Genesis of Mufushan Pegmatite Deposits Constrained by U-Pb Ages and Trace Elements of Zircon from Complex Granitic Batholith
-
摘要: 江南成矿带晚侏罗世-早白垩世幕阜山复式花岗岩体内部及周缘发育多个早白垩世伟晶岩稀有金属矿床,成矿伟晶岩是否源自幕阜山复式岩体演化花岗岩浆高度分异还存在争议.幕阜山麦市等地发育含电气石、石榴石及白云母二长花岗岩,LA-ICP-MS锆石U-Pb年龄介于130~135 Ma,在误差范围内与区内大规模成矿伟晶岩年龄相当.与早期斑状黑云母二长花岗岩和白云母二长花岗岩(151~143 Ma)相比,晚期含电气石、石榴石及白云母二长花岗岩锆石具有较高的Hf、Ta、Nb、Th、U含量和较低的Th/U和Eu/Eu*比值,体现较高的演化程度,与岩石矿物组合及锆石结晶温度相一致.锆石年代与微量元素说明,幕阜山地区成矿伟晶岩可能是幕阜山复式岩体中早白垩世演化花岗岩浆进一步分异的产物.Abstract: Several Early Cretaceous rare metal pegmatite deposits have been discovered within and around the Late Jurassic-Early Cretaceous Mufushan complex granitic batholith in the Jiangnan metallogenic belt. It is still controversial whether the pegmatites were originated from the highly evolved Mufushan granite in this region. Tourmaline-, garnet-, and muscovite-bearing monzogranites in the Maishi and other areas have zircon LA-ICP-MS U-Pb ages between 130 and 135 Ma, similar to ages of the pegmatites within the errors. Compared with the early porphyritic biotite monzogranite and muscovite monzogranite (151-143 Ma), the late tourmaline-, garnet-, and muscovite-bearing monzogranites have zircon with high Hf, Ta, Nb, Th, U contents and low Th/U and Eu/Eu* ratios, indicating a highly evolved nature. This is also consistent with mineral assemblages and zircon crystallization temperatures of the granites. Ages and trace elements from zircon indicate that rare metal pegmatites may be the fractionated product of Early Cretaceous evolved granitic magmas in the Mufushan batholith.
-
Key words:
- Mufushan /
- complex batholith /
- trace element of zircon /
- U-Pb dating /
- pegmatite deposit /
- petrology
-
图 1 幕阜山区域位置示意图(a)、复式花岗岩体地质简图(b)及麦市周边岩体地质简图(c)
b据李鹏等(2017);c据湖北省地质调查院,2013.1∶5万通城县幅、月田幅、陈家坝幅区域地质调查报告,武汉
Fig. 1. Location of Mufushan (a), geological map of the Mufushan composite granite pluton (b) and geological map near Maishi (c)
图 2 幕阜山斑状黑云母二长花岗岩与电气石白云母二长花岗岩接触关系(a);电气石白云母二长花岗岩中呈线状分布的电气石(b);电气石白云母二长花岗岩与伟晶岩接触关系(c)
a.a1为斑状黑云母二长花岗岩,a2为电气石白云母二长花岗岩;c.c1为电气石白云母二长花岗岩,c2为伟晶岩;图a中电气石呈团块状,图b中电气石呈线状;Tur.电气石
Fig. 2. The contacts between the porphyritic biotite monzogranite and tourmaline muscovite monzogranite at Mufushan (a); tourmaline line in the tourmaline muscovite monzogranite (b); the contacts between the tourmaline muscovite monzogranite and pegmatite (c)
表 1 幕阜山花岗岩与伟晶岩年龄统计
Table 1. Ages for granite and pegmatite at Mufushan
岩体/脉体/矿体 年龄(Ma) 测试矿物 测试方法 位置 资料来源 微斜长石-钠长石伟晶岩 133.0±2.6 铌铁矿 U-Pb 仁里矿床 Li et al., 2020 微斜长石-钠长石伟晶岩 131.2±2.4 锆石 U-Pb 仁里矿床 Li et al., 2020 黑云母二长花岗岩 140.7±0.7 锆石 U-Pb 仁里矿床 Li et al., 2020 黑云母二长花岗岩 140.3±0.7 锆石 U-Pb 仁里矿床 Li et al., 2020 二云母二长花岗岩 138.3±0.3 锆石 U-Pb 仁里矿床 Li et al., 2020 含铌钽铁矿白云母钠长石伟晶岩 127.7±0.9 白云母 40Ar/39Ar 断峰山 李鹏等, 2017 含绿柱石白云母钠长石伟晶岩 130.5±0.9 白云母 40Ar/39Ar 复式岩体中部 李鹏等, 2017 黑云母二长花岗岩 151.2±1.1 锆石 U-Pb 复式岩体北部 Ji et al., 