Numerical Analysis of Estimating Groundwater Velocity through Single-Well Push-Pull Test
-
摘要: 为了分析注入阶段地下水流速及含水层弥散度对单井注抽试验解析模型测算地下水流速的影响机理,通过采用GMS(groundwater modeling system)软件建立了单井注抽试验数值模型,通过与Leap and Kaplan(1988)近似解析模型计算结果对比分析上述因素对解析模型计算结果的影响.研究结果表明:地下水流速越大或自由迁移阶段时间越长,近似解析模型计算的误差越大;注入阶段地下水流速的作用对溶质羽质心迁移的影响较小,故近似解析模型中考虑注入阶段质心位移会导致计算误差增大;含水层弥散度越大,解析模型计算的误差越大.总体而言,注入阶段地下水流速对近似解析模型计算结果影响较小,而弥散度有着显著的影响.Abstract: For the purpose of analyzingthe influencingmechanism of groundwater flow velocity in the injection phase (GFVIP) and dispersivity on calculation of groundwater velocity, this study employed GMS (Groundwater Modeling System)to develop numerical models of single-well push-pull (SWPP) test, and the numerical results are compared with theapproximately analytical ones of Leap and Kaplan (1988)to uncover the effects of GFVIP and dispersivity on the calculation accuracy of the analytical model. The results indicate that a larger groundwater velocity or a longer drift time results in a larger misestimation of groundwater velocity bythe model of Leap and Kaplan (1988); GFVIP has little impact on the migration distance of solute plumecentroid, thus the impact of GFIP on the approximately analytical model can be neglected. Additionally, a greater dispersivity results in a more significant calculation error by the model of Leap and Kaplan (1988). Overall, the GFVIP has limited influence on the calculation results by the approximately analytical modelof Leap and Kaplan (1988), while dispersivity has remarkable influence on the estimation accuracy.
-
图 6 SWPP试验计算地下水流速平面示意图
据Paradis et al.(2018)修改
Fig. 6. The conceptual model of single-well push-pull test in a plan view
表 1 模型中默认参数取值
Table 1. Default parameter values used in the model
参数 符号 值 含水层宽度(m) 2W 40 含水层长度(m) 2L 40 含水层厚度(m) M 10 储水系数 Ss 10-6 含水层有效孔隙度 θ 0.3 含水层的渗透系数(m/d) K 8 边界S1的水头(m) H1 21.33 边界S2的水头(m) H2 20 纵向弥散度(m) αL 0.05 注入与抽取的流量(m3/d) Q 15,30 注入阶段时间(h) tinj 2 自由迁移时间(h) tdrift 36 抽水阶段时间(h) tpump 36 表 2 计算的地下水流速
Table 2. Calculated groundwater velocities
tdrift(h) ta(h) va(m/s) vx(m/s) Eva 36 13.2 5.28×10-6 1.03×10-5 0.49 36 11.2 5.07×10-6 9.33×10-6 0.46 36 9.2 4.80×10-6 8.33×10-6 0.42 36 7.1 4.42×10-6 7.33×10-6 0.40 36 3.3 3.31×10-6 5.00×10-6 0.34 36 2.3 2.83×10-6 4.00×10-6 0.29 36 1.5 2.34×10-6 3.00×10-6 0.22 36 1.1 2.02×10-6 2.00×10-6 0.01 -
Chen, K.W., Zhan, H.B., Yang, Q., 2017. Fractional Models Simulating Non-Fickian Behavior in Four-Stage Single-Well Push-Pull Tests. Water Resources Research, 53(11): 9528-9545. https://doi.org/10.1002/2017WR021411 Fan, C.H., Gao, Y.L., Fan, Q., 2017. Regression Analysis of Flow Velocity and Initial Concentration Aboutrepair Lead Contaminated Groundwater with Permeable Reactive Barrier. Journal of Shaanxi University of Science & Technology, (2): 23-27, 55 (in Chinese with English abstract). Fernandez-Garcia, D., Illangasekare, T.H., Rajaram, H., 2004. Conservative and Sorptive Forced-Gradient and Uniform Flow Tracer Tests in a Three-Dimensional Laboratory Test Aquifer. Water Resources Research, 40(10): 2709-2710. https://doi.org/10.1029/2004WR003112 Gu, H.C., Wang, Q.R., Zhan, H.B., 2020. An Improved Approach in Modeling Injection-Withdraw Test of the Partially Penetrating Well. Earth Science, 43(2): 685-692(in Chinese with English abstract). Haggerty, R., Fleming, S.W., Meigs, L.C., et al., 2001. Tracer Tests in a Fractured Dolomite: 2. Analysis of mass Transfer in Single-Well Injection-Withdrawal Tests. Water Resources Research, 37(5): 1129-1142. https://doi.org/10.1029/2000WR900334 Hall, S. H, Luttrell, S.P., Cronin, W.E., 1991. A Method for Estimating Effective Porosity and Ground-Water Velocity. Ground Water, 29(2): 171-174. https://doi.org/10.1016/0148-9062(91)91266-T Jinag, L.Q., Sun, R.L., Liang, X., 2021. Predicting Groundwater Flow and Transport in the Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150-4160(in Chinese with English abstract). Jutta, K., Oliver, P., Schroth, M.H., et al., 2002. Sulfate-Reducing Bacterial Community Response to Carbon Source Amendments in Contaminated Aquifer Microcosms. Fems Microbiology Ecology, (1): 109-118. https://doi.org/10.1016/S0168-6496(02)00307-0 Leap, D.I., Kaplan, P.G., 1988. A Single-Well Tracing Method for Estimating Regional Advective Velocity in a Confined Aquifer: Theory and Preliminary Laboratory Verification. Water Resources Research, 