Tectonic Framework in the Xisha Area and Its Differential Evolution
-
摘要: 西沙海域夹持于南海西北次海盆和西南次海盆之间,构造演化过程与南海的扩张和南海西部的走滑作用关系密切.基于覆盖西沙海域的区域地震资料开展了构造—地层解释、盆地结构特征分析和区域构造演化制图,整体上将西沙海域划分出3种类型盆地,即高角度断层控制的盆地、低角度拆离断层控制的盆地和走滑盆地.结合地壳厚度变化和伸展薄化程度,突出断层的构造样式,将西沙海域划分为北部拆离断层构造发育区、东南部拆离断层构造发育区、西部走滑断层发育区和中部高角度断层发育区,进而明确了西沙海域盆地的基本构造格局.同时,以关键构造界面为主线,强调了不同类型断层在岩石圈地壳减薄过程中的作用,阐明了西沙海域盆地的差异构造演化过程.Abstract: Xisha area is located between the Northwest subbasin and the southwest Subbasin of the South China Sea,whose tectonic evolution is closely related to the oceanic spreading of the South China Sea and the strike-slip movement along the west part of the South China Sea. Together with regional seismic data,we carried out tectono-stratigraphic analysis in the Xisha area. Our study mapped three types of basins,i.e. subbasins controlled by high-angle faults,low-angle detachment faults and strike-slip faults,respectively. The lithospheric crust thickness varied a lot here indicating the different crust thinning across the region. We divided the Xisha area into four tectonic domains,i.e. the northern domain with detachment fault system,the southeastern domain with detachment fault system,the western domain with strike-slip fault system,and central domain with high angle fault system. Our results will improve our understanding on the tectonic evolution in Xisha area,with implications for petroleum exploration there.
-
Key words:
- Xisha area /
- South China Sea /
- detachment fault /
- deepwater petroleum exploration /
- marine geology
-
图 1 西沙海域及其周缘构造特征
琼东南盆地断层据Lei and Ren(2016);中建盆地等区域断层为本次研究成果;海底磁条带据Briais et al.(1993);虚线所示二维深反射地震剖面和三维地震反射工区分布据Lei and Ren(2016)以及Lei et al.(2020)
Fig. 1. Structures of Xisha area and its surroundings
图 2 琼东南盆地构造‒沉积演化过程及其与南海构造演化过程的对比
Fig. 2. Tectonic-sedimentary evolution of Qiongdongnan basin and its correlated with tectonic evolution of the South China Sea
图 8 西海海域及其周缘地壳厚度分布及构造区带划分(a),西沙海域及其周缘不同构造单元盆地结构特征(b)
图a中虚线所示二维深反射地震剖面和三维地震反射工区分布据Lei and Ren(2016)以及Lei et al.(2020),白色数字为地壳厚度(km);图b1据任建业等(2015)修改;图b2据Lei et al.(2019)修改;图b4据Vu et al.(2017)修改
Fig. 8. Map for the thickness of the crust in the Xisha area, which is overlapped by tectonic divisions (a); basin structure in the different structural units in the Xisha area (b)
-
Bai, Y. L., Wu, S. G., Liu, Z., et al., 2015. Full-Fit Reconstruction of the South China Sea Conjugate Margins. Tectonophysics, 661: 121-135. https://doi.org/10.1016/j.tecto.2015.08.028 Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92JB02280 Ding, W. W., 2021. Continental Margin Dynamics of South China Sea: From Continental Break-Up to Seafloor Spreading. Earth Science, 46(3): 790-800 (in Chinese with English abstract). Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/S1367-9120(01)00069-4 Huang, C. Y., Wang, P. X., Yu, M. M., et al., 2019. Potential Role of Strike-Slip Faults in Opening up the South China Sea. National Science Review, 6(5): 891-901. https://doi.org/10.1093/nsr/nwz119 Huang, H. B., Klingelhoefer, F., Qiu, X. L., et al., 2021. Seismic Imaging of an Intracrustal Deformation in the Northwestern Margin of the South China Sea: The Role of a Ductile Layer in the Crust. Tectonics, 40(2): e2020TC006260. https://doi.org/10.1029/2020TC006260 Lei, C., Alves, T. M., Ren, J. Y., et al., 2019. Depositional Architecture and Structural Evolution of a Region Immediately Inboard of the Locus of Continental Breakup (Liwan Sub-Basin, South China Sea). GSA Bulletin, 131(7-8): 1059-1074. https://doi.org/10.1130/b35001.1 Lei, C., Alves, T. M., Ren, J. Y., et al., 2020. Rift Structure and Sediment Infill of Hyperextended Continental Crust: Insights from 3D Seismic and Well Data (Xisha Trough, South China Sea). Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018610. https://doi.org/10.1029/2019JB018610 Lei, C., Ren, J. Y., 2016. Hyper-Extended Rift Systems in the Xisha Trough, Northwestern South China Sea: Implications for Extreme Crustal Thinning Ahead of a Propagating Ocean. Marine and Petroleum Geology, 77: 846-864. https://doi.org/10.1016/j.marpetgeo.2016.07.022 Lei, C., Ren, J. Y., Pang, X., et al., 2018. Continental Rifting and Sediment Infill in the Distal Part of the Northern South China Sea in the Western Pacific Region: Challenge on the Present-Day Models for the Passive Margins. Marine and Petroleum Geology, 93: 166-181. https://doi.org/10.1016/j.marpetgeo.2018.02.020 Lei, C., Ren, J. Y., Tong, D. J., 2013. Geodynamics of the Ocean-Continent Transition Zone, Northern Margin of the South China Sea: Implications for the Opening of the South China Sea. Chinese Journal of Geophysics, 56(4): 1287-1299 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dqwlxb201304023 Lei, C., Ren, J. Y., Zhang, J., 2015. Tectonic Province Divisions in the South China Sea: Implications for Basin Geodynamics. Earth Science, 40(4): 744-762 (in Chinese with English abstract). http://www.cqvip.com/qk/94035x/201504/664551720.html Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014GC005567 Li, S. T., Lin, C. S., Zhang, Q. M., et al., 1998. Episodic Rifting and Its Dynamical Process in North Continental Margin of South China Sea, and the Tectonic Event from 10 Ma. Chinese Science Bulletin, 43(8): 797-810 (in Chinese with English abstract). doi: 10.1360/csb1998-43-8-797 Li, S. Z., Suo, Y. H., Liu, X., et al., 2012a. Basin Dynamics and Basin Groups of the South China Sea. Marine Geology & Quaternary Geology, 32(6): 55-78 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2013MGQG...32...55L Li, S.Z., Sao, Y. H., Liu, X., et al., 2012b. Basic Structural Pattern and Tectonic Models of the SCS: Problems, Advances and Controversies. Marine Geology & Quaternary Geology, 32(6): 35-53 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2013MGQG...32...35L Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1 Lin, J., Li, J. B., Xu, Y. G., et al., 2019. Ocean Drilling and Major Advances in Marine Geological and Geophysical Research of the South China Sea. Acta Oceanologica Sinica, 41(10): 125-140 (in Chinese with English abstract). Liu, H. L., Yao, Y. J., Shen, B. Y., et al., 2015. On Linkage of Western Boundary Faults of the South China Sea. Earth Science, 40(4): 615-632 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201504003.htm Liu, H. L., Zheng, H. B., Wang, Y. L., et al., 2011. Basement of the South China Sea Area: Tracing the Tethyan Realm. Acta Geologica Sinica-English Edition, 85(3): 637-655. https://doi.org/10.1111/j.1755-6724.2011.00457.x Mi, L. J., Zhang, X. T., Pang, X., et al., 2019. Formation Mechanism and Petroleum Geology of Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 1-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB2019S1001.htm Morley, C. K., 2002. A Tectonic Model for the Tertiary Evolution of Strike-Slip Faults and Rift Basins in SE Asia. Tectonophysics, 347(4): 189-215. https://doi.org/10.1016/S0040-1951(02)00061-6 Pubellier, M., Aurelio, M., Sautter, B., 2018. The Life of a Marginal Basin Depicted in a Structural Map of the South China Sea. Episodes, 41(3): 139-142. https://doi.org/10.18814/epiiugs/2018/018014 Ren, J. Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361 (in Chinese with English abstract). Ren, J. Y., Lei, C., 2011. Tectonic Stratigraphic Framework of Yinggehai-Qiongdongnan Basins and Its Implication for Tectonic Province Division in South China Sea. Chinese Journal of Geophysics, 54(12): 3303-3314 (in Chinese with English abstract). http://tga.cgu.org.tw/AbstractFinal/U6-P-27.pdf Ren, J. Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract). http://www.cqvip.com/QK/98600X/201501/662674863.html Savva, D., Meresse, F., Pubellier, M., et al., 2013. Seismic Evidence of Hyper-Stretched Crust and Mantle Exhumation Offshore Vietnam. Tectonophysics, 608: 72-83. https://doi.org/10.1016/j.tecto.2013.07.010 Sibuet, J. C., Yeh, Y. C., Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98-119. https://doi.org/10.1016/j.tecto.2016.02.022 Sun, Z., Li, F. C., Lin, J., et al., 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract). Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental marginSpecial Topic: The South China Sea Ocean Drilling. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116 Sun, Z., Liu, S. Q., Pang, X., et al., 2016. Recent Research Progress on the Rifting-Breakup Process in Passive Continental Margins. Journal of Tropical Oceanography, 35(1): 1-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY201601001.htm Sun, Z., Sun, L. T., Zhou, D., et al., 2009. Discussion on the South China Sea Evolution and Lithospheric Breakup through 3D Analogue Modeling. Earth Science, 34(3): 435-447 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1367912008001302 Sun, Z., Zhong, Z. H., Keep, M., et al., 2009. 3D Analogue Modeling of the South China Sea: A Discussion on Breakup Pattern. Journal of Asian Earth Sciences, 34(4): 544-556. https://doi.org/10.1016/j.jseaes.2008.09.002 Tamaki, K., 1995. Opening Tectonics of the Japan Sea. In: Taylor, B., Backarc Basins: Tectonics and Magmatism. Springer, Boston. Tang, W., Wang, Y. M., Yang, C. H., et al., 2013. Evolution and Main Controlling Factors of Reef in the Southern Deepwater of Qiongdongnan Basin. Natural Gas Geoscience, 24(5): 965-974 (in Chinese with English abstract). http://www.researchgate.net/publication/288166630_Evolution_and_main_controlling_factors_of_reef_in_the_southern_deepwater_of_Qiongdongnan_Basin Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the Mechanics of the Collision between India and Asia. Geological Society, London, Special Publications, 19(1): 113-157. https://doi.org/10.1144/gsl.sp.1986.019.01.07 Tu, K., Flower, M. F. J., Carlson, R. W., 1992. Magmatism in the South China Basin: 1. Isotopic and Trace-Element Evidence for an Endogenous Dupal Mantle Component. Chemical Geology, 97(1-2): 47-63. https://doi.org/10.1016/0009-2541(92)90135-R Vu, A. T., Wessel Fyhn, M. B., Xuan, C. T., et al., 2017. Cenozoic Tectonic and Stratigraphic Development of the Central Vietnamese Continental Margin. Marine