2017 黑云母二长花岗岩 151.4±1.1 锆石 U-Pb 复式岩体南部 Ji et al., 2017 黑云母花岗闪长岩 149.0±1.0 锆石 U-Pb 复式岩体东北部 Ji et al., 2017 二云母二长花岗岩 131.8±1.5 锆石 U-Pb 复式岩体西北部 Ji et al., 2017 二云母二长花岗岩 143.5±1.8 锆石 U-Pb 复式岩体中部 Ji et al., 2017 二云母二长花岗岩脉 127.0±1.4 锆石 U-Pb 复式岩体西北部 Ji et al., 2017 花岗闪长岩 151.5±1.3 锆石 U-Pb 复式岩体东部 Wang et al., 2014 含黑云母二长花岗岩 148.3±1.4 锆石 U-Pb 复式岩体北部 Wang et al., 2014 二云母淡色花岗岩 145.8±0.9 锆石 U-Pb 复式岩体中部 Wang et al., 2014 斑状黑云母二长花岗岩 142.9±0.9 锆石 U-Pb 复式岩体南部 许畅等, 2019 含铌钽矿伟晶岩 140.2±2.3 铌钽铁矿 U-Pb 仁里矿床 Xiong et al., 2020 黑云母二长花岗岩 154.1±2.5 锆石 U-Pb 仁里矿床 Xiong et al., 2020 白云母二长花岗岩 141.0±2.4 锆石 U-Pb 仁里矿床 Xiong et al., 2020 白云母二长花岗岩 140.7±2.2 独居石 Th-Pb 仁里矿床 Xiong et al., 2020 -
Ballard, J.R., Palin, M.J., Campbell, I.H., 2002. Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. https://doi.org/10.1007/s00410-002-0402-5 Burnham, A.D., Berry, A.J., 2012. An Experimental Study of Trace Element Partitioning between Zircon and Melt as a Function of Oxygen Fugacity. Geochimica et Cosmochimica Acta, 95: 196-212. https://doi.org/10.1016/j.gca.2012.07.034 Cameron, E.N., Jahns, R.H., McNair, A.H., et al., 1949. Internal Structure of Granitic Pegmatites. Society of Economic Geologists. https://doi.org/10.1080/11035895009451857 Chelle-Michou, C., Chiaradia, M., Ovtcharova, M., et al., 2014. Zircon Petrochronology Reveals the Temporal Link between Porphyry Systems and the Magmatic Evolution of Their Hidden Plutonic Roots (the Eocene Coroccohuayco Deposit, Peru). Lithos, 198-199: 129-140. https://doi.org/10.1016/j.lithos.2014.03.017 Claiborne, L., Miller, C.F., Walker, B.A., et al., 2006. Tracking Magmatic Processes through Zr/Hf Ratios in Rocks and Hf and Ti Zoning in Zircons: An Example from the Spirit Mountain Batholith, Nevada. Mineralogical Magazine, 70(5): 517-543. https://doi.org/10.1180/0026461067050348 Cocker, H.A., Valente, D.L., Park, J.W., et al., 2016. Using Platinum Group Elements to Identify Sulfide Saturation in a Porphyry Cu System: The El Abra Porphyry Cu Deposit, Northern Chile. Journal of Petrology, 56(12): 2491-2514. https://doi.org/10.1093/petrology/egv076 Deveaud, S., Millot, R., Villaros, A., 2015. The Genesis of LCT-Type Granitic Pegmatites, as Illustrated by Lithium Isotopes in Micas. Chemical Geology, 411: 97-111. https://doi.org/10.1016/j.chemgeo.2015.06.029 Dilles, J.H., Kent, A.J.R., Wooden, J.L., et al., 2015. Zircon Compositional Evidence for Sulfur-Degassing from Ore-Forming Arc Magmas. Economic Geology, 110(1): 241-251. https://doi.org/10.2113/econgeo.110.1.241 Ferry, J.M., Watson, E.B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0 Fu, Z.R., Li, Z.J., Zheng, D.Y., 1999. Structural Pattern and Tectonic Evolution of NNE Trending Strike Slip Orogenic Belt in the Border Region of Hunan and Jiangxi Provinces. Earth Science Frontiers, 6(4): 263-272(in Chinese with English abstract). Gao, X.Y., Zheng, Y.F., 