24(24): 993-998. https://doi.org/10.1029/WR024i007p00993 Li, X., Wen, Z., Zhan, H.B., et al., 2019. Skin Effect on Single-Well Push-Pull Tests With the Presence of Regional Groundwater Flow. Journal of Hydrology, 577(12): 123931. https://doi.org/10.1016/j.jhydrol.2019.123931 Matsumoto, S., Machida, I., Hebig, K., et al., 2020. Estimation of Very Slow Groundwater Movement Using a Single-Well Push-Pull Test. Journal of Hydrology, 1: 125676. https://doi.org/10.1016/j.jhydrol.2020.125676 Panteleit, B., Kessels, W., Binot, F., 2006. Mud Tracer Test during Soft Rock Drilling. Water Resources Research, 42(11): 150-152. https://doi.org/10.1029/2005WR004487 Paradis, C.J., Mckay, L.D., Perfect, E., et al., 2019. Correction: Push-Pull Tests for Estimating Effective Porosity: Expanded Analytical Solution and In-Situ Application. Hydrogeology Journal, 27, 437-439. https://doi.org/10.1007/s10040-018-1879-y Paradis, C.J., Mckay, L.D., Perfect, E., et al., 2018. Push-Pull Tests for Estimating Effective Porosity: Expanded Analytical Solution and In-Situ Application. Hydrogeology Journal, 26: 381-393. https://doi.org/10.1007/s10040-017-1672-3 Schroth, M.H., Istok, J.D., 2010. Models to Determine First-Order Rate Coefficients from Single-Well Push-Pull Tests. Ground Water, 44(2): 275-283. https://doi.org/10.1111/j.1745-6584.2005.00107.x Wang, Q.R., Shi, W.G., Zhan, H.B., et al., 2018. Models of Single-Well Push-Pull Test with Mixing Effect in the Wellbore. Water Resources Research, 54: 10155-10171. https://doi.org/10.1029/2018WR023317 Wang, Q.R., Zhan, H.B., 2019. Reactive Transport with Wellbore Storages in a Single-Well Push-Pull Test. Hydrology and Earth System Sciences, 23(4): 2207-2223. https://doi.org/10.5194/hess-2018-181 Wang, Q.R., Zhan, H.B., Wang, Y., 2017. Single-Well Push-Pull Test in Transient Forchheimer Flow Field. Journal of Hydrology, 549: 125-132. https://doi.org/10.1016/j.jhydrol.2017.03.066 Ye, H.J., Zhang, R.X., Wu, P., et al., 2019. Characteristics and Driving Factor of Hydrochemical Evolution in Karst Water in the Critical Zone of Liupanshui Mining Area. Earth Science, 44(9): 2887-2898(in Chinese with English abstract). Zhang, R.Q., 2003. Characteristics of Groundwater Resources and Their Reasonable Development. Hydrogeology & Engineering Geology, (6): 1-5(in Chinese with English abstract). Zhang, Y., Xu, B., Liu, X.H., 2018. Groundwater Contamination and Human Health Risk Assessment in Jinghui Irrigation District, Shaanxi Province. Journal of Jilin University(Earth Science Edition), 48(5): 167-180(in Chinese with English abstract). Zheng, C.Q., Zhi, G.Q., Li, T.F., et al., 2018. Analysis of Current Situation and Countermeasures of Groundwater Pollution in China. Environmental Science Survey, 37(S1): 49-52(in Chinese with English abstract). Zheng, F., Gao, Y.W., Shi, X.Q., et al., 2015. Influence of Groundwater Flow Velocity and Geological Heterogeneity on DNAPL Migration in Saturated Porous Media. Journal of Hydraulic Engineering, (8): 925-933(in Chinese with English abstract). Zhu. Q., Wen, Z., Zhan, H.B., et al., 2020. Optimization Strategies for in Situ Groundwater Remediation by a Vertical Circulation Well Based on Particle-Tracking and Node-Dependent Finite Difference Methods. Water Resources Research, 56(11): 1-12. 顾昊琛, 王全荣, 詹红兵, 2020. 非完整井下单井注抽试验数值模拟方法改进. 地球科学, 43(2): 685-692. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002026.htm 范春辉, 高雅琳, 樊琼, 2017. 流速和初始浓度对可渗透反应墙修复模拟铅污染地下水的回归分析研究. 陕西科技大学学报, (2): 23-27, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-XBQG201702005.htm 蒋立群, 孙蓉琳, 梁杏, 2021. 含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响. 地球科学, 46(11): 4150-4160. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111027.htm 张人权, 2003. 地下水资源特性及其合理开发利用. 水文地质工程地质, (6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200306001.htm 张艳, 徐斌, 刘秀花, 2018. 陕西省泾惠渠灌区地下水污染与人体健康风险评价. 吉林大学学报(地球科学版), 48(5): 167-180. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201805037.htm 叶慧君, 张瑞雪, 吴攀, 等, 2019. 六盘水矿区关键带岩溶水水化学演化特征及驱动因子. 地球科学, 44(9): 2887-2898. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201909007.htm 郑才庆, 支国强, 李田富, 等, 2018. 我国地下水污染现状及对策措施分析. 环境科学导刊, 37(S1): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK2018S1014.htm 郑菲, 高燕维, 施小清, 等, 2015. 地下水流速及介质非均质性对重非水相流体运移的影响. 水利学报, (8): 925-933. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201508006.htm -