• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华南桂东南地区加里东期Ⅰ型花岗岩类的岩石成因及构造意义

    刘明辉 时毓 唐远兰 赵增霞 刘希军 高爱洋 黄椿文

    刘明辉, 时毓, 唐远兰, 赵增霞, 刘希军, 高爱洋, 黄椿文, 2021. 华南桂东南地区加里东期Ⅰ型花岗岩类的岩石成因及构造意义. 地球科学, 46(11): 3965-3992. doi: 10.3799/dqkx.2021.035
    引用本文: 刘明辉, 时毓, 唐远兰, 赵增霞, 刘希军, 高爱洋, 黄椿文, 2021. 华南桂东南地区加里东期Ⅰ型花岗岩类的岩石成因及构造意义. 地球科学, 46(11): 3965-3992. doi: 10.3799/dqkx.2021.035
    Liu Minghui, Shi Yu, Tang Yuanlan, Zhao Zengxia, Liu Xijun, Gao Aiyang, Huang Chunwen, 2021. Petrogenesis and Tectonic Significance of Caledonian Ⅰ-Type Granitoids in Southeast Guangxi, South China. Earth Science, 46(11): 3965-3992. doi: 10.3799/dqkx.2021.035
    Citation: Liu Minghui, Shi Yu, Tang Yuanlan, Zhao Zengxia, Liu Xijun, Gao Aiyang, Huang Chunwen, 2021. Petrogenesis and Tectonic Significance of Caledonian Ⅰ-Type Granitoids in Southeast Guangxi, South China. Earth Science, 46(11): 3965-3992. doi: 10.3799/dqkx.2021.035

    华南桂东南地区加里东期Ⅰ型花岗岩类的岩石成因及构造意义

    doi: 10.3799/dqkx.2021.035
    基金项目: 

    国家自然科学基金项目 41862003

    国家自然科学基金项目 41562005

    广西杰出自然科学基金项目 2019GXNSFFA245005

    广西杰出自然科学基金项目 2018GXNSFFA281009

    内生金属矿床成矿机制研究国家重点实验室(南京大学)开放基金项目 2020-LAMD-K09

    详细信息
      作者简介:

      刘明辉(1995-), 男, 硕士, 研究生, 研究方向为岩石学.ORCID: 0000-0001-6062-223X.E-mail: lau1103@qq.com

      通讯作者:

      时毓, E-mail: shiyu_61@163.com

    • 中图分类号: P58

    Petrogenesis and Tectonic Significance of Caledonian Ⅰ-Type Granitoids in Southeast Guangxi, South China

    • 摘要: 龙新岩体和夏郢岩体位于扬子地块与华夏地块拼合带的西南端,岩体中的Ⅰ型花岗岩成因研究对揭示桂东南地区早古生代的地球动力学背景及其构造演化具有重要的地质意义.对龙新岩体的寄主岩和其暗色微粒包体,以及夏郢岩体岩石进行了LA-ICP-MS锆石U-Pb定年、Lu-Hf同位素和全岩地球化学研究.锆石U-Pb定年结果显示,龙新岩体的寄主岩(花岗闪长岩)的年龄为440±2 Ma;龙新岩体的暗色包体(闪长岩)的年龄为441±1 Ma,寄主岩与暗色包体为同期岩浆作用的产物.夏郢岩体花岗闪长岩和二长花岗岩年龄分别为447±3 Ma和436±3 Ma,说明夏郢岩体至少发生了2期岩浆侵入事件.Hf同位素研究表明,龙新岩体寄主岩和暗色微粒包体的锆石εHft)值分别为-3.32~-5.83和-17.89~-1.82,二阶段模式年龄(TDM2)分别为1.62~1.76 Ga和1.57~2.54 Ga;夏郢岩体早期花岗岩闪长岩和晚期二长花岗岩的锆石εHft)值分别为-15.43~3.03和-4.79~6.82,TDM2分别为1.59~1.99 Ga和0.97~1.70 Ga,指示物源主要来自古-中元古代的地壳物质.地球化学特征表明龙新岩体寄主岩为准铝质高钾钙碱性Ⅰ型花岗岩,寄主岩和暗色微粒包体均富集轻稀土元素和大离子亲石元素,亏损重稀土元素及高场强元素;夏郢岩体早期的花岗闪长岩为弱过铝质高钾钙碱性Ⅰ型花岗岩,晚期的二长花岗岩则为强过铝质高钾钙碱性Ⅰ型花岗岩,主微量元素特征均与龙新岩体寄主岩相似.根据研究区花岗岩和镁铁质包体的岩相学、年代学、地球化学及Hf同位素组成特征,表明龙新岩体的暗色包体(闪长岩)为岩浆混合成因,而龙新岩体寄主岩(花岗闪长岩)和夏郢岩体(早期花岗岩闪长岩和晚期二长花岗岩)具有一致的岩石源区和岩石成因,但在后期的成岩过程中存在岩浆混合和结晶分异程度的差异.综合以往对华南地区构造背景的研究,认为龙新和夏郢岩体是在扬子地块和华夏地块陆内造山期后,岩石圈伸展减薄,热的幔源岩浆上涌底侵,中-下地壳受到地幔热影响发生部分熔融,形成的酸性岩浆在源区和基性岩浆经历了不均一且不强烈的壳-幔混合作用形成的.

       

    • 图  1  大瑶山地区花岗岩类时空分布图(a)和岩体分布及采样点(b)

      a.据陈懋弘等(2015)

      Fig.  1.  Spatial-temporal distribution of granitoids in the Dayaoshan area of Guangxi (a) and distribution of the granitoids from the Longxin-Xiaying plutons and the sampling locations (b)

      图  2  龙新岩体寄主岩(a)、包体(b)野外照片和样品显微镜下正交偏光照片(c,d)

      Bt.黑云母;Kfs.钾长石;Hbl.普通角闪石;Pl.斜长石;Qtz.石英

      Fig.  2.  Field photographs of host rock (a), enclave (b) and photomicrographs (+) (c, d) of the Longxin pluton

      图  3  夏郢岩体花岗闪长岩野外照片(a)和样品显微镜下正交偏光照片(b,c)

      Bt.黑云母;Kfs.钾长石;Pl.斜长石;Hbl.普通角闪石;Qtz.石英

      Fig.  3.  Field photograph (a) and photomicrographs (+) (b, c) of granodiorite from the Xiaying pluton

      图  4  龙新岩体和夏郢岩体花岗岩类样品中的锆石阴极发光图像

      a. 龙新岩体寄主岩花岗闪长岩样品(CZ17-06-1);b. 龙新岩体闪长岩包体样品(CZ17-06-4);c. 夏郢岩体花岗闪长岩样品(HJW-17-10-1);d. 夏郢岩体二长花岗岩样品(GT-17-11-1)

      Fig.  4.  Representative cathodoluminescence (CL) images of zircon grains from the granitoids of the Longxin and Xiaying plutons

      图  5  龙新和夏郢岩体花岗岩类样品中锆石U-Pb年龄谐和图

      a. 龙新岩体寄主岩花岗闪长岩样品(CZ17-06-1);b. 龙新岩体闪长岩包体样品(CZ17-06-4);c. 夏郢岩体花岗闪长岩样品(HJW-17-10-1);d. 夏郢岩体二长花岗岩样品(GT-17-11-1)

      Fig.  5.  Concordia diagrams for the U-Pb ages of zircon grains analyzed from the granitoids of the Longxin and Xiaying plutons

      图  6  龙新岩体和夏郢岩体中花岗岩类样品的主量元素Harker图解

      Fig.  6.  Harker diagrams of major elements for the granitoids from the Longxin and Xiaying plutons

      图  7  龙新岩体和夏郢岩体中花岗岩类样品的TAS图解(a)和K2O-SiO2图解(b)

      a.据Middlemost (1994);b.据Peccerillo and Taylor (1976). 1.橄榄辉长岩;2a.碱性辉长岩;2b.亚碱性辉长岩;3辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.硅英岩;8.二长辉长岩;9.二长闪长岩;10.二长岩;11.石英二长岩;12.正长岩;13.副长石辉长岩;14.副长石二长闪长岩;15.副长石二长正长岩;16.副长正长岩;17.副长深成岩;18.霓方钠岩/霓霞岩/粗白榴岩

      Fig.  7.  TAS diagram (a) and K2O vs. SiO2 plot (b) of granitoids from the Longxin and Xiaying plutons

      图  8  龙新岩体和夏郢岩体中花岗岩类样品的A/CNK - A/NK图解

      Maniar and Piccoli (1989)

      Fig.  8.  A/CNK vs. A/NK plot of granitoids from the Longxin and Xiaying plutons

      图  9  龙新岩体和夏郢岩体中花岗岩类样品球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)

      球粒陨石标准化数值和原始地幔标准化数值据Sun and McDonough (1989)

      Fig.  9.  REE patterns (a) and spider diagrams (b) for trace elements of granitoids from the Longxin and Xiaying plutons

      图  10  龙新岩体和夏郢岩体中锆石εHf(t)-U-Pb年龄图(a)和εHf(t)值直方图(b)

      Fig.  10.  Plots of εHf(t) vs. U-Pb ages (a) and histogram of εHf(t) values for zircon grains of granitoids from the Longxin and Xiaying plutons (b)

