• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西太平洋雅浦海沟地幔演化与岩浆作用研究进展

    田原 陈灵 唐立梅 高鹏 方银霞

    田原, 陈灵, 唐立梅, 高鹏, 方银霞, 2021. 西太平洋雅浦海沟地幔演化与岩浆作用研究进展. 地球科学, 46(3): 840-852. doi: 10.3799/dqkx.2021.003
    引用本文: 田原, 陈灵, 唐立梅, 高鹏, 方银霞, 2021. 西太平洋雅浦海沟地幔演化与岩浆作用研究进展. 地球科学, 46(3): 840-852. doi: 10.3799/dqkx.2021.003
    Tian Yuan, Chen Ling, Tang Limei, Gao Peng, Fang Yinxia, 2021. Research Progress on Mantle Evolution and Magmatism in the Yap Trench, Western Pacific. Earth Science, 46(3): 840-852. doi: 10.3799/dqkx.2021.003
    Citation: Tian Yuan, Chen Ling, Tang Limei, Gao Peng, Fang Yinxia, 2021. Research Progress on Mantle Evolution and Magmatism in the Yap Trench, Western Pacific. Earth Science, 46(3): 840-852. doi: 10.3799/dqkx.2021.003

    西太平洋雅浦海沟地幔演化与岩浆作用研究进展

    doi: 10.3799/dqkx.2021.003
    基金项目: 

    国家重点研发计划项目 2017YFC1405502

    中央级公益性科研院所基本科研业务费专项资金项目 QNYC1901

    中央级公益性科研院所基本科研业务费专项资金项目 JG2002

    国家自然科学基金项目 41976072

    详细信息
      作者简介:

      田原(1998-), 男, 硕士生在读, 主要从事俯冲带岩浆作用的方向.ORCID: 0000-0002-9331-1283.E-mail: 724931881@qq.com

      通讯作者:

      唐立梅, E-mail: tanglm@sio.org.cn

    • 中图分类号: P736

    Research Progress on Mantle Evolution and Magmatism in the Yap Trench, Western Pacific

    • 摘要: 俯冲带地幔演化与岩浆作用是地球各固体圈层之间发生物质和能量交换的重要地质过程.西太平洋雅浦海沟因其极短的沟-弧距离和洋脊碰撞等独特的地质构造特征成为研究复杂条件下俯冲带演化的理想场所.为了探究雅浦海沟地幔演化与岩浆作用,本文将前人对雅浦海沟火成岩的研究数据进行整合,分析了雅浦海沟火成岩的成因,并根据火成岩形成的制约条件,对卡罗琳板块俯冲到菲律宾海板块的地幔演化与岩浆作用过程进行了讨论.结果显示雅浦海沟火成岩均具有与俯冲相关火成岩的典型特征.橄榄岩地球化学特征指示雅浦海沟地幔熔融程度为20%~25%,地幔在部分熔融过程中受到了流体与熔体的双重交代作用.Re-Os同位素特征指示雅浦海沟地幔中存在约1.16 Ga非常古老的残余地幔,表明地幔可能经历过多期熔融事件,从而导致雅浦海沟地幔非常亏损.雅浦岛弧成因至今仍存争议,主要包括:(1)现今雅浦岛弧为帕里希维拉海盆洋壳的一部分,在中新世因卡罗琳洋脊的碰撞导致帕里希维拉海盆洋壳逆冲到原雅浦岛弧之上.(2)雅浦岛弧在不同构造时期经历过多期岛弧岩浆作用,包括俯冲初始阶段(~52 Ma)的弧前玄武岩、俯冲开始后的岛弧玄武岩(~25 Ma)、与卡罗琳洋脊碰撞(21 Ma)后的岛弧拉斑玄武岩(7~11 Ma).其中7~11 Ma的岛弧拉斑玄武岩指示雅浦岛弧岩浆活动并未因卡罗琳洋脊的碰撞完全停止,很有可能在晚中新世短暂恢复活动.

