• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地质样品卤族元素分析进展

    何焘 汪在聪 胡兆初

    何焘, 汪在聪, 胡兆初, 2021. 地质样品卤族元素分析进展. 地球科学, 46(12): 4452-4469. doi: 10.3799/dqkx.2021.117
    引用本文: 何焘, 汪在聪, 胡兆初, 2021. 地质样品卤族元素分析进展. 地球科学, 46(12): 4452-4469. doi: 10.3799/dqkx.2021.117
    He Tao, Wang Zaicong, Hu Zhaochu, 2021. Advances in Analysis for Halogens in Geological Materials. Earth Science, 46(12): 4452-4469. doi: 10.3799/dqkx.2021.117
    Citation: He Tao, Wang Zaicong, Hu Zhaochu, 2021. Advances in Analysis for Halogens in Geological Materials. Earth Science, 46(12): 4452-4469. doi: 10.3799/dqkx.2021.117

    地质样品卤族元素分析进展

    doi: 10.3799/dqkx.2021.117
    基金项目: 

    国家自然科学基金面上项目 41873029

    详细信息
      作者简介:

      何焘(1992-), 男, 博士后, 主要从事分析地球化学研究.ORCID: 0000-0002-1074-2089.E-mail: taohe1992@sina.com

    • 中图分类号: P599

    Advances in Analysis for Halogens in Geological Materials

    • 摘要: 地质样品中卤素是反演与流体和挥发分相关的地质过程的重要示踪元素.由于卤素含量低和强挥发性,准确测定地质样品中卤素一直是分析地球化学的难点.近年来,针对地质样品卤素的样品前处理技术的开发开展了大量工作.高温热解法、碱熔(溶)法、酸性消解法和碱性提取法能够满足土壤、沉积物和岩石中高含量卤素的分析要求.针对低含量卤素,仅有中子活化法和稀有气体质谱法能够准确定量.随着分析地球化学的发展,地质样品卤素分析技术逐渐向更高效的消解方法、更简便的操作以及更高灵敏度和高精度的分析方向改进.总结了近年来国内外在地质样品卤素分析方面所取得的成果,对比了各类方法的优缺点,展望了地质样品卤素分析方法的发展前景.

       

    • 图  1  地球上不同卤素储库的Br/Cl和I/Cl比值与不同矿床类型流体的Br/Cl和I/Cl比值(改自Lecumberri-Sanchez and Bodnar, 2018)

      Fig.  1.  Characteristic Br/Cl and I/Cl ratios of the different halogen reservoirs on the Earth and fluids in different ore deposit types(revised from Lecimberri-Sanchez and Bodnar, 2018)

      图  2  国内土壤(GSS系列)和沉积物(GSD系列)标准物质和国际岩石标准物质(玄武岩BHVO-2、安山岩AGV-2、花岗岩GS-N和橄榄岩JP-1)中Br (a)和I (b)的测定值

      Fig.  2.  The measured values of Br (a) and I (b) in reference standard materials including soils (GSS series), sediments (GSD series) and rocks (basalt BHVO-2, andesite AGV-2, granite GS-N and peridotite JP-1)

      图  3  高温热解法装置(改自Chai and Muramatsu, 2007)

      Fig.  3.  The schematic diagram of pyrohydrolysis (revised from Chai and Muramatsu, 2007)

      图  4  氟化氢铵消解卤素分析方法机理图(改自He et al., 2019)

      Fig.  4.  The decomposition mechanism of NH4HF2 digestion for halogen analysis (revised from He et al., 2019)

      图  5  79Br中子活化过程示意(改自Ruzié-Hamilton et al., 2016)

      Fig.  5.  The schematic of neutron irradiation for 79Br(revised from Ruzié-Hamilton et al., 2016)

      图  6  在电离温度Tion=7 500 K时,理论计算的各元素的电离程度

      Fig.  6.  Calculated values for degree of ionization of various elements at Tion=7 500 K

      表  1  地球各个储库的卤素丰度

      Table  1.   Abundances of halogens on Earth

      储库类型 储库总质量(1021 kg) F(μg/g) Cl(μg/g) Br(μg/g) I(μg/g)
      海水 1.4±0.7 1.30±0.07 19 300±970 66±3.3 0.058±0.006
      蒸发盐 0.030±0.005 10±10 550 000±50 000 150±100 1±1
      海洋沉积物 0.5±0.1 1 000±300 4 000±3 000 40±20 30±15
      沉积岩 1.5±0.3 550±100 700±400 4±3 1.5±1.0
      地壳卤水 0.06±0.03 20±15 100 000±50 000 600±400 15±10
      地壳 26±3 550±100 300±100 0.60±0.25 0.018±0.009
      地幔 2 800±800 12±2 5±2 0.013±0.006 0.000 3±0.000 01
      原始地幔 4 040 17±6 26±8 76±25 0.007±0.004
        注:数据引自Kendrick et al.(2017).
      下载: 导出CSV