      图  11  C/MF-A/MF (C/MF=molar CaO/(MgO+FeOT); A/MF=molar Al2O3/(MgO+FeOT))(a)、MgO-FeOT(b)和SiO2/MgO–Al2O3/MgO(c)图解

      a.据Altheer et al.(2000)

      Fig.  11.  Diagrams of C/MF vs. A/MF (C/MF=molar CaO/(MgO+FeOT); A/MF=molar Al2O3/(MgO+FeOT)) (a), MgO vs. FeOT (b) and SiO2/MgO vs. Al2O3/MgO (c)

      表  1  龙新岩体和夏郢岩体花岗岩类样品中的LA-ICP-MS锆石U-Pb分析结果

      Table  1.   LA-ICP-MS zircon U-Pb dating results of the granitoids from the Longxin and Xiaying plutons

      样品测试点号 含量(10-6) Th/U 同位素比值 年龄(Ma) 谐和度(%)
      232Th 238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      龙新岩体花岗闪长岩(CZ17-06-1)
      -1 1 416 2 031 0.70 0.055 48 0.001 10 0.537 56 0.011 39 0.070 36 0.000 68 432 44 437 8 438 4 99
      -2 414 1 007 0.41 0.055 80 0.001 46 0.541 52 0.015 00 0.070 43 0.000 75 443 59 439 10 439 4 99
      -3 4 431 4 446 1.00 0.058 11 0.000 90 0.651 29 0.013 35 0.080 95 0.000 94 600 35 509 8 502 6 98
      -4 427 947 0.45 0.076 54 0.001 58 0.857 87 0.020 53 0.081 18 0.001 00 1 109 8 629 11 503 6 77
      -5 603 2 073 0.29 0.073 97 0.001 01 1.629 84 0.028 92 0.159 35 0.001 65 1 043 60 982 11 953 9 97
      -6 1 813 2 630 0.69 0.054 90 0.001 01 0.534 65 0.010 99 0.070 54 0.000 66 409 43 435 7 439 4 98
      -7 1 001 1 692 0.59 0.054 28 0.001 14 0.530 38 0.012 05 0.070 83 0.000 71 383 42 432 8 441 4 97
      -8 1 141 2 087 0.55 0.053 52 0.001 13 0.522 37 0.012 03 0.070 66 0.000 71 350 48 427 8 440 4 96
      -9 1 358 2 066 0.66 0.054 84 0.001 13 0.534 59 0.012 29 0.070 55 0.000 73 406 42 435 8 439 4 98
      -10 2 745 2 969 0.92 0.056 89 0.001 23 0.548 56 0.012 97 0.069 99 0.000 78 487 81 444 9 436 5 98
      -11 1 164 1 956 0.60 0.056 39 0.001 31 0.550 81 0.013 20 0.071 30 0.000 89 478 50 446 9 444 5 99
      -12 1 355 2 181 0.62 0.056 88 0.001 00 0.551 11 0.011 00 0.070 15 0.000 65 487 34 446 7 437 4 98
      -13 1 210 2 029 0.60 0.054 32 0.000 98 0.528 03 0.010 71 0.070 40 0.000 67 383 45 431 7 439 4 98
      -14 1 465 1 837 0.80 0.057 22 0.001 68 0.628 62 0.023 88 0.079 09 0.000 78 498 65 495 15 491 5 99
      -15 610 1 168 0.52 0.058 75 0.001 39 0.574 60 0.014 77 0.070 93 0.000 75 567 52 461 10 442 5 95
      -16 1 929 2 598 0.74 0.056 27 0.001 05 0.550 12 0.012 09 0.070 71 0.000 78 465 43 445 8 440 5 98
      -17 2 052 2 483 0.83 0.057 42 0.001 03 0.563 20 0.011 76 0.070 91 0.000 66 509 34 454 8 442 4 97
      -18 837 1 080 0.77 0.056 56 0.001 75 0.612 08 0.018 99 0.078 77 0.000 83 476 69 485 12 489 5 99
      -19 1 382 2 240 0.62 0.055 18 0.001 08 0.539 03 0.011 74 0.070 72 0.000 68 420 43 438 8 440 4 99
      -20 1 034 1 687 0.61 0.054 07 0.001 11 0.529 70 0.012 36 0.070 94 0.000 76 372 46 432 8 442 5 97
      -21 1 223 1 942 0.63 0.055 81 0.001 12 0.542 64 0.011 78 0.070 46 0.000 67 456 51 440 8 439 4 99
      -22 2 050 2 562 0.80 0.055 88 0.001 00 0.546 10 0.010 83 0.070 75 0.000 64 456 39 442 7 441 4 99
      -23 3 224 3 700 0.87 0.054 76 0.000 94 0.544 60 0.010 41 0.072 17 0.000 80 467 37 441 7 449 5 98
      -24 944 1 837 0.51 0.054 87 0.001 18 0.530 79 0.012 20 0.070 02 0.000 62 406 44 432 8 436 4 99
      龙新岩体闪长岩包体(CZ17-06-4)
      -1 1 384 2 236 0.62 0.055 29 0.000 81 0.546 05 0.009 18 0.071 08 0.000 69 433 33 442 6 443 4 99
      -2 1 464 2 160 0.68 0.056 76 0.000 79 0.559 17 0.008 05 0.071 00 0.000 45 483 36 451 5 442 3 98
      -3 1 044 1 804 0.58 0.054 46 0.000 72 0.535 72 0.007 82 0.070 81 0.000 51 391 30 436 5 441 3 98
      -4 713 1 448 0.49 0.054 47 0.000 83 0.537 13 0.008 30 0.071 14 0.000 42 391 33 437 5 443 3 98
      -5 1 113 1 906 0.58 0.056 23 0.000 77 0.555 08 0.008 22 0.071 20 0.000 49 461 34 448 5 443 3 98
      -6 1 119 1 600 0.70 0.056 98 0.000 83 0.561 62 0.008 41 0.071 19 0.000 43 500 33 453 5 443 3 97
      -7 2 223 3 081 0.72 0.056 61 0.000 75 0.556 54 0.009 42 0.070 99 0.000 82 476 25 449 6 442 5 98
      -8 2 341 2 701 0.87 0.056 76 0.000 92 0.558 57 0.011 33 0.071 09 0.000 95 483 31 451 7 443 6 98
      -9 1 328 2 088 0.64 0.055 56 0.000 96 0.547 02 0.010 45 0.071 24 0.000 68 435 39 443 7 444 4 99
      -10 1 461 1 855 0.79 0.056 11 0.000 85 0.548 83 0.008 75 0.070 80 0.000 59 457 33 444 6 441 4 99
      -11 1 256 1 914 0.66 0.056 00 0.000 88 0.550 15 0.008 53 0.071 07 0.000 38 454 35 445 6 443 2 99
      -12 529 1 723 0.31 0.071 93 0.000 84 1.362 57 0.020 33 0.136 58 0.001 23 983 24 873 9 825 7 94
      -13 1 204 2 120 0.57 0.055 44 0.000 79 0.546 84 0.008 53 0.071 35 0.000 60 432 31 443 6 444 4 99
      -14 1 463 2 909 0.50 0.055 10 0.000 79 0.545 28 0.009 27 0.071 45 0.000 72 417 36 442 6 445 4 99
      -15 2 021 2 677 0.75 0.054 72 0.000 77 0.534 55 0.008 59 0.070 65 0.000 68 467 31 435 6 440 4 98
      -16 728 1 571 0.46 0.056 60 0.000 98 0.553 02 0.009 97 0.070 58 0.000 51 476 44 447 7 440 3 98
      -17 1 058 1 800 0.59 0.066 57 0.001 19 0.672 60 0.014 63 0.072 44 0.000 71 833 37 522 9 451 4 85
      -18 1 082 1 671 0.65 0.054 83 0.000 85 0.538 34 0.008 76 0.071 01 0.000 57 406 35 437 6 442 3 98
      -19 1 004 1 750 0.57 0.054 23 0.000 88 0.527 60 0.008 91 0.070 38 0.000 55 389 37 430 6 438 3 98
      -20 1 003 1 982 0.51 0.054 16 0.000 75 0.528 39 0.007 86 0.070 50 0.000 53 376 31 431 5 439 3 98
      -21 773 1 717 0.45 0.055 64 0.000 83 0.543 31 0.008 36 0.070 64 0.000 55 439 33 441 6 440 3 99
