Carbon and Sulfur Isotopic Features and Its Implications for Iodine Mobilization in Groundwater System at Datong Basin, Northern China
-
摘要: 为深入探究地下水系统中影响碘迁移转化的主控水文生物地球化学过程,对大同盆地典型高碘地下水区完成样品采集,分析地下水样品基础理化性质及碳硫同位素组成特征.结果表明,大同盆地地下水碘含量变化范围为14.40~1 030.00 μg/L,高碘地下水(I>100 μg/L)主要分布在盆地中心排泄区.地下水中溶解性无机碳的δ13CDIC值变化范围为-12.11‰~-9.79‰,硫酸盐δ34SSO4值介于4.04‰~16.63‰.δ13CDIC和DOC之间存在较明显的正相关关系,表明有机质的微生物降解过程是区域地下水无机碳的重要来源之一.同时,δ13CDIC与δ34SSO4一定的负相关关系表明硫酸盐是有机质微生物降解过程中潜在电子受体之一,且地下水水环境以偏还原环境为主.高碘地下水表现出低δ13CDIC、高δ34SSO4的同位素特征,表明有机质的微生物降解过程是控制地下水中碘迁移释放的主要过程之一,与该过程相伴而生的碘形态转化进一步促使碘以碘离子的形式在偏还原的地下水环境中发生富集.Abstract: In order to understand the dominant hydro-biogeochemical processes affecting the migration and transformation of iodine in groundwater system, in this study it analyzed the chemistry and carbon/sulfur isotope signatures of groundwater samples from typical high iodine area in Datong basin. Results show that the iodine concentrations of groundwater range from 14.40 to 1 030.00 μg/L and high iodine groundwater (I>100 μg/L) is mainly distributed in the discharge area near the center of the basin. The δ34SSO4 and δ13CDIC signatures of groundwater have the ranges of (-12.11‰)-(-9.79‰) and 4.04‰-16.63‰, respectively. The positive correlation between the δ13CDIC values and DOC concentrations in groundwater suggests that microbial degradation of organic matter is one of the important sources of DIC in the Datong basin. The correlation between the low δ13CDIC values and the high δ34SSO4 values indicates that groundwater SO42- serves as one of the electron accepters during the biodegradation of organic matter, and groundwater environment was dominant by the weak reducing conditions. High iodine groundwater is characterized by lower δ13CDIC and higher δ34SSO4, indicating that microbial degradation of organic matter, which acts as a dominate host of sediment iodine, promotes the release of iodine into groundwater. Moreover, the transformation among iodine species, for instance, from organic iodine/iodate to iodide, also favors the enrichment of groundwater iodine under the reducing conditions.
-
Key words:
- iodine /
- groundwater /
- Datong basin /
- C/S isotopes /
- mobilization /
- hydrogeology
-
表 1 研究区地下水主要水化学组分统计
Table 1. Statistics of groundwater chemistry compositions in the study area
样品编号 深度(m) 总碘(μg/L) δ13CDIC (‰) δ34S$ {}_{\mathrm{S}{\mathrm{O}}_{4}} $ (‰) pH Eh (mV) 方解石SI 白云石SI 石膏SI DOC (mg/L) Fetot (mg/L) K++Na+ (mg/L) Ca2+ (mg/L) Mg2+ (mg/L) HCO3- (mg/L) SO42- (mg/L) Cl- (mg/L) EC (μS/cm) Ⅰ区 DT13-01 - 17.50 -9.79 4.41 8.59 37.70 1.19 2.19 -1.61 3.15 2.17 13.57 68.22 13.39 221.2 110.7 11.46 537 DT13-02 - 75.90 -10.75 10.12 7.30 -34.60 0.65 1.09 -0.83 2.67 1.59 30.59 221.5 61.62 543.2 404.4 123.4 1 542 DT13-22 30 21.10 -12.11 4.30 7.81 12.90 0.46 1.02 -1.53 3.09 0.04 35.12 104.5 53.51 316.3 137.8 170.8 1 046 DT13-23 60 14.40 -11.77 4.04 7.75 -10.10 0.55 1.13 -2.13 1.53 0.04 22.29 58.21 27.14 456.3 44.32 18.14 540 Ⅱ区 DT13-08 60 1 030 -7.59 9.42 7.44 -16.40 0.51 2.09 -1.07 15.6 0.07 1 016 124.8 633.9 878.7 1 677 2 398 9 231 DT13-13 48 201.0 -14.20 11.21 7.88 -53.00 0.68 1.82 -1.91 4.52 0.48 400.8 30.13 39.27 1 014 246.3 178.0 2 151 DT13-14 50 96.10 -13.13 11.15 7.76 -11.00 0.64 1.63 -1.74 3.43 0.22 185.9 49.66 48.65 755.8 191.3 104.4 1 340 DT13-15 70 637.0 -12.36 11.09 8.01 -138.4 0.73 2.15 -1.64 4.36 0.90 516.3 37.11 80.01 804.2 514.2 501.5 3 117 DT13-16 18 50.10 -10.37 8.96 8.13 -33.40 0.56 1.92 -2.07 7.29 0.17 561.6 14.30 39.27 1 093 447.9 313.2 3 009 DT13-21 25 151.0 -13.26 6.89 8.03 29.30 0.63 1.89 -2.33 2.79 0.48 156.1 26.94 51.37 641.7 86.41 105.0 1 200 DT13-24 30 17.40 -9.70 12.09 7.26 46.30 0.32 1.26 -1.41 4.43 0.02 190.2 95.42 177.4 654.8 383.9 358.9 2 649 DT13-25 - 158.0 -8.61 16.63 8.93 16.50 0.95 2.54 -1.55 2.02 0.07 545.0 25.82 49.55 298.9 783.8 566.1 3 034 Ⅲ区 DT13-04 75 934.0 -16.93 - 8.30 -102.0 0.20 1.43 -4.11 38.1 0.36 366.7 3.30 15.11 1 305 12.01 170.8 1 689 DT13-10 19 479.0 -13.60 13.28 8.28 -2.70 0.52 1.71 -2.58 7.56 0.03 418.7 8.23 16.57 1 230 178.8 173.0 1 940 DT13-12 52 151.0 -9.09 - 8.53 -38.50 0.28 1.66 -4.06 27.0 0.28 297.6 2.86 14.81 1 080 13.22 112.6 1 505 DT13-17 20 143.0 -10.77 13.01 7.28 28.10 0.66 1.71 -0.13 12.9 0.09 1 066 453.6 514.9 570.7 4 206 1 142 8 812 DT13-19 35 31.10 -13.90 11.35 7.70 72.50 0.44 1.66 -2.13 3.70 0.02 106.5 48.97 131.7 513.9 113.7 194.9 1 715 DT13-26 16 125.0 -8.42 11.66 8.10 3.80 0.45 1.53 -2.15 2.22 0.05 152.0 23.08 43.70 383.1 148.4 114.7 1 164 DT13-27 30 439.0 -12.97 15.48 7.63 -88.70 0.87 2.61 -0.56 17.2 - 1 974 227.9 750.9 755.4 3 521 3 301 10 339 DT13-29 - 18.80 -7.36 - 8.29 - 0.42 1.68 -2.48 2.71 - 75.53 13.58 41.22 409.3 101.7 24.07 838 DT13-30 28 30.90 -7.85 - 7.91 -35.60 0.31 1.15 -2.51 2.19 0.06 156.8 33.71 50.45 301.5 47.72 144.1 1 409 注:-.水样的浓度低于检测限;SI.正值表示处于过饱和状态,负值表示处于未饱和状态. -
Aucour, A.M., Sheppard, S.M.F., Guyomar, O., et al., 1999. Use of 13C to Trace Origin and Cycling of Inorganic Carbon in the Rhône River System. Chemical Geology, 159(1-4): 87-105. https://doi.org/10.1016/s0009-2541(99)00035-2 Barth, J.A.C., Cronin, A.A., Dunlop, J., et al., 2003. Influence of Carbonates on the Riverine Carbon Cycle in an Anthropogenically Dominated Catchment Basin: Evidence from Major Elements and Stable Carbon Isotopes in the Lagan River (N. Ireland). Chemical Geology, 200(3-4): 203-216. https://doi.org/10.1016/s0009-2541(03)00193-1 Cerling, T.E., Solomon, D.K., Quade, J., et al., 1991. On the Isotopic Composition of Carbon in Soil Carbon Dioxide. Pergamon, Geochimica et Cosmochimica Acta, 55(11): 3403-3405. https://doi.org/10.1016/0016-7037(91)90498-t Clark, I.D., Fritz, P., 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, New York. https://doi.org/10.1201/9781482242911 Dai, J.L., Zhang, M., Hu, Q.H., et al., 2009. Adsorption and Desorption of Iodine by Various Chinese Soils: Ⅱ. Iodide and Iodate. Geoderma, 153(1-2): 130-135. https://doi.org/10.1016/j.geoderma.2009.07.020 Duan, L., Wang., W.K., Sun, Y.B., et al., 2020. Hydrogeochemical Characteristics and Health Effects of Iodine in Groundwater in Wei River Basin. Exposure and Health, 12(3): 369-383. https://doi.org/10.1007/s12403-020-00348-7 Guo, H.M., Wang, Y.X., 