      表  2  卤素的质谱干扰所需分辨率

      Table  2.   The resolution to resolve the spectral interferences on halogens

      被测元素 干扰离子 所需分辨率(M/ΔM)
      19F+ 38Ar2+ 1 116
      18O1H+ 1 160
      35Cl+ 19F16O+ 1 430
      18O18O1H+ 1 059
      37Cl+ 36Ar1H+ 4 680
      79Br+ 63Cu16O+ 12 790
      41K38Ar+ 12 688
      39K40Ar+ 10 184
      40Ar38Ar1H+ 5 405
      81Br+ 65Cu16O+ 12 624
      45Sc36Ar+ 11 286
      41K40Ar+ 10 217
      63Cu18O+ 6 489
      40Ar40Ar1H+ 4 965
      127I+ 87Sr40Ar+ 3 822
      87Rb40Ar+ 3 854
      111Cd16O+ 23 545
      下载: 导出CSV
    • [1] Adam, J., Green, T., 2006. Trace Element Partitioning between Mica- and Amphibole-Bearing Garnet Lherzolite and Hydrous Basanitic Melt: 1. Experimental Results and the Investigation of Controls on Partitioning Behaviour. Contributions to Mineralogy and Petrology, 152(1): 1-17. https://doi.org/10.1007/s00410-006-0085-4
      [2] Anazawa, K., Tomiyasu, T., Sakamoto, H., 2001. Simultaneous Determination of Fluorine and Chlorine in Rocks by Ion Chromatography in Combination with Alkali Fusion and Cation-Exchange Pretreatment. Analytical Sciences, 17(1): 217-219. https://doi.org/10.2116/analsci.17.217
      [3] Balcone-Boissard, H., Michel, A., Villemant, B., 2009. Simultaneous Determination of Fluorine, Chlorine, Bromine and Iodine in Six Geochemical Reference Materials Using Pyrohydrolysis, Ion Chromatography and Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 33(4): 477-485. https://doi.org/10.1111/j.1751-908x.2009.00018.x doi: 10.1111/j.1751-908X.2009.00018.x
      [4] Barbosa, J.T.P., Santos, C.M.M., dos Santos Bispo, L., et al., 2013. Bromine, Chlorine, and Iodine Determination in Soybean and Its Products by ICP-MS after Digestion Using Microwave-Induced Combustion. Food Analytical Methods, 6(4): 1065-1070. https://doi.org/10.1007/s12161-012-9511-6
      [5] Blackwell, P.A., Cave, M.R., Davis, A.E., et al., 1997. Determination of Chlorine and Bromine in Rocks by Alkaline Fusion with Ion Chromatography Detection. Journal of Chromatography A, 770(1-2): 93-98. https://doi.org/10.1016/s0021-9673(97)00028-9 doi: 10.1016/S0021-9673(97)00028-9
      [6] Bodkin, J.B., 1977. Determination of Fluorine in Silicates by Use of an Ion-Selective Electrode Following Fusion with Lithium Metaborate. Analyst, 102(1215): 409-413. http://doi.org/10.1039/an9770200409
      [7] Boulyga, S.F., Heumann, K.G., 2005. Direct Determination of Halogens in Powdered Geological and Environmental Samples Using Isotope Dilution Laser Ablation ICP-MS. International Journal of Mass Spectrometry, 242(2-3): 291-296. https://doi.org/10.1016/j.ijms.2004.10.028
      [8] Broadley, M.W., Barry, P.H., Ballentine, C.J., et al., 2018. End-Permian Extinction Amplified by Plume-Induced Release of Recycled Lithospheric Volatiles. Nature Geoscience, 11(9): 682-687. https://doi.org/10.1038/s41561-018-0215-4
      [9] Bu, X.D., Wang, T.B., Hall, G., 2003. Determination of Halogens in Organic Compounds by High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS). Journal of Analytical Atomic Spectrometry, 18(12): 1443-1451. https://doi.org/10.1039/b306570g
      [10] Caulfield, J.T., Tomlinson, E.L., Chew, D.M., et al., 2020. Microanalysis of Cl, Br and I in Apatite, Scapolite and Silicate Glass by LA-ICP-MS. Chemical Geology, 557: 119854. http://doi.org/10.1016/j.chemgeo.2020.119854
      [11] Chai, J.Y., Muramatsu, Y., 2007. Determination of Bromine and Iodine in Twenty-Three Geochemical Reference Materials by ICP-MS. Geostandards and Geoanalytical Research, 31(2): 143-150. https://doi.org/10.1111/j.1751-908x.2007.00856.x doi: 10.1111/j.1751-908X.2007.00856.x
      [12] Chew, D.M., Donelick, R.A., Donelick, M.B., et al., 2014. Apatite Chlorine Concentration Measurements by LA-ICP-MS. Geostandards and Geoanalytical Research, 38(1): 23-35. https://doi.org/10.1111/j.1751-908X.2013.00246.x
      [13] Claret, F., Lerouge, C., Laurioux, T., et al., 2010. Natural Iodine in a Clay Formation: Implications for Iodine Fate in Geological Disposals. Geochimica et Cosmochimica Acta, 74(1): 16-29. http://doi.org/10.1016/j.gca.2009.09.030
      [14] Clay, P.L., Burgess, R., Busemann, H., et al., 2017. Halogens in Chondritic Meteorites and Terrestrial Accretion. Nature, 551: 614-618. https://doi.org/10.1038/nature24625