      -22 1 689 2 264 0.75 0.055 15 0.000 86 0.535 74 0.008 42 0.070 19 0.000 41 417 35 436 6 437 2 99
      -23 1 849 2 531 0.73 0.056 27 0.000 84 0.545 06 0.007 97 0.069 99 0.000 37 461 33 442 5 436 2 98
      -24 1 020 1 614 0.63 0.055 72 0.000 84 0.544 18 0.008 36 0.070 64 0.000 52 443 35 441 6 440 3 99
      夏郢岩体花岗闪长岩(HJW17-10-1)
      -1 742 1 229 0.60 0.058 57 0.001 34 0.586 83 0.015 06 0.072 72 0.000 91 550 55 469 10 453 5 96
      -2 375 760 0.49 0.055 88 0.001 58 0.550 27 0.016 41 0.071 63 0.000 83 456 63 445 11 446 5 99
      -3 1 270 2 080 0.61 0.055 03 0.001 07 0.541 99 0.012 19 0.071 19 0.000 75 413 44 440 8 443 4 99
      -4 1 108 2 086 0.53 0.068 25 0.001 38 0.969 02 0.032 51 0.100 38 0.001 87 876 41 688 17 617 11 89
      -5 825 1 686 0.49 0.057 13 0.002 16 0.565 19 0.023 93 0.071 56 0.000 89 498 90 455 16 446 5 97
      -6 858 1 652 0.52 0.054 35 0.001 15 0.538 76 0.012 50 0.071 81 0.000 75 387 44 438 8 447 4 97
      -7 814 1 198 0.68 0.055 70 0.001 38 0.547 70 0.014 68 0.071 27 0.000 87 439 56 443 10 444 5 99
      -8 1 175 1 918 0.61 0.053 46 0.001 31 0.521 99 0.013 02 0.071 25 0.001 01 350 83 426 9 444 6 96
      -9 1 525 2 190 0.70 0.051 18 0.001 15 0.517 00 0.012 50 0.073 41 0.000 94 256 52 423 8 457 6 92
      -10 469 790 0.59 0.071 49 0.001 75 1.672 40 0.084 33 0.161 49 0.006 25 972 50 998 32 965 35 96
      -11 317 799 0.40 0.067 55 0.001 91 1.054 33 0.062 82 0.104 98 0.003 84 854 64 731 31 644 22 87
      -12 1 441 2 107 0.68 0.055 75 0.001 06 0.547 60 0.011 73 0.071 26 0.000 80 443 43 443 8 444 5 99
      -13 508 782 0.65 0.060 19 0.001 33 0.850 01 0.021 29 0.102 33 0.001 19 609 48 625 12 628 7 99
      -14 305 885 0.34 0.060 93 0.001 29 0.860 43 0.021 25 0.102 26 0.001 26 635 46 630 12 628 7 99
      -15 726 1 306 0.56 0.054 31 0.001 22 0.562 24 0.013 63 0.075 30 0.000 89 383 52 453 9 468 5 96
      -16 617 1 356 0.46 0.056 80 0.001 30 0.563 67 0.014 96 0.071 94 0.000 92 483 84 454 10 448 6 98
      -17 828 1 464 0.57 0.056 96 0.001 26 0.557 08 0.013 40 0.071 34 0.000 94 500 50 450 9 444 6 98
      -18 1 353 1 908 0.71 0.056 24 0.001 08 0.554 12 0.012 02 0.071 59 0.000 84 461 43 448 8 446 5 99
      -19 561 1 189 0.47 0.053 68 0.001 29 0.527 44 0.013 49 0.071 48 0.000 85 367 54 430 9 445 5 96
      -20 1 017 1 816 0.56 0.055 37 0.001 08 0.547 23 0.012 51 0.071 61 0.000 84 428 47 443 8 446 5 99
      -21 4 037 3 421 1.18 0.061 04 0.001 16 0.690 84 0.015 86 0.081 75 0.000 90 639 41 533 10 507 5 94
      -22 887 1 277 0.70 0.057 44 0.001 27 0.567 70 0.013 75 0.071 70 0.000 78 509 55 457 9 446 5 97
      -23 2 488 2 686 0.93 0.055 49 0.001 12 0.543 72 0.011 95 0.071 00 0.000 67 432 44 441 8 442 4 99
      -24 1 015 1 318 0.77 0.058 96 0.001 37 0.580 26 0.014 37 0.071 36 0.000 71 565 47 465 9 444 4 95
      夏郢岩体二长花岗岩(GT17-11-1)
      -1 580 1 011 0.57 0.055 25 0.001 36 0.527 18 0.014 14 0.069 36 0.000 81 433 54 430 9 432 5 99
      -2 1 171 1 575 0.74 0.055 92 0.001 20 0.535 13 0.012 67 0.069 42 0.000 70 450 14 435 8 433 4 99
      -3 610 1 068 0.57 0.056 70 0.001 27 0.541 94 0.013 02 0.069 50 0.000 72 480 48 440 9 433 4 98
      -4 514 773 0.66 0.057 73 0.001 48 0.550 74 0.014 78 0.069 37 0.000 70 520 57 445 10 432 4 97
      -5 605 1 000 0.60 0.054 19 0.001 45 0.516 50 0.014 99 0.069 14 0.000 77 389 61 423 10 431 5 98
      -6 666 1 002 0.67 0.057 93 0.001 53 0.555 15 0.015 69 0.069 60 0.000 70 528 53 448 10 434 4 96
      -7 507 1 104 0.46 0.057 72 0.001 42 0.550 36 0.014 55 0.069 31 0.000 72 520 54 445 10 432 4 96
      -8 501 829 0.60 0.056 07 0.001 56 0.557 55 0.016 08 0.072 51 0.000 79 454 63 450 10 451 5 99
      -9 670 991 0.68 0.055 79 0.001 55 0.533 57 0.015 21 0.069 95 0.000 79 443 58 434 10 436 5 99
      -10 417 1 714 0.24 0.069 97 0.001 17 1.581 78 0.037 15 0.163 68 0.002 43 928 33 963 15 977 13 98
      -11 809 1 217 0.66 0.055 88 0.001 26 0.534 14 0.013 07 0.069 51 0.000 71 456 50 435 9 433 4 99
      -12 752 1 090 0.69 0.052 12 0.001 19 0.497 02 0.012 49 0.069 40 0.000 82 300 52 410 8 433 5 94
      -13 745 1 099 0.68 0.052 69 0.001 30 0.504 41 0.014 10 0.069 49 0.000 76 322 57 415 10 433 5 95
      -14 1 030 1 539 0.67 0.054 24 0.001 18 0.518 72 0.013 10 0.069 29 0.000 72 389 48 424 9 432 4 98
      -15 1 992 2 112 0.94 0.053 14 0.001 09 0.507 42 0.012 01 0.069 37 0.000 79 345 51 417 8 432 5 96
      -16 497 689 0.72 0.060 93 0.001 86 0.623 98 0.021 06 0.074 25 0.000 93 635 67 492 13 462 6 93
      -17 930 1 359 0.68 0.052 50 0.001 25 0.502 12 0.013 40 0.069 47 0.000 83 306 54 413 9 433 5 95
      -18 707 1 076 0.66 0.054 33 0.001 29 0.518 51 0.013 34 0.069 42 0.000 77 383 52 424 9 433 5 98
      -19 481 941 0.51 0.052 92 0.001 38 0.526 51 0.014 66 0.072 52 0.000 94 324 59 429 10 451 6 95
      -20 2 190 2 313 0.95 0.052 52 0.000 92 0.501 54 0.010 56 0.069 18 0.000 72 309 6 413 7 431 4 95
      -21 612 911 0.67 0.055 49 0.001 46 0.527 69 0.014 28 0.069 37 0.000 89 432 64 430 9 432 5 99
      -22 613 1 041 0.59 0.055 97 0.001 25 0.538 02 0.013 10 0.069 88 0.000 82 450 16 437 9 435 5 99
      -23 772 1 125 0.69 0.055 59 0.001 27 0.555 96 0.013 97 0.072 44 0.000 73 435 52 449 9 451 4 99
      -24 330 675 0.49 0.055 69 0.001 69 0.535 62 0.017 54 0.069 71 0.000 86 439 67 436 12 434 5 99
      下载: 导出CSV