2005. Geochemical Characteristics of Shallow Groundwater in Datong Basin, Northwestern China. Journal of Geochemical Exploration, 87(3): 109-120. https://doi.org/10.1016/j.gexplo.2005.08.002 Hou, X.L., Hansen, V., Aldahan, A., et al., 2009. A Review on Speciation of Iodine-129 in the Environmental and Biological Samples. Analytica Chimica Acta, 632(2): 181-196. https://doi.org/10.1016/j.aca.2008.11.013 Hansen, V., Roos, P., Aldahan, A., et al., 2011. Partition of Iodine (129I and 127I) Isotopes in Soils and Marine Sediments. Journal of Environmental Radioactivity, 102(12): 1096-1104. https://doi.org/10.1016/j.jenvrad.2011.07.005 Kao, Y.H., Liu, C.W., Wang, P.L., et al., 2015. Effect of Sulfidogenesis Cycling on the Biogeochemical Process in Arsenic-Enriched Aquifers in the Lanyang Plain of Taiwan: Evidence from a Sulfur Isotope Study. Journal of Hydrology, 528: 523-536. https://doi.org/10.1016/j.jhydrol.2015.06.033 Li, J.X., Su, C.L., Xie, X.J., et al., 2010. Application of Multivariate Statistical Analysis to Research the Environment of Groundwater: A Case Study at Datong Basin, Northern China. Bulletin of Geological Science and Technology, 29(6): 94-100(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201006016.htm Li, J.X., Wang, Y.X., Xie, X.J., et al., 2013. Hydrogeochemistry of High Iodine Groundwater: A Case Study at the Datong Basin, Northern China. Environmental Science. Processes & Impacts, 15(4): 848-859. https://doi.org/10.1039/c3em30841c Li, J.X., Wang, Y.T., Xue, X.B., et al., 2020. Mechanistic Insights into Iodine Enrichment in Groundwater during the Transformation of Iron Minerals in Aquifer Sediments. Science of the Total Environment, 745: 140922. https://doi.org/10.1016/j.scitotenv.2020.140922 Li, J.X., Zhou, H.L., Wang, Y.X., et al., 2017. Sorption and Speciation of Iodine in Groundwater System: The Roles of Organic Matter and Organic-Mineral Complexes. Journal of Contaminant Hydrology, 201: 39-47. https://doi.org/10.1016/j.jconhyd.2017.04.008 Li, X., Tang, C.Y., Cao, Y.J., et al., 2019. Carbon, Nitrogen and Sulfur Isotopic Features and the Associated Geochemical Processes in a Coastal Aquifer System of the Pearl River Delta, China. Journal of Hydrology, 575: 986-998. https://doi.org/10.1016/j.jhydrol.2019.05.092 Li, X.Q., Zhou, A.G., Gan, Y.Q., et al., 2011. Controls on the δ34S and δ18O of Dissolved Sulfate in the Quaternary Aquifers of the North China Plain. Journal of Hydrology, 400(3-4): 312-322. https://doi.org/10.1016/j.jhydrol.2011.01.034 Nagata, T., Fukushi, K., 2010. Prediction of Iodate Adsorption and Surface Speciation on Oxides by Surface Complexation Modeling. Geochimica et Cosmochimica Acta, 74(21): 6000-6013. https://doi.org/10.1016/j.gca.2010.08.002 Otosaka, S., Schwehr, K.A., Kaplan, D.L., et al., 2011. Factors Controlling Mobility of 127I and 129I Species in an Acidic Groundwater Plume at the Savannah River Site. Science of the Total Environment, 409(19): 3857-3865. https://doi.org/10.1016/j.scitotenv.2011.05.018 Qian, K., Li, J.X., Xie, X.J., et al., 2017. Organic and Inorganic Colloids Impacting