      [15] Cortizas, A.M., Vázquez, C.F., Kaal, J., et al., 2016. Bromine Accumulation in Acidic Black Colluvial Soils. Geochimica et Cosmochimica Acta, 174: 143-155. https://doi.org/10.1016/j.gca.2015.11.013
      [16] Date, A.R., Stuart, M.E., 1988. Application of Inductively Coupled Plasma Mass Spectrometry to the Simultaneous Determination of Chlorine, Bromine and Iodine in the National Bureau of Standards Standard Reference Material 1648 Urban Particulate. Journal of Analytical Atomic Spectrometry, 3(5): 659-665. https://doi.org/10.1039/ja9880300659
      [17] de Gois, J.S., Costas-Rodriguez, M., Vallelonga, P., et al., 2016a. A Simple Method for High-Precision Isotopic Analysis of Chlorine via Pneumatic Nebulization Multi-Collector Inductively Coupled Plasma-Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 31(2): 537-542. https://doi.org/10.1039/c5ja00408j doi: 10.1039/C5JA00408J
      [18] de Gois, J.S., Vallelonga, P., Spolaor, A., et al., 2016b. Bromine Isotope Ratio Measurements in Seawater by Multi-Collector Inductively Coupled Plasma-Mass Spectrometry with a Conventional Sample Introduction System. Analytical and Bioanalytical Chemistry, 408(2): 409-416. https://doi.org/10.1007/s00216-015-8820-1
      [19] Ebihara, M., Ozaki, H., Kato, F., et al., 1997. Determination of Chlorine, Bromine and Iodine in Rock Samples by Radiochemical Neutron Activation Analysis. Journal of Radioanalytical and Nuclear Chemistry, 216(1): 107-112. https://doi.org/10.1007/bf02034504 doi: 10.1007/BF02034504
      [20] Flores, E. M. M., Mello, P. A., Krzyzaniak, S. R., et al., 2020. Challenges and Trends for Halogen Determination by Inductively Coupled Plasma Mass Spectrometry: A Review. Rapid Communications in Mass Spectrometry, 34: e8727. https://doi.org/10.1002/rcm.8727
      [21] Frenzel, M., Cook, N.J., Ciobanu, C.L., et al., 2020. Halogens in Hydrothermal Sphalerite Record Origin of Ore-Forming Fluids. Geology, 48(8): 766-770. https://doi.org/10.1130/g47087.1 doi: 10.1130/G47087.1
      [22] Fusswinkel, T., Giehl, C., Beermann, O., et al., 2018. Combined LA-ICP-MS Microanalysis of Iodine, Bromine and Chlorine in Fluid Inclusions. Journal of Analytical Atomic Spectrometry, 33(5): 768-783. https://doi.org/10.1039/c7ja00415j doi: 10.1039/C7JA00415J
      [23] Gao, Y.C., Gao, Q.F., Sun, M.X., et al., 2007. Simultaneous Determination of Arsenic, Bromine, Iodine in Coal and Coke by Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion. Chinese Journal of Analytical Chemistry, 35(8): 1175-1178. https://doi.org/10.1016/s1872-2040(07)60077-2 doi: 10.1016/S1872-2040(07)60077-2
      [24] Gao, Y.C., Sun, M.X., Wu, X.W., et al., 2010. Concentration Characteristics of Bromine and Iodine in Aerosols in Shanghai, China. Atmospheric Environment, 44(34): 4298-4302. https://doi.org/10.1016/j.atmosenv.2010.05.047
      [25] Gómez-Guzmán, J.M., Enamorado-Báez, S.M., Pinto-Gómez, A.R., et al., 2011. Microwave-Based Digestion Method for Extraction of 127I and 129I from Solid Material for Measurements by AMS and ICP-MS. International Journal of Mass Spectrometry, 303(2-3): 103-108. https://doi.org/10.1016/j.ijms.2011.01.006
      [26] Gubal, A., Chuchina, V., Sorokina, A., et al., 2021. Mass Spectrometry-Based Techniques for Direct Quantification of High Ionization Energy Elements in Solid Materials-Challenges and Perspectives. Mass Spectrometry Reviews, 40(4): 359-380. https://doi.org/10.1002/mas.21643
      [27] Guo, W., Jin, L.L., Hu, S.H., et al., 2017. Method Development for the Determination of Total Fluorine in Foods by Tandem Inductively Coupled Plasma Mass Spectrometry with a Mass-Shift Strategy. Journal of Agricultural and Food Chemistry, 65(16): 3407-3413. https://doi.org/10.1021/acs.jafc.7b00535
      [28] Guo, W., Liu, X., Hu, S.H., 2020. Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications. Earth Science, 45(4): 1362-1374(in Chinese with English abstract).
      [29] Hammerli, J., Rusk, B., Spandler, C., et al., 2013. In Situ Quantification of Br and Cl in Minerals and Fluid Inclusions by LA-ICP-MS: A Powerful Tool to Identify Fluid Sources. Chemical Geology, 337-338: 75-87. https://doi.org/10.1016/j.chemgeo.2012.12.002
      [30] He, T., Hu, Z.C., Zhang, W., et al., 2019. Determination of Cl, Br, and I in Geological Materials by Sector Field Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 91(13): 8109-8114. https://doi.org/10.1021/acs.analchem.9b00180