      表  2  龙新岩体和夏郢岩体花岗岩类样品的主量(%)、微量(10-6)元素分析结果

      Table  2.   Major (%) and trace (10-6) elements of the granitoids from the Longxin and Xiaying plutons

      岩体 龙新岩体 夏郢岩体
      岩性 英云闪长岩 花岗闪长岩 花岗闪长岩 闪长岩包体 花岗闪长岩 二长花岗岩 英云闪长岩
      样品号 14-1* 14-2* CZ17-06-1 CZ17-06-4 HJW17-10-1 GT17-11-01 5-1*
      SiO2 66.20 70.16 64.29 50.05 65.83 72.50 66.68
      TiO2 0.380 0.190 0.408 0.640 0.387 0.153 0.340
      Al2O3 15.72 15.45 14.92 16.94 14.17 14.24 15.60
      Fe2O3 2.31 0.60 5.82 11.28 4.60 1.68 2.72
      FeO 2.45 1.90 0 0 0 0 2.20
      MnO 0.10 0.05 0.11 0.30 0.09 0.04 0.09
      MgO 1.85 0.68 2.40 5.61 1.86 0.71 1.61
      CaO 4.12 2.67 4.60 8.17 2.41 2.43 4.16
      Na2O 3.06 3.56 2.64 2.92 2.63 2.58 2.90
      K2O 2.42 3.46 2.45 1.65 3.98 3.58 2.05
      P2O5 0.10 0.07 0.08 0.09 0.07 0.09 0.11
      LOI 1.53 1.23 1.39 1.40 2.99 1.40 2.00
      Total 100.2 100.0 99.10 99.04 99.01 99.41 100.3
      Q 27.21 28.76 27.11 3.75 28.69 38.56 30.80
      C 0.82 1.18 0.00 0.00 1.37 1.97 1.33
      Or 14.49 20.70 14.82 9.99 24.50 21.59 12.30
      Ab 26.23 30.50 22.86 25.30 23.18 22.28 24.92
      Di 68.75 81.12 68.90 44.14 80.21 83.87 69.36
      A/CNK 1.04 1.07 0.97 0.79 1.09 1.14 1.07
      A/NK 2.19 1.68 2.13 2.57 1.64 1.75 1.71
      K2O/Na2O 0.79 0.97 0.93 0.57 1.51 1.39 0.71
      CaO/Na2O 1.35 0.75 1.74 2.80 0.92 0.94 1.43
      σ 1.29 1.81 1.22 2.96 1.91 1.29 1.03
      Dy 3.38 6.27 3.27 7.60 3.36 1.45 3.00
      Ho 0.69 1.25 0.70 1.62 0.70 0.30 0.54
      Er 2.22 3.90 2.13 4.95 2.16 0.96 1.61
      Tm 0.41 0.69 0.32 0.77 0.34 0.15 0.26
      Yb 2.68 4.36 2.28 5.47 2.33 1.07 1.26
      Lu 0.41 0.67 0.37 0.87 0.38 0.19 0.26
      Y 19.50 37.50 20.74 51.00 21.55 9.60 16.10
      Rb 113 170 111 76.22 155 118 117
      Nb 7.79 8.48 7.42 10.15 7.26 6.59 10.20
      Ta 0.89 0.93 0.76 0.66 0.80 0.84 1.09
      Th 21.70 27.50 14.83 4.31 20.09 24.33 22.80
      U 2.86 5.42 4.29 1.19 3.80 6.55 2.93
      Sr 193 170 145 166 141 175 253
      Ba 809 873 538 482 908 1
      005
      649
      Hf 2.60 3.88 3.43 2.80 3.71 3.36 1.79
      Nb/Ta 8.75 9.12 9.79 15.40 9.10 7.84 9.36
      A/MF 1.27 3.23 0.62 0.52 0.41 1.12 1.30
      C/MF 0.71 0.95 1.10 0.59 1.34 3.61 0.77
      Zr/Hf 31.15 30.15 35.07 29.98 34.38 30.95 31.84
      Rb/Sr 0.59 1.00 0.77 0.46 1.09 0.68 0.46
      ΣREE 337 568 270 590 355 191 339
      LREE 220 364 164 341 244 140 251
      HREE 117 204 107 249 110 50.80 88.13
      LREE/HREE 1.87 1.78 1.53 1.37 2.22 2.76 2.85
      LaN/YbN 7.63 6.62 4.39 2.85 9.18 10.74 17.54
      δEu 0.81 0.63 0.68 0.58 0.68 1.19 0.83
      注:样品号带“*”者据Zhang and Chen (2020);Q、Or、Ab和C为CIPW标准矿物计算所得矿物含量,DI=Q+Or+Ab+C;σ=(Na2O+ K2O)2/(SiO2-43);ALK=Na2O+K2O;Mg#=Mg2+/(Mg2++Fe2+);A/CNK=Al2O3/(CaO+Na2O+K2O),A/NK=Al2O3/(Na2O+K2O),为分子数比值;δEu=$\mathrm{Eu}_{\mathrm{N}} / \sqrt{\mathrm{Sm}_{\mathrm{N}} \times \mathrm{G} \mathrm{d}_{\mathrm{N}}}$;C/MF=molar CaO/(MgO+FeOT);A/MF= molar Al2O3/(MgO +FeOT).
      下载: 导出CSV

      表  3  龙新岩体和夏郢岩体花岗岩类样品的锆石Hf同位素组成

      Table  3.   Hf isotopic compositions for zircons of the granitoids from the Longxin and Xiaying plutons