and Petroleum Geology, 86: 386-401. https://doi.org/10.1016/j.marpetgeo.2017.06.001 Wang, C. Y., He, X. X., Qiu, S. Y., 1979. A Preliminary Study of Carbonate Rocks and Micropalaeontology in the XiYong I Well. Petroleum Geology and Experiment, 1: 23-38 (in Chinese with English abstract). http://www.researchgate.net/publication/292755126_Preliminary_study_about_carbonate_strata_and_micropaleontology_of_well_Xiyong-1_in_Xisha_Islands Wang, Q., Zhao, M. H., Zhang, H. Y., et al., 2020. Crustal Velocity Structure of the Northwest Sub-Basin of the South China Sea Based on Seismic Data Reprocessing. Science in China (Series D), 50(11): 1553-1568 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=7103247740 Yang, L. L., Ren, J. Y., McIntosh, K., et al., 2018. The Structure and Evolution of Deepwater Basins in the Distal Margin of the Northern South China Sea and Their Implications for the Formation of the Continental Margin. Marine and Petroleum Geology, 92: 234-254. https://doi.org/10.1016/j.marpetgeo.2018.02.032 Yao, B. C., 1995. The Characteristics of the Zhongnan-Liyue Fault and Its Tectonic Significance. South China Sea Geological Research. 1-14 (in Chinese with English abstract). Ye, Q., Mei, L. F., Shi, H. S., et al., 2020. The Influence of Pre-Existing Basement Faults on the Cenozoic Structure and Evolution of the Proximal Domain, Northern South China Sea Rifted Margin. Tectonics, 39(3): e2019TC005845. https://doi.org/10.1029/2019TC005845 Yuan, Y., Zhao, M. H., He, E. Y., et al., 2021. The Crustal Structures and Rift-Breakup Models of Typical Rifted Margins. Earth Science, 46(3): 801-816 (in Chinese with English abstract). Yue, J. P., Zhang, Y., Shen, H. L., et al., 2013. Constraints of Geological Characteristics of the South China Continental Margin on the Basement of Basins in Northern South China Sea. Acta Petrolei Sinica, 34(S2): 120-128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB2013S2016.htm Zhang, C., Manatschal, G., Pang, X., et al., 2020. Discovery of Mega-Sheath Folds Flooring the Liwan Subbasin (South China Sea): Implications for the Rheology of Hyperextended Crust. Geochemistry, Geophysics, Geosystems, 21(7): e2020GC009023. https://doi.org/10.1029/2020GC009023 Zhang, G. C., Jia, Q. J., Wang, W. Y., et al., 2018. On Tectonic Framework and Evolution of the South China Sea. Chinese Journal of Geophysics, 61(10): 4194-4215 (in Chinese with English abstract). http://www.researchgate.net/publication/329944421_On_tectonic_framework_and_evolution_of_the_South_China_Sea Zhao, Y. H., Ren, J. Y., Pang, X., et al., 2018a. Structural Style, Formation of Low Angle Normal Fault and Its Controls on the Evolution of Baiyun Rift, Northern Margin of the South China Sea. Marine and Petroleum Geology, 89: 687-700. https://doi.org/10.1016/j.marpetgeo.2017.11.001 Zhao, Z. X., Sun, Z., Liu, J. B., et al., 2018b. The Continental Extension Discrepancy and Anomalous Subsidence Pattern in the Western Qiongdongnan Basin, South China Sea. Earth and Planetary Science Letters, 501: 180-191. https://doi.org/10.1016/j.epsl.2018.08.048 Zhou, D., Wang, W. Y., Pang, X., et al., 2006. Mesozoic Subduction-Accretion Zone in Northeastern South China Sea Inferred from Geophysical Interpretations. Science in China (Series D), 36(3): 209-218 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200605003.htm