      [31] He, T., Xie, J.Y., Hu, Z.C., et al., 2018. A Rapid Acid Digestion Technique for the Simultaneous Determination of Bromine and Iodine in Fifty-Three Chinese Soils and Sediments by ICP-MS. Geostandards and Geoanalytical Research, 42(3): 309-318. https://doi.org/10.1111/ggr.12212
      [32] Hou, X.L., Chai, C.F., Qian, Q.F., et al., 1997. Determination of Bromine and Iodine in Biological and Environmental Materials Using Epithermal Neutron Activation Analysis. Fresenius' Journal of Analytical Chemistry, 357(8): 1106-1110. https://doi.org/10.1007/s002160050314
      [33] Hu, R.G., Zhao, Y.L., Cai, Y.F., et al., 2020. Characteristics of Biotite in the Granite Porphyry and Its Significance for Petrogenesis and Mineralization of Dachang Sn-Polymetallic Ore Deposit, Guangxi. Earth Science, 45(4): 1213-1226(in Chinese with English abstract).
      [34] Hu, Z.C., Qi, L., 2014. Sample Digestion Methods. In: Turekian, K.K., ed. Treatise on Geochemistry. Elsevier, Oxford, 87-109.
      [35] Huang, W.H., Johns, W.D., 1967. Simultaneous Determination of Fluorine and Chlorine in Silicate Rocks by a Rapid Spectrophotometric Method. Analytica Chimica Acta, 37: 508-515. https://doi.org/10.1016/s0003-2670(01)80714-5 doi: 10.1016/S0003-2670(01)80714-5
      [36] Jamari, N.L.A., Behrens, A., Raab, A., et al., 2018. Plasma Processes to Detect Fluorine with ICPMS/MS as[M-F]+: An Argument for Building a Negative Mode ICPMS/MS. Journal of Analytical Atomic Spectrometry, 33(8): 1304-1309. https://doi.org/10.1039/c8ja00050f doi: 10.1039/C8JA00050F
      [37] Jones, G.B., Belling, G.B., Buckley, R.A., 1979. Recovery of Iodine as Iodine-125 from Biological Materials Prior to Assay. Analyst, 104(1238): 469-471. https://doi.org/10.1039/AN9790400469 doi: 10.1039/an9790400469
      [38] Kendrick, M.A., 2012. High Precision Cl, Br and I Determinations in Mineral Standards Using the Noble Gas Method. Chemical Geology, 292-293: 116-126. https://doi.org/10.1016/j.chemgeo.2011.11.021
      [39] Kendrick, M.A., Burgess, R., Pattrick, R.A.D., et al., 2001. Fluid Inclusion Noble Gas and Halogen Evidence on the Origin of Cu-Porphyry Mineralising Fluids. Geochimica et Cosmochimica Acta, 65(16): 2651-2668. https://doi.org/10.1016/s0016-7037(01)00618-4 doi: 10.1016/S0016-7037(01)00618-4
      [40] Kendrick, M.A., Caulfield, J.T., Nguyen, A.D., et al., 2020. Halogen and Trace Element Analysis of Carbonate-Veins and Fe-Oxyhydroxide by LA-ICP-MS: Implications for Seafloor Alteration, Atlantis Bank, SW Indian Ridge. Chemical Geology, 547: 119668. https://doi.org/10.1016/j.chemgeo.2020.119668
      [41] Kendrick, M.A., D'Andres, J., Holden, P., et al., 2018. Halogens (F, Cl, Br, I) in Thirteen USGS, GSJ and NIST International Rock and Glass Reference Materials. Geostandards and Geoanalytical Research, 42(4): 499-511. https://doi.org/10.1111/ggr.12229
      [42] Kendrick, M.A., Hémond, C., Kamenetsky, V.S., et al., 2017. Seawater Cycled throughout Earth's Mantle in Partially Serpentinized Lithosphere. Nature Geoscience, 10(3): 222-228. http://doi.org/10.1038/ngeo2902
      [43] Kendrick, M.A., Honda, M., Vanko, D.A., 2015. Halogens and Noble Gases in Mathematician Ridge Meta-Gabbros, NE Pacific: Implications for Oceanic Hydrothermal Root Zones and Global Volatile Cycles. Contributions to Mineralogy and Petrology, 170: 43. https://doi.org/10.1007/s00410-015-1192-x
      [44] Kendrick, M.A., Kamenetsky, V.S., Phillips, D., et al., 2012a. Halogen Systematics (Cl, Br, I) in Mid-Ocean Ridge Basalts: A Macquarie Island Case Study. Geochimica et Cosmochimica Acta, 81: 82-93. https://doi.org/10.1016/j.gca.2011.12.004
      [45] Kendrick, M.A., Woodhead, J.D., Kamenetsky, V.S., 2012b. Tracking Halogens through the Subduction Cycle. Geology, 40(12): 1075-1078. http://doi.org/10.1130/g33265.1 doi: 10.1130/G33265.1
      [46] la Rosa Novo, D., Pereira, R.M., Henn, A.S., et al., 2019. Are There Feasible Strategies for Determining Bromine and Iodine in Human Hair Using Interference-Free Plasma Based-Techniques? Analytica Chimica Acta, 1060: 45-52. http://doi.org/10.1016/j.aca.2019.01.032