       

    • 图  1  研究区构造特征

      Fig.  1.  Structural features of the study area

      图  2  雅浦海沟火成岩手标本照片及光学显微镜图像

      a. 雅浦海沟橄榄岩手标本照片;b. 雅浦海沟橄榄岩光学显微镜图像;c. 雅浦海沟玄武岩手标本照片;d. 雅浦海沟玄武岩光学显微镜照片;图中Opx为斜方辉石, Cpx为单斜辉石, Serp为蛇纹石, Plagioclase为斜长石, Clinopyroxene为斜辉石;照片来源:图a、b据Chen et al.(2019a);图c、d据Yang et al.(2018)

      Fig.  2.  Hand specimens and optical microscope images of igneous rocks from the Yap trench

      图  3  雅浦海沟橄榄岩尖晶石Mg#-Cr#关系(a)与TiO2-Cr#关系(b)

      图a中右侧纵坐标F代表地幔熔融程度, 图中还列出马里亚纳海沟与帕里西维拉海盆橄榄岩用作比较, 数据来源见图例;图改自Chen et al.(2019a)

      Fig.  3.  Mg number versus Cr number (a) and Cr# versus TiO2 (b) for spinel grains in the Yap trench peridotites

      图  4  雅浦海沟橄榄岩MgO分别与SiO2(a)、总铁含量(FeOt)(b)、Al2O3(c)的关系, 以及CaO和Al2O3关系(d)

      虚线箭头表示熔融程度增加趋势, 元素含量已重新计算到100%的无水基础上;数据来源见图例.图改自Chen et al.(2019a)

      Fig.  4.  Plots of MgO versus SiO2 (a), total iron content (FeOt) (b) and Al2O3 (c), and CaO versus Al2O3 (d) for the Yap trench peridotites

      图  5  雅浦海沟橄榄岩MgO/SiO2与Al2O3/SiO2关系

      元素含量已重新计算到100%的无水基础上;粗黑线代表地球阵列, 据Jagoutz et al.(1979).数据来源见图例.图改自Chen et al.(2019a)

      Fig.  5.  Plots of Al2O3/SiO2 versus MgO/SiO2 of the Yap trench peridotites

      图  6  火山岩TAS图解(a)和SiO2与K2O关系(b)

      元素含量已重新计算到100%的无水基础上.数据来源:北雅浦断崖火山岩据Ohara et al.(2002b), 雅浦海沟火山岩据Crawford et al.(1986)Yang et al.(2018).底图改自Gill(1981)Peccerillo and Taylor(1976)Yang et al.(2018)

      Fig.  6.  Total alkali-silica (TAS) diagram (a) and K2O versus SiO2 diagram (b) for volcanic rocks

      图  7  雅浦海沟橄榄岩球粒陨石标准化稀土元素配分图

      球粒陨石成分引自Anders and Grevesse(1989).橄榄岩数据来自Chen et al.(2019a).图中灰色阴影代表深海橄榄岩组成范围, 据Niu(2004);蓝色代表伊豆‒小笠原‒马里亚纳弧前橄榄岩组成范围, 据Parkinson et al.(1992).图改自Chen et al.(2019a)

      Fig.  7.  Chondrite normalized REE patterns of the Yap trench peridotites

      图  8  雅浦海沟橄榄岩原始地幔标准化微量元素蛛网图

      PM、N-MORB成分引自Sun and McDonough(1989);Average DM、Depleted DM成分引自Workman and Hart(2005);平均深海橄榄岩成分引自Niu(2004).图改自Chen et al.(2019a)

      Fig.  8.  Primitive mantle normalized trace element spider diagram of the Yap trench peridotites

      图  9  玄武岩球粒陨石标准化稀土元素配分模式图(a)与原始地幔标准化微量元素蛛网图(b)

      球粒陨石与原始地幔成分引自Sun and McDonough(1989);雅浦海沟火成岩数据引自Crawford et al.(1986)Yang et al.(2018)Ohara et al.(2002b)

      Fig.  9.  Chondrite normalized REE patterns (a) and primitive mantle normalized trace element spider diagram (b) of the Yap trench basalts

      图  10  雅浦海沟玄武岩Ba/La与(La/Yb)N关系

      修改自Ohara et al.(2002b)Yang et al.(2018)

      Fig.  10.  Plot of Ba/La versus (La/Yb)N of the Yap trench basalts

      图  11  雅浦海沟橄榄岩动态熔融模型

      源区地幔成分引自Brunelli et al.(2006), 修改自Chen et al. (2019a)

      Fig.  11.  Dynamic melting model of the Yap trench peridotites

      图  12  雅浦海沟地幔演化模式

      俯冲起始模型引自Stern and Bloomer (1992);a.俯冲初始阶段, 此阶段下行板片垂直沉降, 地幔上涌填补板块之间的间隙, 发生减压熔融, 随后板片脱水流体向上运移进入俯冲带上方的地幔楔, 导致地幔在含水的状态下进一步熔融;b.垂直沉降变为真正的俯冲后, 残余地幔再次被俯冲相关的熔体交代

