride-Rich Gold Deposits. Earth Science, 46(11): 3807-3817. doi: 10.3799/dqkx.2021.002
    Citation: Hu Xinlu, Yao Shuzhen, He Mouchun, Zu Bo, Zeng Liping, Ding Zhenju, 2021. An Overview of Advances in Tellurium Mineralization in Telluride-Rich Gold Deposits. Earth Science, 46(11): 3807-3817. doi: 10.3799/dqkx.2021.002

    富碲化物金矿床中碲的成矿作用研究进展

    doi: 10.3799/dqkx.2021.002
    基金项目: 

    国家自然科学基金项目 42072091

    国家自然科学基金项目 41602070

    中央高校基本科研业务费专项资金资助项目 CUG160831

    详细信息
      作者简介:

      胡新露(1987-), 男, 副教授, 从事矿床学和矿田构造学研究.ORCID: 0000-0003-2068-5783.E-mail: huxinlu00@foxmail.com

    • 中图分类号: P611

    An Overview of Advances in Tellurium Mineralization in Telluride-Rich Gold Deposits

    • 摘要: 碲(Te)属于稀散元素,是我国的战略性关键矿产资源之一,富碲化物金矿床是碲元素的重要载体.将富碲化物金矿床划分为3种成因类型,分别为造山型金矿床、浅成中-低温热液型金矿床以及与碱性岩浆岩有关的金矿床.富碲化物金矿床可以形成于岛弧、大陆边缘、弧后盆地、绿岩带等多种构造环境,常受区域性断裂构造控制,其围岩专属性不强,矿床中存在大量碲化物,与自然金和硫化物伴生产出.成矿作用常可划分为3个阶段:石英-黄铁矿阶段、石英-多金属硫化物-碲化物阶段、石英-碳酸盐阶段,其中金和碲主要在第二阶段发生沉淀富集.成矿流体一般为中-低温、中-低盐度,呈弱酸性-中性,具有较高的fTe2.富碲化物金矿床中的碲主要来源于地幔、岩浆热液和赋矿围岩.碲在流体中可以呈碲氯络合物、碲硫络合物、碲氢络合物等形式迁移,也可呈气态迁移.引起碲发生沉淀的因素主要为温度或/和压力的变化、水岩反应、流体混合、流体不混溶(沸腾)、含碲气体的冷凝以及多因素的叠加.在碲的成矿作用研究中,应重视碲化物结构和成分的微区原位分析、碲同位素分析以及热力学分析.

       

    • 图  1  在25 ℃和300 ℃条件下,自然碲和水溶液中碲化物的pH‒氧逸度稳定范围

      Grundler et al.(2013).矿物代号:Py.黄铁矿;Po.磁黄铁矿;Mt.磁铁矿;Hm.赤铁矿

      Fig.  1.  Solubility of native tellurium and predominance fields of aqueous Te species as a function of pH and oxygen fugacity at 25 and 300 ℃

