• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    盾构超近距离侧穿铁路桥桩保护方案探讨

    任磊 朱颖 崔天麟

    任磊, 朱颖, 崔天麟, 2021. 盾构超近距离侧穿铁路桥桩保护方案探讨. 地球科学, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041
    引用本文: 任磊, 朱颖, 崔天麟, 2021. 盾构超近距离侧穿铁路桥桩保护方案探讨. 地球科学, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041
    Ren Lei, Zhu Ying, Cui Tianlin, 2021. Study on Protection Scheme of Shield Tunnel Passing through Railway Bridge Pile at a Short Distance. Earth Science, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041
    Citation: Ren Lei, Zhu Ying, Cui Tianlin, 2021. Study on Protection Scheme of Shield Tunnel Passing through Railway Bridge Pile at a Short Distance. Earth Science, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041

    盾构超近距离侧穿铁路桥桩保护方案探讨

    doi: 10.3799/dqkx.2021.041
    基金项目: 

    河南省交通运输厅项目 2020J5

    详细信息
      作者简介:

      任磊(1980-), 男, 高级工程师, 从事轨道交通建造及运营技术研究.ORCID: 0000-0003-3538-5580.E-mail: 616144259@qq.com

    • 中图分类号: P642

    Study on Protection Scheme of Shield Tunnel Passing through Railway Bridge Pile at a Short Distance

    • 摘要: 郑州地铁某盾构区间超近距离侧穿铁路桥梁桩基,受地面空间及隧道与桥桩间净距限制,无法采用隔离桩等常规保护措施.结合工程实际情况提出“盾构通过范围内土体注浆加固”、“桥梁承台加固”以及“注浆+承台加固”三种措施,利用数值模拟手段,对盾构侧穿施工期间,不同保护方案下桥桩的变形规律进行了分析研究.研究结果表明,采用“盾构通过范围内土体注浆加固+承台加固”措施,可使桥面最大沉降值减少约45%,且可减少桥面横桥向不均匀沉降及桥桩水平位移,在很大程度上减少盾构隧道施工对铁路桥梁的不利影响.

       

    • 图  1  陇海铁路现状

      Fig.  1.  Longhai railway status

      图  2  区间隧道与陇海铁路位置关系平面图(a)和剖面图(b)

      Fig.  2.  Plan (a) and section (b) of the positional relationship between the section tunnel and the Longhai railway

      图  3  袖阀管注浆加固平面图(a)和剖面图(b)

      Fig.  3.  Plan (a) and section (b) of grouting reinforcement for sleeve valve pipe

      图  4  承台南侧施做连梁平面示意

      Fig.  4.  Schematic diagram of the connecting beam construction on the south side of the cap

      图  5  承台南侧施做连梁剖面示意图

      Fig.  5.  Diagram of connecting beam section on the south side of the cap

      图  6  注浆加固+承台南侧施做连梁示意

      Fig.  6.  Schematic diagram of grouting reinforcement + connecting beam on the south side of the cap

      图  7  计算模型示意

      Fig.  7.  Schematic diagram of calculation model

      图  8  计算模型图

      Fig.  8.  Calculation model diagram

      图  9  桥面沉降位移曲线(a)和地面沉降位移曲线(b)

      Fig.  9.  Bridge deck settlement displacement curve (a) and ground settlement displacement curve (b)

      图  10  桥面横桥向沉降位移曲线(a)及沉降位移云图(b)

      Fig.  10.  Transverse bridge settlement displacement curve (a) and settlement displacement cloud map (b) of bridge deck

      图  11  桩体水平位移曲线(a)和水平位移云图(b)

      Fig.  11.  Horizontal displacement curve of pile (a) and horizontal displacement cloud map (b)

      表  1  土层计算参数

      Table  1.   Calculation parameters of soil

      地层岩性 容重(kN/m3) 压缩模量(MPa) 泊松比 摩擦角(°) 粘聚力(kPa)
      1-1杂填土 18 3 0.3 5 5
      2-33黏质粉土 17.6 9 0.32 22 13.5
      3-31黏质粉土 18.8 14.5 0.33 24 14
      3-41粉砂 20 16.5 0.4 28 3
      3-32黏质粉土 19.4 14.5 0.35 24.5 15
      3-22粉质黏土 19.3 9.9 0.25 17 28
      3-51细砂 20 22 0.4 32 -
      3-23粉质黏土 19.1 10.6 0.28 17.5 29
      3-21粉质黏土 19.1 6.2 0.25 16 26
      3-24粉质黏土 19.1 11 0.30 18 33
      注浆加固体 21 11 0.28 26 58
      下载: 导出CSV