      Fig.  12.  Yap trench mantle evolution model

    • Ahmed, A. H., Arai, S., Abdel-Aziz, Y. M., et al., 2005. Spinel Composition as a Petrogenetic Indicator of the Mantle Section in the Neoproterozoic Bou Azzer Ophiolite: Anti-Atlas, Morocco. Precambrian Research, 138(3): 225-234. https://doi.org/10.1016/j.precamres.2005.05.004
      Anders, E., Grevesse, N., 1989. Abundances of the Elements: Meteoritic and Solar. Geochimica et Cosmochimica Acta, 53(1): 197-214. https://doi.org/10.1016/0016-7037(89)90286-X
      Barnes, S. J., Roeder, P. L., 2001. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. Journal of Petrology, 42(1): 2279-2302. https://doi.org/10.1093/petrology/42.12.2279
      Beccaluva, L., Macciotta, G., Savelli, C., et al., 1980. Geochemistry and K/Ar Ages of Volcanics Dredged in the Philippine Sea (Mariana, Yap, and Palau Trenches and Parece Vela Basin). In: Hayes, D. E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. American Geophysical Union, Washington, D. C.. https://doi.org/10.1029/gm023p0247
      Bird, P., 2003. An Updated Digital Model of Plate Boundaries. Geochemistry, Geophysics, Geosystems, 4(3): 1027. https://doi.org/10.1029/2001GC000252
      Bracey, D. R., 1975. Reconnaissance Geophysical Survey of the Caroline Basin. Geological Society of America Bulletin, 86(6): 775-784. https://doi.org/10.1130/0016-7606(1975)86<775:RGSOTC>2.0.CO;2 doi: 10.1130/0016-7606(1975)86<775:RGSOTC>2.0.CO;2
      Brunelli, D., Seyler, M., Cipriani, A., et al., 2006. Discontinuous Melt Extraction and Weak Refertilization of Mantle Peridotites at the Vema Lithospheric Section (Mid-Atlantic Ridge). Journal of Petrology, 47(4): 745-771. https://doi.org/10.1093/petrology/egi092
      Chen, L., Tang, L. M., Li, X. H., et al., 2019a. Ancient Melt Depletion and Metasomatic History of the Subduction Zone Mantle: Osmium Isotope Evidence of Peridotites from the Yap Trench, Western Pacific. Minerals, 9(12): 717. https://doi.org/10.3390/min9120717
      Chen, L., Tang, L. M., Li, X. H., et al., 2019b. Geochemistry of Peridotites from the Yap Trench, Western Pacific: Implications for Subduction Zone Mantle Evolution. International Geology Review, 61(9): 1037-1051. https://doi.org/10.1080/00206814.2018.1484305
      Crawford, A. J., Beccaluva, L., Serri, G., et al., 1986. Petrology, Geochemistry and Tectonic Implications of Volcanics Dredged from the Intersection of the Yap and Mariana Trenches. Earth and Planetary Science Letters, 80(3-4): 265-280. https://doi.org/10.1016/0012-821X(86)90110-X
      Dick, H. J. B., Bullen, T., 1984. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 86(1): 54-76. https://doi.org/10.1007/BF00373711
      Fornari, D. J., Weissel, J. K., Perfit, M. R., et al., 1979. Petrochemistry of the Sorol and Ayu Troughs: Implications for Crustal Accretion at the Northern and Western Boundaries of the Caroline Plate. Earth and Planetary Science Letters, 45(1): 1-15. https://doi.org/10.1016/0012-821X(79)90102-X
      Forsyth, D., Uyedaf, S., 1975. On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal of the Royal Astronomical Society, 43(1): 163-200. https://doi.org/10.1111/j.1365-246X.1975.tb00631.x
      Fujiwara, T., Tamura, C., Nishizawa, A., et al., 2000. Morphology and Tectonics of the Yap Trench. Marine Geophysical Researches, 21(1-2): 69-86. https://doi.org/10.1023/A:1004781927661
      Gill, J. B., 1981. Bulk Chemical Composition of Orogenic Andesites. Orogenic Andesites and Plate Tectonics. Springer, Berlin. https: //doi.org/10.1007/978-3-642-68012-0_5
      Hart, S. R., 1984. A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle. Nature, 309: 753-757. https://doi.org/10.1038/309753a0