    • [1] Afifi, A. M., Kelly, W. C., Essene, E. J., 1988. Phase Relations among Tellurides, Sulfides, and Oxides; I, Thermochemical Data and Calculated Equilibria. Economic Geology, 83(2): 377-394. https://doi.org/10.2113/gsecongeo.83.2.377
      [2] Ahmad, M., Solomon, M., Walshe, J. L., 1987. Mineralogical and Geochemical Studies of the Emperor Gold Telluride Deposit, Fiji. Economic Geology, 82(2): 345-370. https://doi.org/10.2113/gsecongeo.82.2.345
      [3] Bi, S. J., Li, J. W., Zhou, M. F., et al., 2011. Gold Distribution in As-Deficient Pyrite and Telluride Mineralogy of the Yangzhaiyu Gold Deposit, Xiaoqinling District, Southern North China Craton. Mineralium Deposita, 46(8): 925-941. https://doi.org/10.1007/s00126-011-0359-2
      [4] Brugger, J., Etschmann, B. E., Grundler, P. V., et al., 2012. XAS Evidence for the Stability of Polytellurides in Hydrothermal Fluids up to 599℃, 800 Bar. American Mineralogist, 97(8/9): 1519-1522. https://doi.org/10.2138/am.2012.4167
      [5] Chen, C.H., Cao, Z.M., Hou, X.P., et al., 1999. The Distributive Law and Main Minerogenic Conditions of Gold-Telluride Deposits in the World. Journal of Chengdu University of Technology (Science & Technology Edition), 26(3): 241-248 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG903.007.htm
      [6] Chen, J.J., Leng, C.B., Xu, D.R., et al., 2020. Analytical Techniques for Tellurium Stable Isotopes and Their Geological Applications: A Review. Acta Geologica Sinica, 94(5): 1655-1663 (in Chinese with English abstract).
      [7] Chen, Y.C., Mao, J.W., Luo, Y.N., 1996. Geology and Geochemistry of the Dashuigou Te (Au) Deposit in Dashuigou, Sichuan Province. Atomic Energy Press, Beijing, 1-106 (in Chinese).
      [8] Cook, N. J., Ciobanu, C. L., Mao, J. W., 2009. Textural Control on Gold Distribution in As-Free Pyrite from the Dongping, Huangtuliang and Hougou Gold Deposits, North China Craton (Hebei Province, China). Chemical Geology, 264(1/2/3/4): 101-121. http://www.sciencedirect.com/science/article/pii/s0009254109001065
      [9] Cooke, D. R., McPhail, D. C., 2001. Epithermal Au-Ag-Te Mineralization, Acupan, Baguio District, Philippines: Numerical Simulations of Mineral Deposition. Economic Geology, 96(1): 109-131. https://doi.org/10.2113/gsecongeo.96.1.109
      [10] Evans, K. A., Phillips, G. N., Powell, R., 2006. Rock-Buffering of Auriferous Fluids in Altered Rocks Associated with the Golden Mile-Style Mineralization, Kalgoorlie Gold Field, Western Australia. Economic Geology, 101(4): 805-818. doi: 10.2113/gsecongeo.101.4.805
      [11] Fan, H.R., Li, X. H., Zuo, Y.B., et al., 2018. In-Situ LA-(MC)-ICPMS and (Nano) SIMS Trace Elements and Sulfur Isotope Analyses on Sulfides and Application to Confine Metallogenic Process of Ore Deposit. Acta Petrologica Sinica, 34(12): 3479-3496 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201812002.htm
      [12] Fehr, M. A., Rehkämper, M., Halliday, A. N., 2004. Application of MC-ICPMS to the Precise Determination of Tellurium Isotope Compositions in Chondrites, Iron Meteorites and Sulfides. International Journal of Mass Spectrometry, 232(1): 83-94. doi: 10.1016/j.ijms.2003.11.006
      [13] Fornadel, A. P., Spry, P. G., Haghnegahdar, M. A., et al., 2017. Stable Te Isotope Fractionation in Tellurium-Bearing Minerals from Precious Metal Hydrothermal Ore Deposits. Geochimica et Cosmochimica Acta, 202: 215-230. https://doi.org/10.1016/j.gca.2016.12.025
      [14] Fornadel, A. P., Spry, P. G., Jackson, S. E., 2019. Geological Controls on the Stable Tellurium Isotope Variation in Tellurides and Native Tellurium from Epithermal and Orogenic Gold Deposits: Application to the Emperor Gold-Telluride Deposit, Fiji. Ore Geology Reviews, 113: 103076. https://doi.org/10.1016/j.oregeorev.2019.103076