      [47] Langenauer, M., Krahenbuhl, U., Furrer, V., et al., 1992. Determination of Fluorine, Chlorine, Bromine and Iodine in 7 Geochemical Reference Samples. Geostandards Newsletter, 16(1): 41-44. https://doi.org/10.1111/j.1751-908x.1992.tb00485.x doi: 10.1111/j.1751-908X.1992.tb00485.x
      [48] Lecumberri-Sanchez, P., Bodnar, R.J., 2018. Halogen Geochemistry of Ore Deposits: Contributions towards Understanding Sources and Processes. In: Harlov, D.E., Aranovich, L., eds., The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Springer International Publishing, Cham, 261-305
      [49] Li, B., He, H.L., Shi, S.Y., et al., 2002. Simultaneous Determination of Iodine, Bromine, Selenium and Arsenic in Geological Samples by Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 17(4): 371-376. https://doi.org/10.1039/b107161k
      [50] Li, B., He, H.L., Shi, S.Y., et al., 2001a. Determination of Trace Iodine, Bromine, Selenium and Arsenic in Geological Samples by Inductively Coupled Plasma Mass Spectrometry I. Signal Response of Different Anion Species in Mediums. Rock and Mineral Analysis, 20(3): 161-166(in Chinese with English abstract).
      [51] Li, B., Ma, X.R., Han, L.R., et al., 2004. Pressurised Extraction Using Dilute Ammonia: A Simple Method for Determination of Iodine in Soil, Sediment and Biological Samples by Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(2): 317-323. http://doi.org/10.1111/j.1751-908x.2004.tb00747.x doi: 10.1111/j.1751-908X.2004.tb00747.x
      [52] Li, B., Shi, S.Y., He, H.L., et al., 2001b. Determination of Trace Iodine, Bromine, Selenium and Arsenic in Geological Samples by ICP-MS with Half-Melting Sample Treatment Ⅱ. Analysis of Soil and Sediment Standard Reference Materials. Rock and Mineral Analysis, 20(4): 241-246(in Chinese with English abstract).
      [53] Li, J., Zhong, L.F., Cui, X.J., et al., 2006. Precise Determination of Iodine in Soil Samples by ICP-MS with Carius Tube and Standard Addition Method. Rock and Mineral Analysis, 25(1): 19-21(in Chinese with English abstract).
      [54] Liu, J.C., 1993. Determination Chlorine, Bromine, Iodine in the Samples of Rocks, Soils, Stream Sediments Using the Ion Exchange Chromatography Method. Jilin Geology, 12(4): 82-90(in Chinese with English abstract).
      [55] Liu, W., Yang, H.X., Li, B., 2008. Recent Development of Methods for Iodine Analysis. Rock and Mineral Analysis, 27(2): 127-136(in Chinese with English abstract).
      [56] Liu, W., Yang, H.X., Li, B., et al., 2010. Determination of Iodine Concentration in Plant Samples by Inductively Coupled Plasma Mass Spectrometry with Ethanol as a Signal Enhancer. Chinese Journal of Analysis Laboratory, 29(6): 31-33(in Chinese with English abstract).
      [57] Liu, X., Liu, J.Y., Ni, L.J., et al., 2018. Determination of Halogens in Coal by Ion Chromatography Coupled with High Temperature Pyrolysis Pretreatment. Physical Testing and Chemical Analysis Part B: Chemical Aanalysis, 54(1): 39-43(in Chinese with English abstract).
      [58] Lu, Z., Jenkyns, H.C., Rickaby, R.E.M., 2010. Iodine to Calcium Ratios in Marine Carbonate as a Paleo-Redox Proxy during Oceanic Anoxic Events. Geology, 38(12): 1107-1110. http://doi.org/10.1130/g31145.1 doi: 10.1130/G31145.1
      [59] Ma, X.R., Li, B., Han, L.R., 2003. Determination of Total Iodine and Bromine in Soil, Sediment and Biological Samples by Inductively Coupled Plasma Mass Spectrometry with Dilute Ammonia Pressurizing Decomposition. Rock and Mineral Analysis, 22(3): 174-178(in Chinese with English abstract).
      [60] Marks, M.A.W., Kendrick, M.A., Eby, G.N., et al., 2017. The F, Cl, Br and I Contents of Reference Glasses BHVO-2G, BIR-1G, BCR-2G, GSD-1G, GSE-1G, NIST SRM 610 and NIST SRM 612. Geostandards and Geoanalytical Research, 41(1): 107-122. https://doi.org/10.1111/ggr.12128
      [61] Mei, Y., Sherman, D.M., Liu, W.H., et al., 2013. Ab Initio Molecular Dynamics Simulation and Free Energy Exploration of Copper (Ⅰ) Complexation by Chloride and Bisulfide in Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 102: 45-64. https://doi.org/10.1016/j.gca.2012.10.027
      [62] Mello, P.A., Barin, J.S., Duarte, F.A., et al., 2013. Analytical Methods for the Determination of Halogens in Bioanalytical Sciences: A Review. Analytical Bioanalytical Chemistry, 405(24): 7615-7642. http://doi.org/10.1007/s00216-013-7077-9