      Hawkins, J., Batiza, R., 1977. Metamorphic Rocks of the Yap Arc-Trench System. Earth and Planetary Science Letters, 37(2): 216-229. https://doi.org/10.1016/0012-821X(77)90166-2
      Hellebrand, E., Snow, J. E., Mühe, R., 2002. Mantle Melting Beneath Gakkel Ridge (Arctic Ocean): Abyssal Peridotite Spinel Compositions. Chemical Geology, 182(2-4): 227-235. https://doi.org/10.1016/S0009-2541(01)00291-1
      Jagoutz, E., Palme, H., Baddenhausen, H., et al., 1979. The Abundance of Major, Minor and Trace Elements in the Earth's Mantle as Derived from Primitive Ultramafic Nodules. Lunar and Planetary Science Conference, 10th, Houston.
      Kasuga, S., Ohara, Y., 1997. A New Model of Back-Arc Spreading in the Parece Vela Basin, Northwest Pacific Margin. Island Arc, 6(3): 316-326. https://doi.org/10.1111/j.1440-1738.1997.tb00181.x
      Lee, S. M., 2004. Deformation from the Convergence of Oceanic Lithosphere into Yap Trench and Its Implications for Early-Stage Subduction. Journal of Geodynamics, 37(1): 83-102. https://doi.org/10.1016/j.jog.2003.10.003
      Li, D. Y., Xiao, Y. L., Wang, Y. Y., et al., 2019. Mg-Li-Fe-Cr Isotopic Fractionation during Subduction. Earth Science, 44(12): 4081-4085 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912016.htm
      McCabe, R., Uyeda, S., 1983. Hypothetical Model for the Bending of the Mariana Arc. In: Hayes, D. E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. American Geophysical Union, Washington, D. C.. https://doi.org/10.1029/gm027p0281
      Michibayashi, K., Ohara, Y., Stern, R. J., et al., 2009. Peridotites from a Ductile Shear Zone within Back-Arc Lithospheric Mantle, Southern Mariana Trench: Results of a Shinkai 6500 Dive. Geochemistry, Geophysics, Geosystems, 10(5): Q05X06. https://doi.org/10.1029/2008GC002197
      Niu, Y. L., 2004. Bulk-Rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-Melting Processes Beneath Mid-Ocean Ridges. Journal of Petrology, 45(12): 2423-2458. https://doi.org/10.1093/petrology/egh068
      Ohara, Y., Fujioka, K., Ishii, T., et al., 2003. Peridotites and Gabbros from the Parece Vela Backarc Basin: Unique Tectonic Window in an Extinct Backarc Spreading Ridge. Geochemistry, Geophysics, Geosystems, 4(7): 8611. https://doi.org/10.1029/2002gc000469
      Ohara, Y., Fujioka, K., Ishizuka, O., et al., 2002b. Peridotites and Volcanics from the Yap Arc System: Implications for Tectonics of the Southern Philippine Sea Plate. Chemical Geology, 189(1-2): 35-53. https://doi.org/10.1016/S0009-2541(02)00062-1
      Ohara, Y., Ishii, T., 1998. Peridotites from the Southern Mariana Forearc: Heterogeneous Fluid Supply in Mantle Wedge. The Island Arc, 7(3): 541-558. https://doi.org/10.1111/j.1440-1738.1998.00209.x
      Ohara, Y., Stern, R. J., Ishii, T., et al., 2002a. Peridotites from the Mariana Trough: First Look at the Mantle Beneath an Active Back-Arc Basin. Contributions to Mineralogy and Petrology, 143(1): 1-18. https://doi.org/10.1007/s00410-001-0329-2
      Parkinson, I. J., Pearce, J. A., Thirlwall, M. F., et al., 1992. Trace Element Geochemistry of Peridotites from the Izu-Bonin-Mariana Forearc, Leg 125. In: Taylor, B., Fujioka, K., et al., eds., Proceedings of the Ocean Drilling Program, 125 Scientific Results. Ocean Drilling Program, College Station. https://doi.org/10.2973/odp.proc.sr.125.183.1992
      Parsons, B., McKenzie, D., 1978. Mantle Convection and the Thermal Structure of the Plates. Journal of Geophysical Research: Solid Earth, 83(B9): 4485-4496. https://doi.org/10.1029/JB083iB09p04485
      Peacock, S. M., Rushmer, T., Thompson, A. B., 1994. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 121(1-2): 227-244. https://doi.org/10.1016/0012-821X(94)90042-6