2011. On the Zr-in-Rutile and Ti-in-Zircon Geothermometers. Acta Petrologica Sinica, 27(2): 417-432(in Chinese with English abstract). Grimes, C.B., John, B.E., Kelemen, P.B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: a Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643. https://doi.org/10.1130/g23603a.1 Iveson, A.A., Rowe, M.C., Webster, J.D., et al., 2018. Amphibole-, Clinopyroxene- and Plagioclase-Melt Partitioning of Trace and Economic Metals in Halogen-Bearing Rhyodacitic Melts. Journal of Petrology, 59(8): 1579-1604. https://doi.org/10.1093/petrology/egy072 Iveson, A.A., Webster, J.D., Rowe, M.C., et al., 2017. Major Element and Halogen (F, Cl) Mineral-Melt-Fluid Partitioning in Hydrous Rhyodacitic Melts at Shallow Crustal Conditions. Journal of Petrology, 58(12): 2465-2492. https://doi.org/10.1093/petrology/egy011 Jahns, R.H., Burnham, C.W., 1969. Experimental Studies of Pegmatite Genesis; L, A Model for the Derivation and Crystallization of Granitic Pegmatites. Economic Geology, 64(8): 843-864. https://doi.org/10.2113/gsecongeo.64.8.843 Ji, W.B., Lin, W., Faure, M., et al., 2017. Origin of the Late Jurassic to Early Cretaceous Peraluminous Granitoids in the Northeastern Hunan Province (Middle Yangtze Region), South China: Geodynamic Implications for the Paleo-Pacific Subduction. Journal of Asian Earth Sciences, 141: 174-193. https://doi.org/10.1016/j.jseaes.2016.07.005 Li, P., Li, J.K., Liu, X., et al., 2020. Geochronology and Source of the Rare-Metal Pegmatite in the Mufushan Area of the Jiangnan Orogenic Belt: A Case Study of the Giant Renli Nb-Ta Deposit in Hunan, China. Ore Geology Reviews, 116: 103237. https://doi.org/10.1016/j.oregeorev.2019.103237 Li, J.W., Li, X.F., Li, Z.J., et al., 1999. Fluid Inclusions Study in the Process of Strike Slip Faulting: A Case Study in Eastern Hunan Province. Geotectonica et Metallogenia, 23(3): 240-247(in Chinese with English abstract). Li, L.G., Wang, L.X., Tian, Y., et al., 2019. Petrogenesis and Rare-Metal Mineralization of the Mufushan Granitic Pegmatite, South China: Insights from In Situ Mineral Analysis. Earth Science, 44(7): 2532-2560(in Chinese with English abstract). Li, P., Li, J.K., Pei, R.F., et al., 2017. Multistage Magmatic Evolution and Cretaceous Peak Metallogenic Epochs of Mufushan Composite Granite Mass: Constrains from Geochronological Evidence. Earth Science, 42(10): 1684-1696(in Chinese with English abstract). Li, Z.L., Yang, R.Y., Li, W., et al., 1998. Forming Physicochemical Condition of Different Genetic Pegmatites in China. Geological Science and Technology Information, 17(Suppl. 1): 3-5(in Chinese with English abstract). Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 Liu, X., Zhou, F.C., Huang, Z.B., et al., 2018. Discovery of Renli Superlarge Pegmatite-Type Nb-Ta Polymetallic Deposit in Pingjiang, Hunan Province and Its Significances. Geotectonica et Metallogenia, 42(2): 235-243(in Chinese with English abstract). Liu, X., Zhou, F.C., Li, P., et al., 2019. Geological Characteristics and Metallogenic Age of Renli Rare Metal Orefield in Hunan and Its Prospecting Significance. Mineral Deposits, 38(4): 771-791(in Chinese with English abstract). London, D., 2005. Granitic Pegmatites: An Assessment of Current Concepts and Directions for the Future. Lithos, 80(1-4): 281-303. https://doi.org/10.1016/j.lithos.2004.02.009 Ludwig, K.R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Geochronology Center, California, Berkeley, 39. Park, J.W., Campbell, I.H., Kim, J., et al., 2015. The Role of Late Sulfide Saturation in the Formation of a Cu- and Au-Rich Magma: Insights from the Platinum Group Element Geochemistry of Niuatahi-Motutahilavas, Tonga Rear Arc. Journal of Petrology, 56(1): 59-81. https://doi.org/10.1093/petrology/egu071 Pupin, J.P., 2000. Granite Genesis Related to Geodynamics from Hf-Y in Zircon. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 245-256. https://doi.org/10.1017/s0263593300007410 Shaw, R.A., Goodenough, K.M., Roberts, N.M.W., et al., 2016. Petrogenesis of Rare-Metal Pegmatites in High-Grade Metamorphic Terranes: A Case Study from the Lewisian Gneiss Complex of North-West Scotland. Precambrian Research, 281: 338-362. https://doi.org/10.1016/j.precamres.2016.06.008 Simmons, W.B.S., Webber, K.L., 2008. Pegmatite Genesis: State of the Art. European Journal of Mineralogy, 20(4): 421-438. https://doi.org/10.1127/0935-1221/2008/0020-1833 Stewart, D.B., 1978. Petrogenesis of Lithium-Rich Pegmatites. American Mineralogist, 63(9-10): 970-980. Stilling, A., Ćerný, P., Vanstone, P.J., 2006. The Tanco Pegmatite at Bernic Lake, Manitoba. XVI. Zonal and Bulk Compositions and Their Petrogenetic Significance. The Canadian Mineralogist, 44(3): 599-623. https://doi.org/10.2113/gscanmin.44.3.599 Villaros, A., Pichavant, M., 2019. Mica-Liquid Trace Elements Partitioning and the Granite-Pegmatite Connection: The St-Sylvestre Complex (Western French Massif Central). Chemical Geology, 528: 119265. https://doi.org/10.1016/j.chemgeo.2019.07.040 Wang, F.Y., Liu, S.G., Li, S.G., et al., 2013. Contrasting Zircon Hf-O Isotopes and Trace Elements between Ore-Bearing and Ore-Barren Adakitic Rocks in Central-Eastern China: Implications for Genetic Relation to Cu-Au Mineralization. Lithos, 156-159: 97-111. https://doi.org/10.1016/j.lithos.2012.10.017 Wang, L.X., Ma, C.Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206-207: 147-163. https://doi.org/10.1016/j.lithos.2014.07.026 Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5 Woodhead, J., Hellstrom, J., Maas, R., 2006. Refining Terrestrial Palaeoclimate Chronologies: New Tools for Old Speleothems. Geochimica et Cosmochimica Acta, 70(18): A707. https://doi.org/10.1016/j.gca.2006.06.1534 Xiong, Y.Q., Jiang, S.Y., Wen, C.H., et al., 2020. Granite-Pegmatite Connection and Mineralization Age of the Giant Renli Ta-Nb Deposit in South China: Constraints from U-Th-Pb Geochronology of Coltan, Monazite, and Zircon. Lithos, 358-359: 105422. https://doi.org/10.1016/j.lithos.2020.105422 Xu, C., Li, J.K., Shi, G.H., et al., 2019. Zircon U-Pb Age and Hf Isotopic Composition of Porphyaceous Biotite Granite in South Margin of Mufushan and Their Geological Implications. Mineral Deposits, 38(5): 1053-1068(in Chinese with English abstract). Yin, S., 2019. The Formation and Evolution of Zonation Pattern in Magnetite from a Magmatic-Hydrothermal System: A Case Study of Skarn Iron Deposits from East Kunlun Orogenic Belt (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). Zhang, H., Lü, Z.H., Tang, Y., 2019. Metallogeny and Prospecting Model as Well as Prospecting Direction of Pegmatite-Type Rare Metal Ore Deposits in Altay Orogenic Belt, Xinjiang. Mineral Deposits, 38(4): 792-814 (in Chinese with English abstract). Zhang, J.Y., Yang, Z.B., Zhang, H., et al., 2017. Controls on the Formation of Cu-Rich Magmas: Insights from the Late Triassic Post-Collisional Saishitang Complex in the Eastern Kunlun Orogen, Western China. Lithos, 278-281: 400-418. https://doi.org/10.1016/j.lithos.2017.02.008 Zong, K.Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010 傅昭仁, 李紫金, 郑大瑜, 1999. 湘赣边区NNE向走滑造山带构造发展样式. 地学前缘, 6(4): 263-272. doi: 10.3321/j.issn:1005-2321.1999.04.009 高晓英, 郑永飞, 2011. 金红石Zr和锆石Ti含量地质温度计. 岩石学报, 27(2): 417-432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102006.htm 李建威, 李先福, 李紫金, 等, 1999. 走滑变形过程中的流体包裹体研究: 以湘东地区为例. 大地构造与成矿学, 23(3): 240-247. doi: 10.3969/j.issn.1001-1552.1999.03.006 李乐广, 王连训, 田洋, 等, 2019. 华南幕阜山花岗伟晶岩的矿物化学特征及指示意义. 地球科学, 44(7): 2532-2560. doi: 10.3799/dqkx.2018.378 李鹏, 李建康, 裴荣富, 等, 2017. 幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰: 年代学依据. 地球科学, 42(10): 1684-1696. doi: 10.3799/dqkx.2017.114 李兆麟, 杨荣勇, 李文, 等, 1998. 中国不同成因伟晶岩形成的物理化学条件. 地质科技情报, 17(增刊1): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ8S1.004.htm 刘翔, 周芳春, 黄志飚, 等, 2018. 湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义. 大地构造与成矿学, 42(2): 235-243. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201802004.htm 刘翔, 周芳春, 李鹏, 等, 2019. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义. 矿床地质, 38(4): 771-791. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904007.htm 许畅, 李建康, 施光海, 等, 2019. 幕阜山南缘似斑状黑云母花岗岩锆石U-Pb年龄、Hf同位素组成及其地质意义. 矿床地质, 38(5): 1053-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905007.htm 尹烁, 2019. 岩浆-热液体系与磁铁矿环带的形成演化及其地质意义: 以东昆仑造山带矽卡岩型铁矿为例(博士学位论文). 武汉: 中国地质大学. 张辉, 吕正航, 唐勇, 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(4): 792-814. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904008.htm -
dqkxzx-46-12-4517-附表.docx