Total Iodine Behavior in Groundwater from the Datong Basin, China. Science of the Total Environment, 601-602: 380-390. https://doi.org/10.1016/j.scitotenv.2017.05.127 Robinove, C.J., Langford, R.H., Brookhart, J.W., 1958. Saline-Water Resources of North Dakota. U.S. Government Printing Office, Washington, D.C., 1428. https://doi.org/10.3133/wsp1428 Su, C.L., Wang, Y.X., 2008. A Study of Zonality of Hydrochemistry of Groundwater in Unconsolidated Sediments in Datong Basin. Hydrogeology & Engineering Geology, 35(1): 83-89(in Chinese with English abstract). http://www.researchgate.net/publication/288911610_A_study_of_zonality_of_hydrochemistry_of_groundwater_in_unconsolidated_sediments_in_Datong_basin Schwehr, K.A., Santschi, P.H., Kaplan, D.I., et al., 2009. Organo-Iodine Formation in Soils and Aquifer Sediments at Ambient Concentrations. Environmental Science & Technology, 43(19): 7258-7264. https://doi.org/10.1021/es900795k Shimamoto, Y.S., Takahashi, Y., Terada, Y., et al., 2011. Formation of Organic Iodine Supplied as Iodide in a Soil-Water System in Chiba, Japan. Environmental Science & Technology, 45(6): 2086-2092. https://doi.org/10.1021/es1032162 Truesdell, A.H., Hulston, J.R., 1980. Isotopic Evidence on Environments of Geothermal Systems, Handbook of Environmental Isotope Geochemistry, The Terrestrial Environment, A. 1: 179-226. https://doi.org/10.1016/B978-0-444-41780-0.50011-0 Tuttle, M.L.W., Breit, G.N., Cozzarelli, I.M., 2009. Processes Affecting δ34S and δ18O Values of Dissolved Sulfate in Alluvium along the Canadian River, Central Oklahoma, USA. Chemical Geology, 265(3-4): 455-467. https://doi.org/10.1016/j.chemgeo.2009.05.009 Wachniew, P., 2006. Isotopic Composition of Dissolved Inorganic Carbon in a Large Polluted River: The Vistula, Poland. Chemical Geology, 233(3-4): 293-308. https://doi.org/10.1016/j.chemgeo.2006.03.012 Wang, M.Y., Zhang, S., Li, X.Z., 1983. Iodine in Environment and Endemic Goiter. Acta Scientiae Circumstantiae, (4): 283-288(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX198304000.htm Wang, Y.X., Li, J.X., Ma, T., et al., 2020. Genesis of Geogenic Contaminated Groundwater: As, F and I. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2020.1807452 Wang, Y.X., Shvartsev, S.L., Su, C.L., 2009. Genesis of Arsenic/Fluoride-Enriched Soda Water: A Case Study at Datong, Northern China. Applied Geochemistry, 24(4): 641-649. https://doi.org/10.1016/j.apgeochem.2008.12.015 Wang, Y.X., Xie, X.J., Johnson, T.M., et al., 2014. Coupled Iron, Sulfur and Carbon Isotope Evidences for Arsenic Enrichment in Groundwater. Journal of Hydrology, 519: 414-422. https://doi.org/10.1016/j.jhydrol.2014.07.028 Wang, Y.T., Li, J.X., Xue, X.B., et al., 2021. Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin. Earth Science, 46(1): 308-320(in Chinese with English abstract). http://www.mdpi.com/2073-4441/13/19/2724 Wen, J., Tang, C.Y., Cao, Y.J., et al., 2020. Understanding the Inorganic Carbon Transport and Carbon Dioxide Evasion in Groundwater with Multiple Sulfate Sources during Different Seasons Using Isotope Records. Science of the Total Environment, 710: 134480. https://doi.org/10.1016/j.scitotenv.2019.134480 Xie, X.J., Ellis, A., Wang, Y.X., et al., 2009. Geochemistry of Redox-Sensitive Elements and Sulfur Isotopes in the High Arsenic Groundwater System of Datong Basin, China. Science of the Total Environment, 407(12): 3823-3835. https://doi.org/10.1016/j.scitotenv.2009.01.041 Xie, X.J., Wang, Y.X., Ellis, A., et al., 2013. Multiple Isotope (O, S and C) Approach Elucidates the Enrichment of Arsenic in the Groundwater from the Datong Basin, Northern China. Journal of Hydrology, 498: 103-112. https://doi.org/10.1016/j.jhydrol.2013.06.024 Xu, C., Zhong, J.Y., Hatcher, P.G., et al., 2012. Molecular Environment of Stable Iodine and Radioiodine(I-129) in Natural Organic Matter: Evidence Inferred from NMR and Binding Experiments at Environmentally Relevant Concentrations. Geochimica et Cosmochimica Acta, 97: 166-182. https://doi.org/10.1016/j.gca.2012.08.030 Xue, X.B., Li, J.X., Xie, X.J., et al., 2019. Effects of Depositional Environment and Organic Matter Degradation on the Enrichment and Mobilization of Iodine in the Groundwater of the North China Plain. Science of the Total Environment, 686: 50-62. https://doi.org/10.1016/j.scitotenv.2019.05.391 Xue, J.K., Deng, Y.M., Du, Y., et al., 2021. Molecular Characterization of Dissolved Organic Matter (DOM) in Shallow Aquifer along the Middle Reaches of Yangtze River and Its Implications for Iodine Enrichment. Earth Science, 42(2): 298-306(in Chinese with English abstract). Yuan, F.S., Mayer, B., 2012. Chemical and Isotopic Evaluation of Sulfur Sources and Cycling in the Pecos River, New Mexico, USA. Chemical Geology, 291: 13-22. https://doi.org/10.1016/j.chemgeo.2011.11.014 Yang, Y.J., Yuan, X.F., Deng, Y.M., et al., 2020. Seasonal Dynamics of Dissolved Organic Matter in High Arsenic Shallow Groundwater Systems. Journal of Hydrology, 589: 125120. https://doi.org/10.1016/j.jhydrol.2020.125120 Zhou, H.L., 2018. Study on the Migration and Enrichment of Iodine and the Impact of Exogenous Organic Carbon in the Groundwater System of Datong Basin, China (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). Zhang, Y.J., Chen, L.N., Cao, S.W., et al., 2021. Iodine Enrichment and the Underlying Mechanism in Deep Groundwater in the Cangzhou Region, North China. Environmental Science and Pollution Research, 28(9): 10552-10563. https://doi.org/10.1007/s11356-020-11159-3 李俊霞, 苏春利, 谢先军, 等, 2010. 多元统计方法在地下水环境研究中的应用: 以山西大同盆地为例. 地质科技情报, 29(6): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201006016.htm 苏春利, 王焰新, 2008. 大同盆地孔隙地下水化学场的分带规律性研究. 水文地质工程地质, 35(1): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200801021.htm 王明远, 章申, 李象志, 1983. 环境中的碘与地方性甲状腺肿. 环境科学学报, 3(4): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX198304000.htm 王雨婷, 李俊霞, 薛肖斌, 等, 2021. 华北平原与大同盆地原生高碘地下水赋存主控因素的异同. 地球科学, 46(1): 308-320. doi: 10.3799/dqkx.2019.261 薛江凯, 邓娅敏, 杜尧, 等, 2021. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示. 地球科学, 42(2): 298-306. doi: 10.3799/dqkx.2020.398 周海玲, 2018. 大同盆地地下水系统中碘的迁移富集过程和外源有机碳输入的影响(硕士学位论文). 武汉: 中国地质大学.