      [15] Fornadel, A. P., Spry, P. G., Jackson, S. E., et al., 2014. Methods for the Determination of Stable Te Isotopes of Minerals in the System Au-Ag-Te by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(4): 623-637. https://doi.org/10.1039/C3JA50237F
      [16] Grundler, P.V., Brugger, J., Etschmann, B.E., et al., 2013. Speciation of Aqueous Tellurium (Ⅳ) in Hydrothermal Solutions and Vapors, and the Role of Oxidized Tellurium Species in Te Transport and Gold Deposition. Geochimica et Cosmochimica Acta, 120: 298-325. https://doi.org/10.1016/j.gca.2013.06.009
      [17] Guo, W., Lin, X., Hu, S.H., 2020. Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications. Earth Science, 45(4): 1362-1374 (in Chinese with English abstract).
      [18] Harris, C. R., Pettke, T., Heinrich, C. A., et al., 2013. Tethyan Mantle Metasomatism Creates Subduction Geochemical Signatures in Non-Arc Cu-Au-Te Mineralizing Magmas, Apuseni Mountains (Romania). Earth and Planetary Science Letters, 366: 122-136. https://doi.org/10.1016/j.epsl.2013.01.035
      [19] Hu, R.Z., Wen, H.J., Su, W.C., et al., 2014. Some Advances in Ore Deposit Geochemistry in Last Decade. Bulletin of Mineralogy, Petrology and Geochemistry, 33(2): 127-144 (in Chinese with English abstract).
      [20] Hu, X. L., Gong, Y. J., Zeng, G. P., et al., 2018. Multistage Pyrite in the Getang Sediment-Hosted Disseminated Gold Deposit, Southwestern Guizhou Province, China: Insights from Textures and In Situ Chemical and Sulfur Isotopic Analyses. Ore Geology Reviews, 99: 1-16. https://doi.org/10.1016/j.oregeorev.2018.05.020
      [21] Hu, X.L., He, M.C., Yao, S. Z., 2013a. New Understanding of the Source of Ore-Forming Material and Fluid in the Shanggong Gold Deposit, East Qinling. Acta Geologica Sinica, 87(1): 91-100 (in Chinese with English abstract). doi: 10.1111/1755-6724.12033
      [22] Hu, X.L., Yao, S.Z., He, M. C., et al., 2013b. Metallogenic Thermodynamic Conditions and Ore-Forming Mechanism of Shanggong Gold Deposit, Henan Province. Journal of Central South University (Science and Technology), 44(12): 4962-4971 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=ZNGD201312027&dbcode=CJFD&year=2013&dflag=pdfdown
      [23] Huang, F.R., 1998. Concentration and Geochemical Behaviour of Tellurium in Guantian Pyrite Deposit. Acta Geoscientia Sinica, 19(1): 50-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB801.006.htm
      [24] Jiang, S.Y., Wen, H.J., Xu, C., et al., 2019. Earth Sphere Cycling and Enrichment Mechanism of Critical Metals: Major Scientific Issues for Future Research. Bulletin of National Natural Science Foundation of China, 33(2): 112-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZKJJ201902003.htm
      [25] Keith, M., Smith, D. J., Doyle, K., et al., 2020. Pyrite Chemistry: A New Window into Au-Te Ore-Forming Processes in Alkaline Epithermal Districts, Cripple Creek, Colorado. Geochimica et Cosmochimica Acta, 274: 172-191. https://doi.org/10.1016/j.gca.2020.01.056
      [26] Kelley, K. D., Romberger, S. B., Beaty, D. W., et al., 1998. Geochemical and Geochronological Constraints on the Genesis of Au-Te Deposits at Cripple Creek, Colorado. Economic Geology, 93(7): 981-1012. https://doi.org/10.2113/gsecongeo.93.7.981
      [27] Li, B.L., Zhang, H., 2010. Some Advances in the Research of Epithermal Gold Deposits. Acta Mineralogica Sinica, 30(1): 90-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201001013.htm
      [28] Li, J.W., Zhao, X.F., Deng, X.D., et al., 2019. An Overview of the Advance on the Study of China's Ore Deposits during the Last Seventy Years. Science in China (Series D: Earth Sciences), 49(11): 1720-1771 (in Chinese).