      [63] Mesko, M.F., Costa, V.C., Picoloto, R.S., et al., 2016. Halogen Determination in Food and Biological Materials Using Plasma-Based Techniques: Challenges and Trends of Sample Preparation. Journal of Analytical Atomic Spectrometry, 31(6): 1243-1261. http://doi.org/10.1039/c5ja00488h doi: 10.1039/C5JA00488H
      [64] Michel, A., Villemant, B., 2003. Determination of Halogens (F, Cl, Br, I), Sulfur and Water in Seventeen Geological Reference Materials. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 27(2): 163-171. https://doi.org/10.1111/j.1751-908x.2003.tb00643.x doi: 10.1111/j.1751-908X.2003.tb00643.x
      [65] Migdisov, A.A., Williams-Jones, A.E., 2014. Hydrothermal Transport and Deposition of the Rare Earth Elements by Fluorine-Bearing Aqueous Liquids. Mineralium Deposita, 49(8): 987-997. https://doi.org/10.1007/s00126-014-0554-z
      [66] Migdisov, A.A., Zezin, D., Williams-Jones, A.E., 2011. An Experimental Study of Cobalt (Ⅱ) Complexation in Cl- and H2S-Bearing Hydrothermal Solutions. Geochimica et Cosmochimica Acta, 75(14): 4065-4079. https://doi.org/10.1016/j.gca.2011.05.003
      [67] Muramatsu, Y., Wedepohl, K.H., 1998. The Distribution of Iodine in the Earth's Crust. Chemical Geology, 147(3-4): 201-216. https://doi.org/10.1016/s0009-2541(98)00013-8 doi: 10.1016/S0009-2541(98)00013-8
      [68] Niu, H.S., Houk, R.S., 1996. Fundamental Aspects of Ion Extraction in Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 51(8): 779-815. http://doi.org/10.1016/0584-8547(96)01506-6
      [69] O'Hara, M.J., Kellogg, C.M., Parker, C.M., et al., 2017. Decomposition of Diverse Solid Inorganic Matrices with Molten Ammonium Bifluoride Salt for Constituent Elemental Analysis. Chemical Geology, 466: 341-351. https://doi.org/10.1016/j.chemgeo.2017.06.023
      [70] Ohata, M., Miura, T., 2014. Accurate Determination and Certification of Bromine in Plastic by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Analytica Chimica Acta, 837: 23-30. https://doi.org/10.1016/j.aca.2014.06.023
      [71] Oliveira, A.A., Trevizan, L.C., Nóbrega, J.A., 2010. Review: Iodine Determination by Inductively Coupled Plasma Spectrometry. Applied Spectroscopy Reviews, 45(6): 447-473. https://doi.org/10.1080/05704928.2010.502207
      [72] Pagé, L., Hattori, K., de Hoog, J.C.M., et al., 2016. Halogen (F, Cl, Br, I) Behaviour in Subducting Slabs: A Study of Lawsonite Blueschists in Western Turkey. Earth and Planetary Science Letters, 442: 133-142. https://doi.org/10.1016/j.epsl.2016.02.054
      [73] Parker, A.P., Clay, P.L., Burgess, R., et al., 2019. Halogen Cycling and Precious Metal Enrichment in Sub-Volcanic Magmatic Systems: Insights from the Rum Layered Intrusion, Scotland. Earth and Planetary Science Letters, 526: 115769. https://doi.org/10.1016/j.epsl.2019.115769
      [74] Peng, B., Wu, D., Lai, J., et al., 2012. Simultaneous Determination of Halogens (F, Cl, Br, and I) in Coal Using Pyrohydrolysis Combined with Ion Chromatography. Fuel, 94: 629-631. http://doi.org/10.1016/j.fuel.2011.12.011
      [75] Peng, B.X., Wu, D.S., 2013. Simultaneous Rapid Determination of Halogens in Clay Using Pyrohydrolysis Combined with Ion Chromatography. Chinese Journal of Analytical Chemistry, 41(10): 1499-1504. https://doi.org/10.3724/sp.j.1096.2013.30374 doi: 10.1016/S1872-2040(13)60683-0
      [76] Pereira, J.S.F., Mello, P.A., Duarte, F.A., et al., 2009. Feasibility of Microwave-Induced Combustion for Digestion of Crude Oil Vacuum Distillation Residue for Chlorine Determination. Energy & Fuels, 23(12): 6015-6019. https://doi.org/10.1021/ef900707n
      [77] Pereira, L.S.F., Pedrotti, M.F., Enders, M.S.P., et al., 2017. Multitechnique Determination of Halogens in Soil after Selective Volatilization Using Microwave-Induced Combustion. Analytical Chemistry, 89(1): 980-987. http://doi.org/10.1021/acs.analchem.6b04300
      [78] Pereira, L.S.F., Enders, M.S.P., Iop, G.D., et al., 2018a. Determination of Cl, Br and I in Soils by ICP-MS: Microwave-Assisted Wet Partial Digestion Using H2O2 in an Ultra-High Pressure System. Journal of Analytical Atomic Spectrometry, 33(4): 649-657. http://doi.org/10.1039/c7ja00365j doi: 10.1039/C7JA00365J
      [79] Pereira, L.S.F., Pedrotti, M.F., Vecchia, P.D., et al., 2018b. A Simple and Automated Sample Preparation System for Subsequent Halogens Determination: Combustion Followed by Pyrohydrolysis. Analytica Chimica Acta, 1010: 29-36. https://doi.org/10.1016/j.aca.2018.01.034