      点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 年龄(Ma) εHf(t) 1σ TDM(Ga) TDM2(Ga)
      龙新花岗闪长岩(CZ17-06-1)
      -1 0.041 647 0.001 480 0.282 374 0.000 014 438 -5.20 0.48 1.26 1.73
      -2 0.013 382 0.000 481 0.282 379 0.000 015 439 -4.71 0.53 1.22 1.70
      -6 0.042 119 0.001 449 0.282 397 0.000 015 439 -4.37 0.52 1.22 1.68
      -7 0.046 714 0.001 621 0.282 414 0.000 015 441 -3.77 0.53 1.20 1.65
      -8 0.041 730 0.001 458 0.282 355 0.000 013 440 -5.83 0.46 1.28 1.78
      -9 0.038 494 0.001 309 0.282 397 0.000 017 439 -4.32 0.61 1.22 1.68
      -10 0.046 417 0.001 530 0.282 429 0.000 015 436 -3.33 0.52 1.18 1.62
      -11 0.035 969 0.001 207 0.282 358 0.000 015 444 -5.58 0.53 1.27 1.76
      -12 0.037 954 0.001 323 0.282 401 0.000 013 437 -4.23 0.44 1.21 1.67
      -13 0.037 145 0.001 329 0.282 414 0.000 014 439 -3.72 0.48 1.19 1.64
      -15 0.037 668 0.001 299 0.282 362 0.000 014 442 -5.51 0.50 1.27 1.76
      -16 0.086 659 0.002 854 0.282 424 0.000 013 440 -3.80 0.44 1.23 1.65
      -17 0.040 717 0.001 430 0.282 365 0.000 014 442 -5.42 0.50 1.27 1.75
      -19 0.044 832 0.001 571 0.282 397 0.000 013 440 -4.37 0.45 1.23 1.68
      -20 0.060 799 0.002 074 0.282 407 0.000 014 442 -4.14 0.48 1.23 1.67
      -21 0.032 333 0.001 215 0.282 410 0.000 014 439 -3.85 0.49 1.20 1.65
      -22 0.052 567 0.001 811 0.282 385 0.000 013 441 -4.85 0.47 1.25 1.72
      -23 0.051 200 0.001 765 0.282 415 0.000 012 449 -3.61 0.41 1.21 1.64
      -24 0.029 929 0.001 094 0.282 373 0.000 011 436 -5.18 0.39 1.24 1.73
      龙新闪长岩包体(CZ17-06-4-2)
      -1 0.042 174 0.001 225 0.282 404 0.000 011 443 -3.97 0.38 1.21 1.66
      -2 0.036 776 0.001 031 0.282 394 0.000 011 442 -4.30 0.37 1.21 1.68
      -3 0.030 766 0.000 896 0.282 399 0.000 009 441 -4.11 0.32 1.20 1.67
      -4 0.029 185 0.000 834 0.282 373 0.000 010 443 -4.94 0.36 1.24 1.72
      -5 0.036 503 0.001 065 0.282 403 0.000 009 443 -3.96 0.31 1.20 1.66
      -6 0.035 459 0.001 029 0.282 399 0.000 012 443 -4.09 0.41 1.21 1.67
      -7 0.063 383 0.001 807 0.282 448 0.000 011 442 -2.58 0.38 1.16 1.57
      -8 0.030 596 0.000 930 0.282 436 0.000 012 443 -2.76 0.43 1.15 1.58
      -9 0.050 110 0.001 421 0.282 381 0.000 009 444 -4.81 0.33 1.24 1.71
      -10 0.035 822 0.001 057 0.282 425 0.000 010 441 -3.21 0.36 1.17 1.61
      -11 0.040 588 0.001 189 0.282 395 0.000 010 443 -4.30 0.35 1.22 1.68
      -12 0.023 086 0.000 641 0.282 222 0.000 009 825 -1.82 0.32 1.44 1.83
      -13 0.037 300 0.001 107 0.282 385 0.000 011 444 -4.57 0.38 1.23 1.70
      -14 0.044 982 0.001 268 0.282 364 0.000 010 445 -5.35 0.34 1.26 1.75
      -15 0.051 166 0.001 519 0.282 390 0.000 011 440 -4.61 0.38 1.23 1.70
      -16 0.031 725 0.000 979 0.282 394 0.000 011 440 -4.34 0.40 1.21 1.68
      -17 0.036 789 0.001 104 0.282 005 0.000 027 451 -17.89 0.95 1.76 2.54
      -18 0.041 173 0.001 211 0.282 391 0.000 011 442 -4.43 0.37 1.22 1.69
      -19 0.036 215 0.001 114 0.282 421 0.000 012 438 -3.43 0.41 1.18 1.62
      -20 0.055 100 0.001 585 0.282 340 0.000 011 439 -6.41 0.37 1.31 1.81
      -21 0.058 743 0.001 620 0.282 374 0.000 012 440 -5.22 0.42 1.26 1.74
      -22 0.031 623 0.000 942 0.282 379 0.000 012 437 -4.88 0.41 1.23 1.71
      -23 0.053 183 0.001 706 0.282 439 0.000 015 436 -3.01 0.52 1.17 1.59
      -24 0.058 455 0.001 723 0.282 430 0.000 011 440 -3.27 0.37 1.18 1.61
      夏郢花岗闪长岩(HJW17-10-1)
      -1 0.040 756 0.001 412 0.282 412 0.000 013 453 -3.54 0.47 1.20 1.64
      -2 0.025 201 0.000 854 0.282 413 0.000 012 446 -3.48 0.42 1.18 1.63
      -3 0.041 668 0.001 353 0.282 438 0.000 015 443 -2.81 0.51 1.16 1.59
      -4 0.022 171 0.000 729 0.282 360 0.000 012 446 -5.33 0.41 1.25 1.75
      -5 0.046 685 0.001 489 0.282 390 0.000 017 447 -4.44 0.59 1.23 1.69
      -6 0.040 387 0.001 258 0.282 364 0.000 013 444 -5.37 0.44 1.26 1.75
      -7 0.073 539 0.002 437 0.282 418 0.000 014 444 -3.82 0.49 1.23 1.65
      -8 0.049 383 0.001 621 0.282 339 0.000 015 457 -6.09 0.53 1.31 1.81
      -9 0.030 874 0.001 000 0.282 174 0.000 012 965 -0.64 0.43 1.52 1.87
      -10 0.035 247 0.001 220 0.282 390 0.000 015 444 -4.45 0.53 1.23 1.69
      -11 0.034 435 0.001 025 0.281 965 0.000 012 628 -15.43 0.43 1.81 2.53
      -12 0.021 350 0.000 665 0.282 482 0.000 012 628 3.03 0.44 1.08 1.36
      -13 0.053 481 0.001 639 0.282 394 0.000 013 468 -3.91 0.44 1.23 1.68
      -14 0.040 934 0.001 377 0.282 406 0.000 012 448 -3.82 0.42 1.21 1.66
      -15 0.052 273 0.001 695 0.282 393 0.000 013 444 -4.48 0.47 1.24 1.69
      -16 0.046 484 0.001 542 0.282 397 0.000 013 446 -4.27 0.45 1.23 1.68
      -17 0.046 272 0.001 624 0.282 421 0.000 014 445 -3.43 0.47 1.19 1.63
      -18 0.046 987 0.001 464 0.282 409 0.000 010 446 -3.80 0.34 1.21 1.65
      -19 0.062 101 0.002 113 0.282 378 0.000 013 507 -3.83 0.47 1.27 1.70
      -20 0.050 997 0.001 627 0.282 415 0.000 014 446 -3.63 0.49 1.20 1.64
      -21 0.037 848 0.001 272 0.282 380 0.000 012 442 -4.86 0.41 1.24 1.72
      -22 0.037 602 0.001 250 0.282 376 0.000 011 444 -4.94 0.39 1.25 1.72
      夏郢二长花岗岩(GT17-11-1)
      -1 0.021 457 0.000 769 0.282 403 0.000 011 432 -4.10 0.39 1.19 1.66
      -2 0.027 242 0.000 971 0.282 434 0.000 011 433 -3.05 0.37 1.15 1.59
      -3 0.031 049 0.001 126 0.282 454 0.000 010 433 -2.39 0.37 1.13 1.55
      -4 0.022 821 0.000 813 0.282 415 0.000 011 432 -3.70 0.39 1.18 1.64
      -5 0.023 033 0.000 843 0.282 438 0.000 012 431 -2.90 0.42 1.15 1.58
      -6 0.019 923 0.000 681 0.282 413 0.000 015 434 -3.70 0.54 1.18 1.64
      -7 0.020 376 0.000 767 0.282 449 0.000 010 432 -2.49 0.35 1.13 1.56
      -8 0.015 214 0.000 553 0.282 408 0.000 012 451 -3.46 0.41 1.18 1.64
      -9 0.026 223 0.000 926 0.282 411 0.000 013 436 -3.80 0.47 1.19 1.64
      -10 0.022 356 0.000 765 0.282 414 0.000 011 977 8.29 0.37 1.18 1.30
      -11 0.017 281 0.000 530 0.282 414 0.000 013 433 -3.62 0.44 1.17 1.63
      -12 0.034 637 0.001 117 0.282 386 0.000 013 433 -4.79 0.47 1.23 1.70
      -13 0.021 935 0.000 733 0.282 434 0.000 013 433 -2.97 0.46 1.15 1.59
      -14 0.022 098 0.000 770 0.282 446 0.000 013 432 -2.61 0.44 1.13 1.57
      -15 0.019 397 0.000 687 0.282 454 0.000 012 432 -2.26 0.40 1.12 1.54
      -16 0.035 331 0.001 201 0.282 423 0.000 011 462 -2.90 0.39 1.18 1.61
      -17 0.053 557 0.001 690 0.282 719 0.000 097 433 6.82 3.40 0.77 0.97
      -18 0.028 200 0.000 976 0.282 386 0.000 012 433 -4.75 0.41 1.22 1.70
      -19 0.017 707 0.000 636 0.282 425 0.000 010 451 -2.87 0.34 1.16 1.60
      -20 0.035 853 0.001 200 0.282 460 0.000 011 431 -2.24 0.38 1.13 1.54
      -21 0.020 189 0.000 676 0.282 389 0.000 010 432 -4.58 0.34 1.21 1.69
      -22 0.022 241 0.000 810 0.282 404 0.000 011 435 -4.01 0.40 1.19 1.66
      -23 0.027 666 0.000 985 0.282 444 0.000 012 451 -2.33 0.41 1.14 1.56
      -24 0.023 293 0.000 831 0.282 418 0.000 012 434 -3.55 0.41 1.17 1.63
      下载: 导出CSV
    • [1] Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1/2/3): 51-73. https://doi.org/10.1016/S0024-4937(99)00052-3
      [2] Anderson, D. L., 2005. Large Igneous Provinces, Delamination, and Fertile Mantle. Elements, 1(5): 271-275. https://doi.org/10.2113/gselements.1.5.271
      [3] Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1/2/3/4): 155-177. https://doi.org/10.1016/j.lithos.2004.05.010
      [4] Barth, M. G., McDonough, W. F., Rudnick, R. L., 2000. Tracking the Budget of Nb and Ta in the Continental Crust. Chemical Geology, 165(3/4): 197-213. https://doi.org/10.1016/S0009-2541(99)00173-4
      [5] Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1/2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042
      [6] Bouvier, A., Vervoort, J. D., Patchett, P. J, 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1/2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010
      [7] Castro, A., Gerya, T., García-Casco, A., et al., 2010. Melting Relations of MORB-Sediment Mélanges in Underplated Mantle Wedge Plumes: Implications for the Origin of Cordilleran-Type Batholiths. Journal of Petrology, 51(6): 1267-1295. https://doi.org/10.1093/petrology/egq019
      [8] Cawthorn, R. G., Strong, D. F., Brown, P. A., 1976. Origin of Corundum-Normative Intrusive and Extrusive Magmas. Nature, 259(5539): 102-104. https://doi.org/10.1038/259102a0
      [9] Chappell, B. W., 1996. Magma Mixing and the Production of Compositional Variation within Granite Suites: Evidence from the Granites of Southeastern Australia. Journal of Petrology, 37(3): 449-470. https://doi.org/10.1093/petrology/37.3.449
      [10] Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174.
      [11] Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83: 1-26. https://doi.org/10.1017/S0263593300007720