      [29] Li, L., Li, S.R., Santosh, M., et al., 2018. Early Jurassic Decratonic Gold Metallogenesis in the Eastern North China Craton: Constraints from S-Pb-C-D-O Isotopic Systematics and Pyrite Rb-Sr Geochronology of the Guilaizhuang Te-Au Deposit. Ore Geology Reviews, 92: 558-568. https://doi.org/10.1016/j.oregeorev.2017.12.009
      [30] Liu, J.J., Zhai, D.G., Liu, X.H., et al., 2011. Super-Enrichment of Selenium and Tellurium in Gold Deposits: An Overview. Acta Mineralogica Sinica, 31(S1): 267-269 (in Chinese).
      [31] Liu, J.J., Zhai, D.G., Wang, D.Z., et al., 2020. Classification and Mineralization of the Au-(Ag)-Te-Se Deposits. Earth Science Frontiers, 27(2): 79-98 (in Chinese with English abstract).
      [32] Luo, Z.K., Guan, K., Wang, M.Z., et al., 1999. The Features of Telluride in Some Gold Deposits, China. Gold Geology, (3): 69-75 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJDZ199903012.htm
      [33] Mao, J. W., Wang, Y. T., Ding, T. P., et al., 2002. Dashuigou Tellurium Deposit in Sichuan Province, China: S, C, O, and H Isotope Data and Their Implications on Hydrothermal Mineralization. Resource Geology, 52(1): 15-23. https://doi.org/10.1111/j.1751-3928.2002.tb00113.x
      [34] Mao, J.W., Yuan, S.D., Xie, G.Q., et al., 2019. New Advances on Metallogenic Studies and Exploration on Critical Minerals of China in 21st Century. Mineral Deposits, 38(5): 935-969 (in Chinese with English abstract).
      [35] McPhail, D.C., 1995. Thermodynamic Properties of Aqueous Tellurium Species between 25℃ and 250℃. Geochimica et Cosmochimica Acta, 59(5): 851-866. https://doi.org/10.1016/0016-7037(94)00353-X
      [36] Mueller, A. G., Muhling, J. R., 2020. Early Pyrite and Late Telluride Mineralization in Vanadium-Rich Gold Ore from the Oroya Shoot, Paringa South Mine, Golden Mile, Kalgoorlie: 3. Ore Mineralogy, Pb-Te (Au-Ag) Melt Inclusions, and Stable Isotope Constraints on Fluid Sources. Mineralium Deposita, 55(4): 733-766. https://doi.org/10.1007/s00126-019-00876-6
      [37] Pals, D. W., Spry, P. G., 2003. Telluride Mineralogy of the Low-Sulfidation Epithermal Emperor Gold Deposit, Vatukoula, Fiji. Mineralogy and Petrology, 79(3/4): 285-307. https://doi.org/10.1007/s00710-003-0013-5
      [38] Pokrovski, G. S., Borisova, A. Y., Bychkov, A. Y., 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors. Reviews in Mineralogy and Geochemistry, 76(1): 165-218. https://doi.org/10.2138/rmg.2013.76.6
      [39] Ren, F.G., Li, S.B., Zhao, J.N., et al., 2000. Exploring Gold Deposits in the Volcanic Rocks of the Xiong'er Group Using Tellurium (Selenium) Geochemical Information. Bulletin of Mineralogy, Petrology and Geochemisty, 19(4): 401-402 (in Chinese).
      [40] Ruan, L.S., 2013. The Metallogenic Regularity of Dashuigou Tellurium Deposit, Shimian, Sichuan Province and the Origination of Prospecting (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [41] Shackleton, J. M., Spry, P. G., Bateman, R., 2003. Telluride Mineralogy of the Golden Mile Deposit, Kalgoorlie, Western Australia. The Canadian Mineralogist, 41(6): 1503-1524. https://doi.org/10.2113/gscanmin.41.6.1503
      [42] Simon, G., Essene, E. J., 1996. Phase Relations among Selenides, Sulfides, Tellurides, and Oxides; I, Thermodynamic Properties and Calculated Equilibria. Economic Geology, 91(7): 1183-1208. https://doi.org/10.2113/gsecongeo.91.7.1183
      [43] Tombros, S., Seymour, K.S.T., Williams-Jones, A.E., et al., 2007. The Genesis of Epithermal Au-Ag-Te Mineralization, Panormos Bay, Tinos Island, Cyclades, Greece. Economic Geology, 102: 1269-1294. https://doi.org/10.2113/gsecongeo.102.7.1269
      [44] Tu, G.C., 2000. A Preliminary Discussion on the Mineralization of Tellurium. Bulletin of Mineralogy, Petrology and Geochemisty, 19(4): 211-214 (in Chinese).
      [45] Tu, G.C., Gao, Z.M., Hu, R.Z., et al., 2004. The Geochemistry and Metallogenic Mechanism of Dispersed Elements. Geological Publishing House, Beijing, 1-288 (in Chinese).