      [80] Qiu, Z.J., Fan, H.R., Tomkins, A., et al., 2021. Insights into Salty Metamorphic Fluid Evolution from Scapolite in the Trans-North China Orogen: Implication for Ore Genesis. Geochimica et Cosmochimica Acta, 293: 256-276. https://doi.org/10.1016/j.gca.2020.10.030
      [81] Read, K.A., Mahajan, A.S., Carpenter, L.J., et al., 2008. Extensive Halogen-Mediated Ozone Destruction over the Tropical Atlantic Ocean. Nature, 453: 1232-1235. https://doi.org/10.1038/nature07035
      [82] Rottier, B., Audétat, A., 2019. In-Situ Quantification of Chlorine and Sulfur in Glasses, Minerals and Melt Inclusions by LA-ICP-MS. Chemical Geology, 504: 1-13. https://doi.org/10.1016/j.chemgeo.2018.11.012
      [83] Ruzié-Hamilton, L., Clay, P.L., Burgess, R., et al., 2016. Determination of Halogen Abundances in Terrestrial and Extraterrestrial Samples by the Analysis of Noble Gases Produced by Neutron Irradiation. Chemical Geology, 437: 77-87. https://doi.org/10.1016/j.chemgeo.2016.05.003
      [84] Schnetger, B., Muramatsu, Y., 1996. Determination of Halogens, with Special Reference to, Iodine, in Geological and Biological Samples Using Pyrohydrolysis for Preparation and Inductively Coupled Plasma Mass Spectrometry and Ion Chromatography for Measurement. Analyst, 121(11): 1627-1631. https://doi.org/10.1039/an9962101627
      [85] Sekimoto, S., Ebihara, M., 2013. Accurate Determination of Chlorine, Bromine, and Iodine in Sedimentary Rock Reference Samples by Radiochemical Neutron Activation Analysis and a Detailed Comparison with Inductively Coupled Plasma Mass Spectrometry Literature Data. Analytical Chemistry, 85(13): 6336-6341. http://doi.org/10.1021/ac400637d
      [86] Sekimoto, S., Ebihara, M., 2017. Accurate Determination of Chlorine, Bromine and Iodine in U.S. Geological Survey Geochemical Reference Materials by Radiochemical Neutron Activation Analysis. Geostandards and Geoanalytical Research, 41(2): 213-219. http://doi.org/10.1111/ggr.12145
      [87] Seo, J.H., Guillong, M., Aerts, M., et al., 2011. Microanalysis of S, Cl, and Br in Fluid Inclusions by LA-ICP-MS. Chemical Geology, 284(1-2): 35-44. https://doi.org/10.1016/j.chemgeo.2011.02.003
      [88] Shell, H.R., Craig, R.L., 1954. Determination of Silica and Fluoride in Fluorosilicates. Analytical Chemistry, 26(6): 996-1001. https://doi.org/10.1021/ac60090a012
      [89] Shelor, C.P., Dasgupta, P.K., 2011. Review of Analytical Methods for the Quantification of Iodine in Complex Matrices. Analytica Chimica Acta, 702(1): 16-36. https://doi.org/10.1016/j.aca.2011.05.039
      [90] Shimizu, K., Itai, T., Kusakabe, M., 2006. Ion Chromatographic Determination of Fluorine and Chlorine in Silicate Rocks Following Alkaline Fusion. Geostandards and Geoanalytical Research, 30(2): 121-129. https://doi.org/10.1111/j.1751-908x.2006.tb00919.x doi: 10.1111/j.1751-908X.2006.tb00919.x
      [91] Shimizu, K., Suzuki, K., Saitoh, M., et al., 2015. Simultaneous Determinations of Fluorine, Chlorine, and Sulfur in Rock Samples by Ion Chromatography Combined with Pyrohydrolysis. Geochemical Journal, 49(1): 113-124. https://doi.org/10.2343/geochemj.2.0338
      [92] Shtangeeva, I., Niemelä, M., Perämäki, P., et al., 2017. Phytoextration of Bromine from Contaminated Soil. Journal of Geochemical Exploration, 174: 21-28. https://doi.org/10.1016/j.gexplo.2016.03.012
      [93] Song, P., Wen, H.L., 2016. Determination of Bromine and Iodine in Rock, Soil, and Sediments by Inductively Coupled Plasma-Mass Spectrometry Using Pyrohydrolysis with Liquid Nitrogen Trap. Rock and Mineral Analysis, 35(4): 384-388(in Chinese with English abstract).
      [94] Sumino, H., Burgess, R., Mizukami, T., et al., 2010. Seawater-Derived Noble Gases and Halogens Preserved in Exhumed Mantle Wedge Peridotite. Earth and Planetary Science Letters, 294(1-2): 163-172. https://doi.org/10.1016/j.epsl.2010.03.029
      [95] Sun, F.S., Julshamn, K., 1987. An Indirect Determination of Iodine Using Hg in Complexes and Cold Vapour Atomic-Absorption Determination of Mercury. Spectrochimica Acta Part B: Atomic Spectroscopy, 42(7): 889-894. https://doi.org/10.1016/0584-8547(87)80099-x doi: 10.1016/0584-8547(87)80099-X