      [12] Chappell, B. W., White, A. J. R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. https://doi.org/10.1093/petrology/28.6.1111
      [13] Chen, B., Arakawa, Y., 2005. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth. Geochimica et Cosmochimica Acta, 69(5): 1307-1320. https://doi.org/10.1016/j.gca.2004.09.019
      [14] Chen, M.H., Li, Z.Y., Li, Q., et al., 2015. A Preliminary Study of Multi-Stage Granitoids and Related Metallogenic Series in Dayaoshan Area of Guangxi, China. Earth Science Frontiers, 22(2): 41-53 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY201502005.htm
      [15] Chen, X., Rong, J.Y., Rowley, D., et al., 1995. Is the Early Paleozoic Banxi Ocean in South China Necessary?. Geological Review, 41(5): 389-400 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-review_thesis/0201253284157.html
      [16] Chen, X., Zhang, Y. D., Fan, J. X., et al., 2010. Ordovician Graptolite-Bearing Strata in Southern Jiangxi with a Special Reference to the Kwangsian Orogeny. Science in China (Series D: Earth Sciences), 40(12): 1621-1631 (in Chinese). http://engine.scichina.com/downloadPdf/YQzQFapt97qgHgxjc
      [17] Clemens, J. D., Wall, V. J., 1988. Controls on the Mineralogy of S-Type Volcanic and Plutonic Rocks. Lithos, 21(1): 53-66. https://doi.org/10.1016/0024-4937(88)90005-9
      [18] Dang, Y., Chen, M. H., Fu, B., et al., 2018. Petrogenesis of the Yupo W-Bearing and Dali Mo-Bearing Granitoids in the Dayaoshan Area, South China: Constraints of Geochronology and Geochemistry. Ore Geology Reviews, 92: 643-655. https://doi.org/10.1016/j.oregeorev.2017.10.022
      [19] Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      [20] de Souza, Z. S., Martin, H., Peucat, J. J., et al., 2007. Calc-Alkaline Magmatism at the Archean-Proterozoic Transition: The Caicó Complex Basement (NE Brazil). Journal of Petrology, 48(11): 2149-2185. https://doi.org/10.1093/petrology/egm055
      [21] Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Syn- and Post-Collisional Granitoids in the Central Tianshan Orogen: Geochemistry, Geochronology and Implications for Tectonic Evolution. Gondwana Research, 20(2/3): 568-581. https://doi.org/10.1016/j.gr.2011.01.013
      [22] Ewart, A., Griffin, W. L., 1994. Application of Proton-Microprobe Data to Trace-Element Partitioning in Volcanic Rocks. Chemical Geology, 117(1/2/3/4): 251-284. https://doi.org/10.1016/0009-2541(94)90131-7
      [23] Franzini, M., Leoni, L., Saitta, M., 1972. A Simple Method to Evaluate the Matrix Effects in X-Ray Fluorescence Analysis. X-Ray Spectrometry, 1(4): 151-154. https://doi.org/10.1002/xrs.1300010406
      [24] Gao, J. F., Ling, H.F., Shen, W.Z., et al., 2005. Geochemistry and Petrogenesis of Lianyang Granite Composite, West Guangdong Province. Acta Petrologica Sinica, 21(6): 1645-1656 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200506014.htm
      [25] Gao, J.F., Lu, J.J., Lai, M.Y., et al., 2003. Analysis of Trace Elements in Rock Samples Using HR-ICPMS. Journal of Nanjing University (Natural Sciences), 39(6): 844-850 (in Chinese with English abstract). http://www.researchgate.net/publication/284756747_Analysis_of_trace_elements_in_rock_samples_using_HR-ICPMS
      [26] Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237-269. https://doi.org/10.1016/S0024-4937(02)00082-8
      [27] Guan, Y.L., Yuan, C., Long, X.P., et al., 2016. Genesis of Mafic Enclaves from Early Paleozoic Granites in the South China Block: Evidence from Petrology, Geochemistry and Zircon U-Pb Geochronology. Geotectonica et Metallogenia, 40(1): 109-124 (in Chinese with English abstract). http://www.researchgate.net/publication/316278456_Genesis_of_mafic_enclaves_from_early_Paleozoic_granites_in_the_south_china_block_evidence_from_petrology_geochemistry_and_zircon_U-Pb_geochronology
      [28] Hibbard, M. J., 1991. Textural Anatomy of Twelve Magma-Mixed Granitoid Systems. In: Didier, J., Barbarin, B., eds., Enclaves and Granite Petrology. Developments in Petrology. Elsevier, Amsterdam, 431-444.
      [29] Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821X(88)90132-X
      [30] Hsü, K. J., Li, J. L., Chen, H. H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183(1/2/3/4): 9-39. https://doi.org/10.1016/0040-1951(90)90186-C
      [31] Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
      [32] Jia, X. H., Wang, X. D., Yang, W. Q., 2017. Petrogenesis and Geodynamic Implications of the Early Paleozoic Potassic and Ultrapotassic Rocks in the South China Block. Journal of Asian Earth Sciences, 135: 80-94. https://doi.org/10.1016/j.jseaes.2016.12.013
      [33] Jiang, X. Z., Kang, Z. Q., Xu, J. F., et al., 2017. Early Paleozoic Granodioritic Plutons in the Shedong W-Mo Ore District, Guangxi, Southern China: Products of Re-Melting of Middle Proterozoic Crust Due to Magma Underplating. Journal of Asian Earth Sciences, 141(15): 59-73. https://doi.org/10.1016/j.jseaes.2016.11.004
      [34] Jung, S., Hoernes, S., Mezger, K., 2002. Synorogenic Melting of Mafic Lower Crust: Constraints from Geochronology, Petrology and Sr, Nd, Pb and O Isotope Geochemistry of Quartz Diorites (Damara Orogen, Namibia). Contributions to Mineralogy and Petrology, 143(5): 551-566. https://doi.org/10.1007/s00410-002-0366-5
      [35] Kocak, K., Zedef, V., Kansun, G., 2011. Magma Mixing/Mingling in the Eocene Horoz (Nigde) Granitoids, Central Southern Turkey: Evidence from Mafic Microgranular Enclaves. Mineralogy and Petrology, 103(1/2/3/4): 149-167. https://doi.org/10.1007/s00710-011-0165-7
      [36] Kong, J. J., Niu, Y. L., Duan, M., et al., 2017. Petrogenesis of Luchuba and Wuchaba Granitoids in Western Qinling: Geochronological and Geochemical Evidence. Mineralogy and Petrology, 111(6): 887-908. https://doi.org/10.1007/s00710-017-0501-7
      [37] Kumar, S., Rino, V., 2006. Mineralogy and Geochemistry of Microgranular Enclaves in Palaeoproterozoic Malanjkhand Granitoids, Central India: Evidence of Magma Mixing, Mingling, and Chemical Equilibration. Contributions to Mineralogy and Petrology, 152(5): 591-609. https://doi.org/10.1007/s00410-006-0122-3
      [38] Laurent, A., Janoušek, V., Magna, T., et al., 2014. Petrogenesis and Geochronology of a Post-Orogenic Calc-Alkaline Magmatic Association: The Žulová Pluton, Bohemian Massif. Journal of Geosciences, 59(4): 415-440. https://doi.org/10.3190/jgeosci.176
      [39] Li, W., Bi, S.J., Yang, Z., et al., 2015. Zircon U-Pb Age and Hf Isotope Characterization of Sheshan Granodiorite in Southern Edge of Dayaoshan, Guidong: Constraints on Caledonian Diagenesis and Mineralization. Earth Science, 40(1): 17-33 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx201501002
      [40] Li, W. X., Li, X. H., Li, Z. X., 2005. Neoproterozoic Bimodal Magmatism in the Cathaysia Block of South China and Its Tectonic Significance. Precambrian Research, 136(1): 51-66. https://doi.org/10.1016/j.precamres.2004.09.008
      [41] Li, Y.J., Zhao, R.F., Li, Z.C., et al., 2003. Origin Discrimination of Granitoids Formed by Mingled Magma: Using a Trace Element Diagram and Examplified by Wenquan Granites, Western Qinling. Journal of Chang'an University (Earth Science Edition), 25(3): 7-11, 15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200303002.htm
      [42] Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179. https://doi.org/10.1130/g23193a.1
      [43] Liu, B. J., Xu, X. S., 1994. Lithofacies and Paleogeography Atlas of Southern China. Science Press, Beijing, 1-188 (in Chinese).
      [44] Liu, X., Wang, Q., Ma, L., et al., 2020. Early Paleozoic Intracontinental Granites in the Guangzhou Region of South China: Partial Melting of a Metasediment-Dominated Crustal Source. Lithos, 376/377: 105763. https://doi.org/10.1016/j.lithos.2020.105763
      [45] Liu, Z., Jiang, Y. H., Jia, R. Y., et al., 2015. Origin of Late Triassic High-K Calc-Alkaline Granitoids and Their Potassic Microgranular Enclaves from the Western Tibet Plateau, Northwest China: Implications for Paleo-Tethys Evolution. Gondwana Research, 27(1): 326-341. https://doi.org/10.1016/j.gr.2013.09.022
      [46] Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America, Abstracts with Programs, 11: 468. http://ci.nii.ac.jp/naid/10019593683
      [47] Ma, C. Q., Yang, K. G., Tang, Z. H., et al., 1994. Magma-Dynamics Granitoids: Theory, Methods and a Case Study of the Eastern Hubei Granitoids. China University of Geosciences Press, Wuhan (in Chinese).
      [48] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      [49] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [50] Miller, C. F., 1985. Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources?. The Journal of Geology, 93(6): 673-689. https://doi.org/10.1086/628995