      [46] Voudouris, P. C., Melfos, V., Spry, P. G., et al., 2011. Mineralogy and Geochemical Environment of Formation of the Perama Hill High-Sulfidation Epithermal Au-Ag-Te-Se Deposit, Petrota Graben, NE Greece. Mineralogy and Petrology, 103(1-4): 79-100. https://doi.org/10.1007/s00710-011-0160-z
      [47] Voudouris, P., Tarkian, M., Arikas, K., 2006. Mineralogy of Telluride-Bearing Epithermal Ores in the Kassiteres-Sappes Area, Western Thrace, Greece. Mineralogy and Petrology, 87(1/2): 31-52. https://doi.org/10.1007/s00710-005-0119-z
      [48] Wang, L., Liu, J.J., Zhu, W.B., et al., 2016. Mineral Association and Mechanism of Mineral Precipitation of Lianzigou Gold-Telluride Deposit in Xiaoqinling Gold Orefield, Shaanxi Province. Mineral Deposits, 35(3): 456-474 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201603002.htm
      [49] Wang, P., Jian, W., Mao, J. W., et al., 2020. Geochronology and Fluid Source Constraints of the Songligou Gold-Telluride Deposit, Western Henan Province, China: Analysis of Genetic Implications. Resource Geology, 70(2): 169-187. https://doi.org/10.1111/rge.12228
      [50] Wang, Y.T., 2011. On the Geochemical Process of Mineralization of Telliurium Deposit in Dashuigou of Shimian County in Sichuan Province (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [51] Xie, H.L., Jiao, Y.Q., Liu, Z.Y., et al., 2020. Occurrence and Enrichment Mechanism of Uranium Ore Minerals from Sandstone-Type Uranium Deposit, Northern Ordos Basin. Earth Science, 45(5): 1531-1543 (in Chinese with English abstract).
      [52] Xu, W. G., Fan, H. R., Hu, F. F., et al., 2014. Gold Mineralization in the Guilaizhuang Deposit, Southwestern Shandong Province, China: Insights from Phase Relations among Sulfides, Tellurides, Selenides and Oxides. Ore Geology Reviews, 56: 276-291. https://doi.org/10.1016/j.oregeorev.2013.06.010
      [53] Yu, X.F., Li, D.P., Li, Z.S., et al., 2019. Research on Geochemical Process of Te-Au Elements in Guilaizhuang Gold Deposit of Western Shandong. Mineral Deposits, 38(2): 277-290 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201902004.htm
      [54] Zhai, D.G., 2014. Geological and Geochemical Characteristics and Ore Genesis of the Sadaowanzi Gold-Telluride Deposit in Heilongjiang Province, NE China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [55] Zhai, D. G., Williams-Jones, A. E., Liu, J. J., et al., 2018. Mineralogical, Fluid Inclusion, and Multiple Isotope (H-O-S-Pb) Constraints on the Genesis of the Sandaowanzi Epithermal Au-Ag-Te Deposit, NE China. Economic Geology, 113(6): 1359-1382. https://doi.org/10.5382/econgeo.2018.4595
      [56] Zhai, M.G., Wu, F.Y., Hu, R.Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, 33(2): 106-111 (in Chinese with English abstract).
      [57] Zhang, P. H., 2000. Geochemistry of Tellurium in the Dongping-Type Gold Deposits in Northern China (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).
      [58] Zhang, X. M., Spry, P. G., 1994. Petrological, Mineralogical, Fluid Inclusion, and Stable Isotope Studies of the Gies Gold-Silver Telluride Deposit, Judith Mountains, Montana. Economic Geology, 89(3): 602-627. https://doi.org/10.2113/gsecongeo.89.3.602
      [59] Zhang, Z. C., Li, Z. N., 1994. A Type of Important Gold Deposit-Tellurides. Journal of Precious Metallic Geology, 3(1): 59-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD401.006.htm
      [60] Zhang, Z. C., Li, Z. N., 1997. Physicochemical Conditions for the Formation of Telluride-Rich Gold Deposits as Exemplified by the Shuiquangou Gold Ore Field. Mineral Deposits, 16(1): 42-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ701.004.htm
      [61] Zimmer, K., Zhang, Y. L., Lu, P., et al., 2016. SUPCRTBL: A Revised and Extended Thermodynamic Dataset and Software Package of SUPCRT92. Computers & Geosciences, 90: 97-111. https://doi.org/10.1016/j.cageo.2016.02.013