Zhu, M. Z., Graham, S., McHargue, T., 2009. The Red River Fault Zone in the Yinggehai Basin, South China Sea. Tectonophysics, 476(3-4): 397-417. https://doi.org/10.1016/j.tecto.2009.06.015 Zhu, W. L., Mi, L. J., 2010. Atlas of Petroliferous Basins in the Seas of China. Petroleum Industry Press, Beijing (in Chinese). Zhu, W. L., Xie, X. N., Wang, Z. F., et al., 2017. New Insights on the Origin of the Basement of the Xisha Uplift, South China Sea. Science China Earth Sciences, 60(12): 2214-2222. https://doi.org/10.1007/s11430-017-9089-9 Zou, H. P., 2001. Continental Marginal Rifting along the Northern South China Sea: The Crustal Response to the Lower Lithospheric Delamination. Marine Geology & Quaternary Geology, 21(1): 39-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200101007.htm 丁巍伟, 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303 雷超, 任建业, 佟殿君, 2013. 南海北部洋陆转换带盆地发育动力学机制. 地球物理学报, 56(4): 1287-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304025.htm 雷超, 任建业, 张静, 2015. 南海构造变形分区及成盆过程. 地球科学, 40(4): 744-762. doi: 10.3799/dqkx.2015.062 李思田, 林畅松, 张启明, 等, 1998. 南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件. 科学通报, 43(8): 797-810. doi: 10.3321/j.issn:0023-074X.1998.08.003 李三忠, 索艳慧, 刘鑫, 等, 2012a. 南海的盆地群与盆地动力学. 海洋地质与第四纪地质, 32(6): 55-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201206010.htm 李三忠, 索艳慧, 刘鑫, 等, 2012b. 南海的基本构造特征与成因模型: 问题与进展及论争. 海洋地质与第四纪地质, 32(6): 35-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201206009.htm 林间, 李家彪, 徐义刚, 等, 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破. 海洋学报, 41(10): 125-140. doi: 10.3969/j.issn.0253-4193.2019.10.009 刘海龄, 姚永坚, 沈宝云, 等, 2015. 南海西缘结合带的贯通性. 地球科学, 40(4): 615-632. doi: 10.3799/dqkx.2015.049 米立军, 张向涛, 庞雄, 等, 2019. 珠江口盆地形成机制与油气地质. 石油学报, 40(S1): 1-10. doi: 10.7623/syxb2019S1001 任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330 任建业, 雷超, 2011. 莺歌海-琼东南盆地构造-地层格架及南海动力变形分区. 地球物理学报, 54(12): 3303-3314. doi: 10.3969/j.issn.0001-5733.2011.12.028 任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm 孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202103002.htm 孙珍, 刘思青, 庞雄, 等, 2016. 被动大陆边缘伸展-破裂过程研究进展. 热带海洋学报, 35(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201601001.htm 孙珍, 孙龙涛, 周蒂, 等, 2009. 南海岩石圈破裂方式与扩张过程的三维物理模拟. 地球科学, 34(3): 435-447. doi: 10.3321/j.issn:1000-2383.2009.03.008 唐武, 王英民, 杨彩虹, 等, 2013. 琼东南盆地南部深水区生物礁演化规律及主控因素. 天然气地球科学, 24(5): 965-974. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201305012.htm 王崇友, 何希贤, 裘松余, 1979. 西沙群岛西永-井碳酸盐岩地层与微体古生物的初步研究. 石油实验地质, 1: 23-38. doi: 10.11781/sysydz197900023 王强, 赵明辉, 张浩宇, 等, 2020. 基于重处理数据的南海西北次海盆地壳速度结构. 中国科学(D辑), 50(11): 1553-1568. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202011003.htm 姚伯初, 1995. 中南-礼乐断裂的特征及其构造意义. 南海地质研究, 1-14. 袁野, 赵明辉, 贺恩远, 等, 2021. 张裂陆缘地壳结构特征与张裂模式. 地球科学, 46(3): 801-816. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202103004.htm 岳军培, 张艳, 沈怀磊, 等, 2013. 华南陆缘地质特征对南海北部盆地基底的约束. 石油学报, 34(S2): 120-128. doi: 10.7623/syxb2013S2014 张功成, 贾庆军, 王万银, 等, 2018. 南海构造格局及其演化. 地球物理学报, 61(10): 4194-4215. doi: 10.6038/cjg2018L0698 周蒂, 王万银, 庞雄, 等, 2006. 地球物理资料所揭示的南海东北部中生代俯冲增生带. 中国科学(D辑), 36(3): 209-218. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200603000.htm 朱伟林, 米立军, 2010. 中国海域含油气盆地图集. 北京: 石油工业出版社. 邹和平, 2001. 南海北部陆缘张裂——岩石圈拆沉的地壳响应. 海洋地质与第四纪地质, 21(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200101007.htm -