      [51] Morris, R. A., DeBari, S. M., Busby, C., et al., 2019. Building Arc Crust: Plutonic to Volcanic Connections in an Extensional Oceanic Arc, the Southern Alisitos Arc, Baja California. Journal of Petrology, 60(6): 1195-1228. https://doi.org/10.1093/petrology/egz029
      [52] Nong, J.N., Huang, X.Q., Guo, S.Y., et al., 2017a. Discovery of Caledonoan Basic Rocks in Dayaoshan Region, Eastern Guangxi and Its Geological Significance. Geological Science and Technology Information, 36(6): 113-121 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201706013.htm
      [53] Nong, J.N., Zou, Y., Qiu, E.L., et al., 2017b. Petrogenesis of Dacun and Gulong Plutons in Southeast Guangxi: Constraints from Geochemistry, Zircon U-Pb Ages and Hf Isotope. Geological Bulletin of China, 36(Z1): 224-237(in Chinese with English abstract). http://www.researchgate.net/publication/317984262_Petrogenesis_of_Dacun_and_Gulong_plutons_in_southeast_Guangxi_Constraints_from_geochemistry_zircon_U-Pb_ages_and_Hf_isotope
      [54] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      [55] Peng, S.B., Jin, Z.M., Fu, J.M., et al., 2006a. Geochemical Characteristics of Basic Intrusive Rocks in the Yunkai Uplift, Guangdong-Guangxi, China, and Their Tectonic Significance. Geological Bulletin of China, 25(4): 434-441 (in Chinese with English abstract). http://www.researchgate.net/publication/285008546_Geochemical_characteristics_of_basic_intrusive_rocks_in_the_Yunkai_uplift_Guangdong-Guangxi_China_and_their_tectonic_significance
      [56] Peng, S.B., Jin, Z.M., Fu, J.M., et al., 2006b. The Geochemical Evidences and Tectonic Significance of Neoproterozoic Ophiolite in Yunkai Area, Western Guangdong Province, China. Acta Geologica Sinica, 80(6): 814-825 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE200606004&dbcode=CJFD&year=2006&dflag=pdfdown
      [57] Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016a. Early Paleozoic Subduction in Cathaysia(Ⅰ): New Evidence from Nuodong Ophiolite. Earth Science, 41(5): 765-778 (in Chinese with English abstract).
      [58] Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016b. Early Paleozoic Subduction in Cathaysia(Ⅱ): New Evidence from the Dashuang High Magnesian-Magnesian Andesite. Earth Science, 41(6): 931-947 (in Chinese with English abstract).
      [59] Pitcher, W. S., 1993. The Nature and Origin of Granite. Glasgow, Blackie, 316.
      [60] Qin, X.F., Wang, Z.Q., Gong, J.H., et al., 2017. The Confirmation of Caledonian Intermediate-Mafic Volcanic Rocks in Northern Margin of Yunkai Block: Evidence for Early Paleozoic Paleo-Ocean Basin in Southwestern Segment of Qinzhou-Hangzhou Joint Belt. Acta Petrologica Sinica, 33(3): 791-809 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201703010.htm
      [61] Qin, X. F., Wang, Z. Q., Hu, G. A., et al., 2013. Geochronology and Geochemistry of Hudong Gneissic Composite Pluton in the Junction of Guangdong and Guangxi Provinces: Implications for Early Paleozoic Tectono-Magmatism along the Northern Margin of Yunkai Massif. Acta Petrologica Sinica, 29(9): 3115-3130 (in Chinese with English abstract). http://www.researchgate.net/publication/287605587_Geochronologv_and_geochemistry_of_hudong_gneissic_composite_pluton_in_the_junction_of_guangdong_and_guangxi_provinces_Implications_for_early_paleozoic_tectono-magmatism_along_the_northern_margin_of_yu
      [62] Shao, F. L., Niu, Y. L., Liu, Y., et al., 2017. Petrogenesis of Triassic Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau and Their Tectonic Implications. Lithos, 282/283: 33-44. https://doi.org/10.1016/j.lithos.2017.03.002
      [63] Shu, L.S., 2006. Predevonian Tectonic Evolution of South China: From Cathaysian Block to Caledonian Period Folded Orogenic Belt. Geological Journal of China Universities, 12(4): 418-431 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=GXDX200604002&dbcode=CJFD&year=2006&dflag=pdfdown
      [64] Shu, L.S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract). http://www.cqvip.com/QK/95894A/201207/42680096.html
      [65] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [66] Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29-44. https://doi.org/10.1016/S0024-4937(98)00024-3
      [67] Vernon, R. H., Etheridge, M. A., Wall, V. J., 1988. Shape and Microstructure of Microgranitoid Enclaves: Indicators of Magma Mingling and Flow. Lithos, 22(1): 1-11. https://doi.org/10.1016/0024-4937(88)90024-2
      [68] Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-up. Precambrian Research, 122(1/2/3/4): 141-158. https://doi.org/10.1016/S0301-9268(02)00209-7
      [69] Wang, J., Mou, C. L., 2001. Neoproterozoic Rifting History of South China. Gondwana Research, 4(4): 813-814. https://doi.org/10.1016/S1342-937X(05)70600-6
      [70] Wang, L., 2014. Chronology, Petrology, Geochemistry and Petrogenesis of Daning Granitic Pluton and Its Mafic Enclaves, Northeast Guangxi (Dissertation). Chinese Academy of Geological Sciences, Beijing, 1-87 (in Chinese with English abstract).
      [71] Wang, Y. J., Fan, W. M., Guo, F., et al., 2003. Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China: Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45(3): 263-286. https://doi.org/10.2747/0020-6814.45.3.263
      [72] Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013a. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      [73] Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2013b. Origin of Paleosubduction-Modified Mantle for Silurian Gabbro in the Cathaysia Block: Geochronological and Geochemical Evidence. Lithos, 160/161: 37-54. https://doi.org/10.1016/j.lithos.2012.11.004
      [74] Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2011. Kwangsian Crustal Anatexis within the Eastern South China Block: Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1/2): 239-260. https://doi.org/10.1016/j.lithos.2011.07.027
      [75] Wang, Y. J., Zhang, F. F., Fan, W. M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. https://doi.org/10.1029/2010TC002750
      [76] Wei, C. X., 2016. Petrogenesis and Tectonic Geological Setting of Caledonian Granitoids in Northeast Guangxi (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [77] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      [78] Wilson, M., 1993. Magmatic Differentiation. Journal of the Geological Society, 150(4): 611-624. https://doi.org/10.1144/gsjgs.150.4.0611
      [79] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). http://www.oalib.com/paper/1492671
      [80] Wu, J.C., Kang, Z.Q., Feng, Z.H., et al., 2015. Geochronology and Geochemistry of Dacun Granitic Pluton in Dayaoshan Uplift Area, Guangxi. Journal of Guilin University of Technology, 35(4): 747-755 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX201504012.htm
      [81] Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/BF03184122
      [82] Xiao, Q. H., Deng, J. F., Ma, D. S., et al., 2002. The Ways Investigation on Granitoids. Science Press, Beijing, 1-294 (in Chinese).
      [83] Xiong, S.Q., Kang, Z.Q., Feng, Z.H., et al., 2015. Zircon U-Pb Age and Geochemistry of Dajin Granitic Pluton in Dayaoshan Area, Guangxi. Journal of Guilin University of Technology, 35(4): 736-746 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-guilin-university-technology_thesis/020128497339.html
      [84] Xu, H., Huang, B.C., Ni, Z.X., et al., 2012. Petrography, Geochemistry and Chronology of Gulong Granite Stock Group in West Segment of Qinzhou-Hangcheng Metallogenic Belt. Geology and Mineral Resources of South China, 28(4): 331-339 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC201204006.htm
      [85] Xu, H., Ni, Z.X., Huang, B.C., et al., 2016. Determination of Early Paleozoic TTG Intrusive Rocks at the Southeast Edge of Dayao Mountain, Guangxi. Geology in China, 43(3): 780-796 (in Chinese with English abstract). http://www.researchgate.net/publication/308371873_Determination_of_Early_Paleozoic_TTG_intrusive_rocks_at_the_southeast_edge_of_Dayao_Mountain_Guangxi
      [86] Xu, Y.J., Du, Y.S., 2018. From Periphery Collision to Intraplate Orogeny: Early Paleozoic Orogenesis in Southeastern Part of South China. Earth Science, 43(2): 333-353 (in Chinese with English abstract). http://www.researchgate.net/publication/324644295_From_Periphery_Collision_to_Intraplate_Orogeny_Early_Paleozoic_Orogenesis_in_Southeastern_Part_of_South_China
      [87] Yang, M.G., Mei, Y.W., 1997. Characteristics of Geology and Metallization in the Qinzhou-Hangzhou Paleoplate Juncture. Geology and Mineral Resources of South China, 13(3): 52-59 (in Chinese with English abstract). http://www.researchgate.net/publication/284701970_Characteristics_of_geology_and_melatllizationin_the_Qinzhou-Hangzhou_paleoplate_juncture