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      Saboda, K. L., Fryer, P. B., Maekawa, H., et al., 1992. Metamorphism of Ultramafic Clasts from Conical Seamount: Sites 778, 779, and 780. In: Fryer, P., Pearce, J. A., Stokking, L. B., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station.
      Sato, T., Kasahara, J., Katao, H., et al., 1997. Seismic Observations at the Yap Islands and the Northern Yap Trench. Tectonophysics, 271(3-4): 285-294. https://doi.org/10.1016/S0040-1951(96)00251-X
      Sdrolias, M., Roest, W. R., Müller, R. D., 2004. An Expression of Philippine Sea Plate Rotation: The Parece Vela and Shikoku Basins. Tectonophysics, 394(1-2): 69-86. https://doi.org/10.1016/j.tecto.2004.07.061
      Seno, T., Stein, S., Gripp, A. E., 1993. A Model for the Motion of the Philippine Sea Plate Consistent with NUVEL-1 and Geological Data. Journal of Geophysical Research: Solid Earth, 98(B10): 17941-17948. https://doi.org/10.1029/93jb00782
      Shiraki, K., 1971. Metamorphic Basement Rocks of Yap Islands, Western Pacific: Possible Oceanic Crust beneath an Island Arc. Earth and Planetary Science Letters, 13(1): 167-174. https://doi.org/10.1016/0012-821X(71)90120-8
      Stern, R. J., Bloomer, S. H., 1992. Subduction Zone Infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California Arcs. Geological Society of America Bulletin, 104(12): 1621-1636. https://doi.org/10.1130/0016-7606(1992)1041621:szieft>2.3.co;2 doi: 10.1130/0016-7606(1992)1041621:szieft>2.3.co;2
      Stern, R. J., 2004. Subduction Initiation: Spontaneous and Induced. Earth and Planetary Science Letters, 226(3-4): 275-292. https://doi.org/10.1016/S0012-821X(04)00498-4
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Wang, C. G., Xu, W. L., 2019. An Experimental of Crust-Mantle Interaction in Subduction Zones: Implications for Genesis of Mantle Heterogeneity. Earth Science, 44(12): 4112-4118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912020.htm
      Weissel, J. K., Anderson, R. N., 1978. Is there a Caroline Plate?. Earth and Planetary Science Letters, 41(2): 143-158. https://doi.org/10.1016/0012-821X(78)90004-3
      Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
      Yang, Y. M., Wu, S. G., Gao, J. W., et al., 2018. Geology of the Yap Trench: New Observations from a Transect near 10°N from Manned Submersible Jiaolong. International Geology Review, 60(16): 1941-1953. https://doi.org/10.1080/00206814.2017.1394226
      Zhang, J., Zhang, G. L., 2020. Geochemical and Chronological Evidence for Collision of Proto-Yap Arc/Caroline Plateau and Rejuvenated Plate Subduction at Yap Trench. Lithos, 370-371: 105616. https://doi.org/10.1016/j.lithos.2020.105616
      Zhang, Z., Li, S. Z., 2019. Tectonic Evolution of the Yap Trench-Arc System. Marine Geology & Quaternary Geology, 39(5): 138-146 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201905012.htm
      Zhang, Z. Y., Dong, D. D., Zhang, G. X., et al., 2017. Topographic Constraints on the Subduction Erosion of the Yap Arc, Western Pacific. Marine Geology & Quaternary Geology, 37(1): 41-50 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201701006.htm
      李东永, 肖益林, 王洋洋, 等, 2019. 板块俯冲过程中的Mg-Li-Fe-Cr同位素分馏. 地球科学, 44(12): 4081-4085. doi: 10.3799/dqkx.2019.255
      王春光, 许文良, 2019. 俯冲带壳-幔相互作用的高温高压实验: 对地幔不均一性成因的启示. 地球科学, 44(12): 4112-4118. doi: 10.3799/dqkx.2019.230
      张臻, 李三忠, 2019. 雅浦沟-弧体系构造演化过程. 海洋地质与第四纪地质, 39(5): 138-146. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201905012.htm
      张正一, 董冬冬, 张广旭, 等, 2017. 板块俯冲侵蚀雅浦岛弧的地形制约. 海洋地质与第四纪地质, 37(1): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201701006.htm
    • 加载中
    图(12)
    计量
    • 文章访问数:  1447
    • HTML全文浏览量:  748
    • PDF下载量:  135
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-10-30
    • 刊出日期:  2021-03-01

    目录

      /

      返回文章
      返回