      [62] 陈翠华, 曹志敏, 侯秀萍, 等, 1999. 全球金-碲化物型矿床的分布规律和主要成矿条件. 成都理工大学学报(自然科学版), 26(3): 241-248. doi: 10.3969/j.issn.1671-9727.1999.03.008
      [63] 陈加杰, 冷成彪, 许德如, 等, 2020. 碲同位素研究进展及其地质应用展望. 地质学报, 94(5): 1655-1663. doi: 10.3969/j.issn.0001-5717.2020.05.021
      [64] 陈毓川, 毛景文, 骆耀南, 1996. 四川大水沟碲(金)矿床地质和地球化学. 北京: 原子能出版社, 1-106.
      [65] 范宏瑞, 李兴辉, 左亚彬, 等, 2018. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程. 岩石学报, 34(12): 3479-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm
      [66] 郭伟, 林贤, 胡圣虹, 2020. 单个流体包裹体LA-ICP-MS分析及应用进展. 地球科学, 45(4): 1362-1374. doi: 10.3799/dqkx.2019.199
      [67] 胡瑞忠, 温汉捷, 苏文超, 等, 2014. 矿床地球化学近十年若干研究进展. 矿物岩石地球化学通报, 33(2): 127-144. doi: 10.3969/j.issn.1007-2802.2014.02.016
      [68] 胡新露, 何谋惷, 姚书振, 2013a. 东秦岭上宫金矿成矿流体与成矿物质来源新认识. 地质学报, 87(1): 91-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201301009.htm
      [69] 胡新露, 姚书振, 何谋惷, 等, 2013b. 河南省上宫金矿成矿热力学条件及成矿机制. 中南大学学报(自然科学版), 44(12): 4962-4971. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201312027.htm
      [70] 黄富荣, 1998. 碲在官田黄铁矿矿床中的聚集及地球化学. 地球学报, 19(1): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB801.006.htm
      [71] 蒋少涌, 温汉捷, 许成, 等, 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向. 中国科学基金, 33(2): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902003.htm
      [72] 李碧乐, 张晗, 2010. 浅成低温热液型金矿床研究的某些进展. 矿物学报, 30(1): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201001013.htm
      [73] 李建威, 赵新福, 邓晓东, 等, 2019. 新中国成立以来中国矿床学研究若干重要进展. 中国科学(D辑: 地球科学), 49(11): 1720-1771. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201911003.htm
      [74] 刘家军, 翟德高, 刘新会, 等, 2011. 金矿床中硒、碲超常富集研究现状. 矿物学报, 31(S1): 267-269. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1136.htm
      [75] 刘家军, 翟德高, 王大钊, 等, 2020. Au-(Ag)-Te-Se成矿系统与成矿作用. 地学前缘, 27(2): 79-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002007.htm
      [76] 罗镇宽, 关康, 王曼祉, 等, 1999. 中国某些金矿床中碲化物的特征. 黄金地质, (3): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ199903012.htm
      [77] 毛景文, 袁顺达, 谢桂青, 等, 2019.21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质, 38(5): 935-969. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905001.htm
      [78] 任富根, 李双保, 赵嘉农, 等, 2000. 应用碲(硒)地球化学信息探寻熊耳群火山岩系中的金矿床. 矿物岩石地球化学通报, 19(4): 401-402. doi: 10.3969/j.issn.1007-2802.2000.04.072
      [79] 阮林森, 2013. 四川石棉县大水沟碲矿床成矿规律与找矿方向(博士学位论文). 武汉: 中国地质大学.
      [80] 涂光炽, 2000. 初论碲的成矿问题. 矿物岩石地球化学通报, 19(4): 211-214. doi: 10.3969/j.issn.1007-2802.2000.04.001
      [81] 涂光炽, 高振敏, 胡瑞忠, 等, 2004. 分散元素地球化学及成矿机制. 北京: 地质出版社, 1-288.
      [82] 王雷, 刘家军, 朱文兵, 等, 2016. 陕西小秦岭镰子沟碲金矿床物质组成特征及矿质沉淀机理研究. 矿床地质, 35(3): 456-474. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201603002.htm
      [83] 王玉婷, 2011. 四川石棉大水沟碲矿床成矿地球化学过程研究(博士学位论文). 成都: 成都理工大学.
      [84] 谢惠丽, 焦养泉, 刘章月, 等, 2020. 鄂尔多斯盆地北部铀矿床铀矿物赋存状态及富集机理. 地球科学, 45(5): 1531-1543. doi: 10.3799/dqkx.2019.164
      [85] 于学峰, 李大鹏, 李增胜, 等, 2019. 鲁西归来庄金矿田碲金元素地球化学过程研究. 矿床地质, 38(2): 277-290. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201902004.htm
      [86] 翟德高, 2014. 黑龙江省三道湾子碲化物型金矿床地质地球化学特征与成矿机制(博士学位论文). 北京: 中国地质大学.
      [87] 翟明国, 吴福元, 胡瑞忠, 等, 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902002.htm
      [88] 张佩华, 2000. 东坪式金矿床碲的元素地球化学(博士学位论文). 广州: 中国科学院广州地球化学研究.
      [89] 张招崇, 李兆鼐, 1994. 一个值得重视的金矿类型——碲化物型. 贵金属地质, 3(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD401.006.htm
      [90] 张招崇, 李兆鼐, 1997. 富碲化物型金矿形成的物理化学条件——以水泉沟金矿田为例. 矿床地质, 16(1): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ701.004.htm
    • 加载中
    图(1)
    计量
    • 文章访问数:  563
    • HTML全文浏览量:  396
    • PDF下载量:  199
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-12-09
    • 网络出版日期:  2021-12-04
    • 刊出日期:  2021-11-30

    目录

      /

      返回文章
      返回