      [88] Yao, W. H., Li, Z. X., Li, W. X., et al., 2012. Post-Kinematic Lithospheric Delamination of the Wuyi-Yunkai Orogen in South China: Evidence from ca. 435 Ma High-Mg Basalts. Lithos, 154: 115-129. https://doi.org/10.1016/j.lithos.2012.06.033
      [89] Zhang, C.L., Zhang, G.W., Yan, Y.X., et al., 2005. Origin and Dynamic Significance of Guangtoushan Granitic Plutons to the North of Mianlue Zone in Southern Qinling. Acta Petrologica Sinica, 21(3): 711-720 (in Chinese with English abstract). http://www.researchgate.net/profile/Chengli_Zhang/publication/287895432_Origin_and_dynamic_significance_of_Guangtoushan_granitic_plutons_to_the_north_of_Mianlue_zone_in_southern_Qinling/links/5826771508ae254c5080ee81.pdf
      [90] Zhang, F. F., Wang, Y. J., Zhang, A. M., et al., 2012. Geochronological and Geochemical Constraints on the Petrogenesis of Middle Paleozoic (Kwangsian) Massive Granites in the Eastern South China Block. Lithos, 150: 188-208. https://doi.org/10.1016/j.lithos.2012.03.011
      [91] Zhang, F.R., Shu, L.S., Wang, D.Z., et al., 2009. Discussions on the Tectonic Setting of Caledonian Granitoids in the Eastern Segment of South China. Earth Science Frontiers, 16(1): 248-260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200901034.htm
      [92] Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science in China (Series D: Earth Sciences), 43(10): 1553-1582 (in Chinese with English abstract). doi: 10.1007/s11430-013-4679-1
      [93] Zhang, Q., Jiang, Y. H., Wang, G. C., et al., 2015. Origin of Silurian Gabbros and Ⅰ-Type Granites in Central Fujian, SE China: Implications for the Evolution of the Early Paleozoic Orogen of South China. Lithos, 216/217: 285-297. https://doi.org/10.1016/j.lithos.2015.01.002
      [94] Zhang, X. S., Xu, X. S., Xia, Y., et al., 2017. Early Paleozoic Intracontinental Orogeny and Post-Orogenic Extension in the South China Block: Insights from Volcanic Rocks. Journal of Asian Earth Sciences, 141: 24-42. https://doi.org/10.1016/j.jseaes.2016.07.016
      [95] Zhang, Y., Niu, Y. L., Hu, Y., et al., 2016. The Syncollisional Granitoid Magmatism and Continental Crust Growth in the West Kunlun Orogen, China-Evidence from Geochronology and Geochemistry of the Arkarz Pluton. Lithos, 245: 191-204. https://doi.org/10.1016/j.lithos.2015.05.007
      [96] Zhang, Z.Q., Chen, M.H., 2020. Geochronology of the Ingenous Intrusions in the Dayaoshan Uplift Southeastern Guangxi: Implicatian on the Paleozoic Wuyi-Yunkai Oorogeny and Related Metallogy. Acta Geologica Sinica, 88(s2): 1543-1544.
      [97] Zhao, Z. H., 1997. Principles of Trace Element Geochemistry. Science Press, Beijing, 1-73 (in Chinese).
      [98] Zhong, Y. F., Ma, C. Q., Zhang, C., et al., 2013. Zircon U-Pb Age, Hf Isotopic Compositions and Geochemistry of the Silurian Fengdingshan Ⅰ-Type Granite Pluton and Taoyuan Mafic-Felsic Complex at the Southeastern Margin of the Yangtze Block. Journal of Asian Earth Sciences, 74: 11-24. https://doi.org/10.1016/j.jseaes.2013.05.025
      [99] Zhong, Y. F., Wang, L. X., Zhao, J. H., et al., 2016. Partial Melting of an Ancient Sub-Continental Lithospheric Mantle in the Early Paleozoic Intracontinental Regime and Its Contribution to Petrogenesis of the Coeval Peraluminous Granites in South China. Lithos, 264: 224-238. https://doi.org/10.1016/j.lithos.2016.08.026
      [100] Zhu, A.H., Qin, X.F., Wang, Z.Q., et al., 2016. Discovery of Caledonian Mafic Rocks in Southwestern Hunan-Northern Guangxi Border Area and Its Geological Significance. Science Technology and Engineering, 16(5): 19-25 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-KXJS201605004.htm
      [101] Zou, Y., Nong, J.N., Guo, S.Y., et al., 2017. Petrogenesis of the Shangmushui Pluton in Southeast Guangxi: Constraints from Petrochemistry, Zircon U-Pb Ages and Hf Isotope. Journal of Mineralogy and Petrology, 37(2): 52-62 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS201702006.htm
      [102] 陈懋弘, 李忠阳, 李青, 等, 2015. 初论广西大瑶山地区多期次花岗质岩浆活动与成矿系列. 地学前缘, 22(2): 41-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201502005.htm
      [103] 陈旭, 戎嘉余, Rowley, D.B., 等, 1995. 对华南早古生代板溪洋的质疑. 地质论评, 41(5): 389-400. doi: 10.3321/j.issn:0371-5736.1995.05.001
      [104] 陈旭, 张元动, 樊隽轩, 等, 2010. 赣南奥陶纪笔石地层序列与广西运动. 中国科学(D辑: 地球科学), 40(12): 1621-1631. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012002.htm
      [105] 高剑峰, 凌洪飞, 沈渭洲, 等, 2005. 粤西连阳复式岩体的地球化学特征及其成因研究. 岩石学报, 21(6): 1645-1656. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200506014.htm
      [106] 高剑峰, 陆建军, 赖鸣远, 等, 2003. 岩石样品中微量元素的高分辨率等离子质谱分析. 南京大学学报(自然科学版), 39(6): 844-850. doi: 10.3321/j.issn:0469-5097.2003.06.014
      [107] 关义立, 袁超, 龙晓平, 等, 2016. 华南早古生代花岗岩中暗色包体的成因: 岩石学、地球化学和锆石年代学证据. 大地构造与成矿学, 40(1): 109-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201601010.htm
      [108] 李巍, 毕诗健, 杨振, 等, 2015. 桂东大瑶山南缘社山花岗闪长岩的锆石U-Pb年龄及Hf同位素特征: 对区内加里东期成岩成矿作用的制约. 地球科学, 40(1): 17-33. doi: 10.3799/dqkx.2015.002
      [109] 李永军, 赵仁夫, 李注苍, 等, 2003. 岩浆混合花岗岩微量元素成因图解尝试: 以西秦岭温泉岩体为例. 长安大学学报(地球科学版), 25(3): 7-11, 15. doi: 10.3969/j.issn.1672-6561.2003.03.002
      [110] 刘宝珺, 许效松, 1994. 中国南方岩相古地理图集. 北京: 科学出版社, 1-188.
      [111] 马昌前, 杨坤光, 唐仲华, 等, 1994. 花岗岩类岩浆动力学——理论方法及鄂东花岗岩类例析. 武汉: 中国地质大学出版社.
      [112] 农军年, 黄锡强, 郭尚宇, 等, 2017a. 桂东大瑶山地区加里东期基性岩的发现及地质意义. 地质科技情报, 36(6): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201706013.htm
      [113] 农军年, 邹瑜, 邱恩露, 等, 2017b. 桂东南大村和古龙岩体的成因: 地球化学、锆石U-Pb年龄及Hf同位素制约. 地质通报, 36(Z1): 224-237. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2017Z1006.htm
      [114] 彭松柏, 金振民, 付建明, 等, 2006a. 两广云开隆起区基性侵入岩的地球化学特征及其构造意义. 地质通报, 25(4): 434-441. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200604002.htm
      [115] 彭松柏, 金振民, 付建明, 等, 2006b. 云开地区新元古代蛇绿岩的地球化学证据及其构造意义. 地质学报, 80(6): 814-825. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200606004.htm
      [116] 彭松柏, 刘松峰, 林木森, 等, 2016a. 华夏早古生代俯冲作用(Ⅰ): 来自糯垌蛇绿岩的新证据. 地球科学, 41(5): 765-778. doi: 10.3799/dqkx.2016.065
      [117] 彭松柏, 刘松峰, 林木森, 等, 2016b. 华夏早古生代俯冲作用(Ⅱ): 大爽高镁-镁质安山岩新证据. 地球科学, 41(6): 931-947. doi: 10.3799/dqkx.2016.079
      [118] 覃小锋, 王宗起, 宫江华, 等, 2017. 云开地块北缘加里东期中-基性火山岩的厘定: 钦-杭结合带南西段早古生代古洋盆存在的证据. 岩石学报, 33(3): 791-809. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703010.htm
      [119] 覃小锋, 王宗起, 胡贵昂, 等, 2013. 两广交界地区壶垌片麻状复式岩体的年代学和地球化学: 对云开地块北缘早古生代构造-岩浆作用的启示. 岩石学报, 29(9): 3115-3130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309013.htm
      [120] 舒良树, 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002
      [121] 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
      [122] 王玲, 2014桂东北大宁花岗质侵入岩与镁铁质包体年代学、岩石学、地球化学及成因(硕士学位论文). 北京: 中国地质科学院, 1-87.
      [123] 魏春夏, 2016. 桂东北加里东期花岗岩岩石成因及其地质背景(硕士学位论文). 北京: 中国地质大学.
      [124] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      [125] 吴佳昌, 康志强, 冯佐海, 等, 2015. 广西大瑶山隆起区大村岩体年代学及地球化学特征. 桂林理工大学学报, 35(4): 747-755. doi: 10.3969/j.issn.1674-9057.2015.04.012
      [126] 肖庆辉, 邓晋福, 马大栓, 等, 2002. 花岗岩研究思维与方法. 北京: 地质出版社, 1-294.
      [127] 熊松泉, 康志强, 冯佐海, 等, 2015. 广西大瑶山地区大进岩体的锆石U-Pb年龄、地球化学特征及其意义. 桂林理工大学学报, 35(4): 736-746. doi: 10.3969/j.issn.1674-9057.2015.04.011
      [128] 许华, 黄炳诚, 倪战旭, 等, 2012. 钦杭成矿带西段古龙花岗岩株群岩石学、地球化学及年代学. 华南地质与矿产, 28(4): 331-339. doi: 10.3969/j.issn.1007-3701.2012.04.007
      [129] 许华, 倪战旭, 黄炳诚, 等, 2016. 广西大瑶山东南缘早古生代TTG侵入岩石组合的确定及其区域构造意义. 中国地质, 43(3): 780-796. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201603007.htm
      [130] 徐亚军, 杜远生, 2018. 从板缘碰撞到陆内造山: 华南东南缘早古生代造山作用演化. 地球科学, 43(2): 333-353. doi: 10.3799/dqkx.2017.582
      [131] 杨明桂, 梅勇文, 1997. 钦-杭古板块结合带与成矿带的主要特征. 华南地质与矿产, 13(3): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC199703008.htm
      [132] 张成立, 张国伟, 晏云翔, 等, 2005. 南秦岭勉略带北光头山花岗岩体群的成因及其构造意义. 岩石学报, 21(3): 711-720. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503013.htm
      [133] 张芳荣, 舒良树, 王德滋, 等, 2009. 华南东段加里东期花岗岩类形成构造背景探讨. 地学前缘, 16(1): 248-260. doi: 10.3321/j.issn:1005-2321.2009.01.027
      [134] 张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学(D辑: 地球科学), 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm
      [135] 赵振华, 1997. 微量元素地球化学原理. 北京: 科学出版社, 1-73.
      [136] 朱安汉, 覃小锋, 王宗起, 等, 2016. 湘西南-桂北交界地区加里东期基性岩的发现及其地质意义. 科学技术与工程, 16(5): 19-25. doi: 10.3969/j.issn.1671-1815.2016.05.004
      [137] 邹瑜, 农军年, 郭尚宇, 等, 2017. 桂东南上木水岩体的成因: 地球化学、锆石U-Pb年龄及Hf同位素制约. 矿物岩石, 37(2): 52-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201702006.htm
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  157
    • HTML全文浏览量:  163
    • PDF下载量:  56
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-02-09
    • 网络出版日期:  2021-12-04
    • 刊出日期:  2021-11-30

    目录

      /

      返回文章
      返回