      表  2  材料计算参数

      Table  2.   Calculation parameters of structure materials

      地层岩性 容重(kN/m3) 弹性模量(MPa) 泊松比 摩擦角(°) 粘聚力(kPa)
      盾构管片 25 35 500 0.2 - -
      桥梁桩基 25 34 500 0.2 - -
      承台与桥墩 25 32 000 0.2 - -
      铁轨 72 206 000 0.3
      下载: 导出CSV
    • Deng, D.Y., Hou, J.L., Li, P., et al., 2019. Comparative Analysis of Influence of Shield Tunnel Crossing Bridge Pile Reinforcement Schemes. Shanxi Achitecture, 45(6): 155-157(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JZSX201906082.htm
      Fu, W.S., Xia, B., Luo, D.M., 2009. Comparison Research on the Effect of Shield Tunnel Traversing Adjacently under the Existing Pile Foundations. Chinese Journal of Underground Space and Engineering, 5(1): 133-138 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dxkj200901026.aspx
      Guo, Y.B., Zhang, L.M., Zheng, G., et al., 2014. Influence of Shield Tunneling on Working Performance of Large Interchange's Super-Long Piles. Rock and Soil Mechanics, 35(10): 2941-2948, 2957(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201410027.htm
      Li, S., Yang, X.P., Liu, T.J., 2012. Analysis of Influence of Shield Tunneling in Guangzhou Metro on Pile Foundation of Adjacent Viaduct. Railway Engineering, 52(7): 74-78(in Chinese with English abstract).
      Qiao, S.J., Li, H.A., Xia, B.R., et al., 2020. Analysis and Control Measures of Settlement and Deformation of Underpass Bridge Piles in Double-Track Tunnel. Highway, 65(1): 281-286(in Chinese with English abstract).
      Shen, J.W., Liu, L., 2015. Numerical Analysis and Field Monitoring for Studying Effects of Shield Tunnelling on nearby Piles. Rock and Soil Mechanics, 36(Suppl. 2): 709-714(in Chinese with English abstract). http://www.researchgate.net/publication/286268354_Numerical_analysis_and_field_monitoring_for_studying_effects_of_shield_tunnelling_on_nearby_piles
      Wang, X.R., Jiang, H.J., Zhu, K., et al., 2019. Research on Ground Settlement Laws of Urban Subway Tunnel Construction Process Based on Earth Pressure Shield. Earth Science, 44(12): 4293-4298(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912039.htm
      Zhang, H.B., Yin, Z.Z., Zhu, J.G., 2005.3D Finite Element Simulation on Deformation of Soil Mass during Shield Tunneling. Chinese Journal of Rock Mechanics and Engineering, 24(5): 755-760(in Chinese with English abstract). http://www.oalib.com/paper/1485149
      Zhang, H.Y., He, P., Yan, G.X., et al., 2016. Effects of Existing Pile Foundation on Parameters of Shield Tunneling. Chinese Journal of Geotechnical Engineering, 38(9): 1615-1624(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC201609009.htm
      邓敦毅, 侯建林, 李鹏, 等, 2019. 盾构隧道穿越桥桩加固方案影响性对比分析. 山西建筑, 45(6): 155-157 doi: 10.3969/j.issn.1009-6825.2019.06.082
      付文生, 夏斌, 罗冬梅, 2009. 盾构隧道超近距离穿越对桩基影响的对比研究. 地下空间与工程学报, 5(1): 133-138 https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200901025.htm
      郭一斌, 张立明, 郑刚, 等, 2014. 盾构施工对大型立交桥超长桩工作性状的影响. 岩土力学, 35(10): 2941-2948, 2957. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410027.htm
      李松, 杨小平, 刘庭金, 2012. 广州地铁盾构下穿对近接高架桥桩基的影响分析. 铁道建筑, 52(7): 74-78. doi: 10.3969/j.issn.1003-1995.2012.07-22
      乔世杰, 李宏安, 夏柏如, 等, 2020. 双线隧道下穿桥桩沉降变形分析及控制措施. 公路, 65(1): 281-286. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202001053.htm
      沈建文, 刘力, 2015. 盾构隧道施工对临近桥桩影响数值及现场监测研究. 岩土力学, 36(增刊2): 709-714. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2105.htm
      王晓睿, 姜洪建, 朱坤, 等, 2019. 基于土压盾构的城市地铁隧道构筑过程地表沉降规律. 地球科学, 44(12): 4293-4298. doi: 10.3799/dqkx.2019.269
      张海波, 殷宗泽, 朱俊高, 2005. 地铁隧道盾构法施工过程中地层变位的三维有限元模拟. 岩石力学与工程学报, 24(5): 755-760. doi: 10.3321/j.issn:1000-6915.2005.05.004
      张海彦, 何平, 闫国新, 等, 2016. 既有桩基对盾构施工参数的影响研究. 岩土工程学报, 38(9): 1615-1624. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609009.htm
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  1103
    • HTML全文浏览量:  669
    • PDF下载量:  38
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-01-02
    • 刊出日期:  2021-06-15

    目录

      /

      返回文章
      返回