      [96] Taflik, T., Duarte, F.A., Flores, E.L.M., et al., 2012. Determination of Bromine, Fluorine and Iodine in Mineral Supplements Using Pyrohydrolysis for Sample Preparation. Journal of the Brazilian Chemical Society, 23(3): 488-495. https://doi.org/10.1590/s0103-50532012000300016 doi: 10.1590/S0103-50532012000300016
      [97] Tagami, K., Uchida, S., Hirai, I., et al., 2006. Determination of Chlorine, Bromine and Iodine in Plant Samples by Inductively Coupled Plasma-Mass Spectrometry after Leaching with Tetramethyl Ammonium Hydroxide under a Mild Temperature Condition. Analytica Chimica Acta, 570(1): 88-92. https://doi.org/10.1016/j.aca.2006.04.011
      [98] Takeda, A., Nakao, A., Yamasaki, S.I., et al., 2018. Distribution and Speciation of Bromine and Iodine in Volcanic Ash Soil Profiles. Soil Science Society of America Journal, 82(4): 815-825. https://doi.org/10.2136/sssaj2018.01.0019
      [99] Tanner, S.D., 1995. Characterzation of Ionization and Matrix Suppression in Inductively-Plasma Mass-Spectrometry. Journal of Analytical Atomic Spectrometry, 10(11): 905-921. https://doi.org/10.1039/ja9951000905 doi: 10.1039/JA9951000905
      [100] Tian, Y., Etschmann, B., Mei, Y., et al., 2014. Speciation and Thermodynamic Properties of Manganese (Ⅱ) Chloride Complexes in Hydrothermal Fluids: In Situ XAS Study. Geochimica et Cosmochimica Acta, 129: 77-95. https://doi.org/10.1016/j.gca.2013.12.003
      [101] Tjabadi, E., Mketo, N., 2019. Recent Developments for Spectrometric, Chromatographic and Electroanalytical Determination of the Total Sulphur and Halogens in Various Matrices. TrAC Trends in Analytical Chemistry, 118: 207-222. https://doi.org/10.1016/j.trac.2019.05.033
      [102] Tong, C.H., Guan, H.G., Li, Y.N., 1987. INAA of Halogen in Geological Standards. Journal of Chengdu College of Geology, 13(8): 176-182(in Chinese with English abstract).
      [103] Unni, C.K., Schilling, J.G., 1977. Determination of Bromine in Silicate Rocks by Epithermal Neutron Activation Analysis. Analytical Chemistry, 49(13): 1998-2000. https://doi.org/10.1021/ac50021a029
      [104] Unni, C.K., Schilling, J.G., 1978. Determination of Chlorine in Silicate Rocks by Neutron Activation Analysis. Analytica Chimica Acta, 96(1): 107-115. https://doi.org/10.1016/s0003-2670(01)93402-6 doi: 10.1016/S0003-2670(01)93402-6
      [105] Vickers, G.H., Wilson, D.A., Hieftje, G.M., 1988. Detection of Negative-Ions by Inductively Coupled Plasma Mass-Spectrometry. Analytical Chemistry, 60(17): 1808-1812. https://doi.org/10.1021/ac00168a031
      [106] von Glasow, R., 2008. Atmospheric Chemistry: Sun, Sea and Ozone Destruction. Nature, 453: 1195-1196. https://doi.org/10.1038/4531195a
      [107] Wang, L.C., Hu, W.X., Wang, X.L., et al., 2020. Halogens (Cl, Br, and I) Geochemistry in Middle Triassic Carbonates: Implications for Salinity and Diagenetic Alteration of I/(Ca+Mg) Ratios. Chemical Geology, 533: 119444. https://doi.org/10.1016/j.chemgeo.2019.119444
      [108] Wang, Q.Y., Makishima, A., Nakamura, E., 2010. Determination of Fluorine and Chlorine by Pyrohydrolysis and Ion Chromatography: Comparison with Alkaline Fusion Digestion and Ion Chromatography. Geostandards and Geoanalytical Research, 34(2): 175-183. https://doi.org/10.1111/j.1751-908X.2010.00043.x
      [109] Webster, J.D., Baker, D.R., Aiuppa, A., 2018. Halogens in Mafic and Intermediate-Silica Content Magmas. In: Harlov, D.E., Aranovich, L., eds., The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Springer International Publishing, Cham, 307-430.
      [110] Weis, P., Driesner, T., Heinrich, C.A., 2012. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts within Dynamic Fluid Plumes. Science, 338(6114): 1613-1616. https://doi.org/10.1126/science.1225009
      [111] Wifladt, A.M., Lund, W., Bye, R., 1989. Determination of Iodine in Seaweed and Table Salt by an Indirect Atomic-Absorption Method. Talanta, 36(3): 395-399. https://doi.org/10.1016/0039-9140(89)80207-3
      [112] Yamada, H., Kiriyama, T., Yonebayashi, K., 1996. Determination of Total Iodine in Soils by Inductively Coupled Plasma Mass Spectrometry. Soil Science and Plant Nutrition, 42(4): 859-866. https://doi.org/10.1080/00380768.1996.10416633
      [113] Yamada, H., Kiriyama, T., Onagawa, Y., et al., 1999. Speciation of Iodine in Soils. Soil Science and Plant Nutrition, 45(3): 563-568. https://doi.org/10.1080/00380768.1999.10415819
      [114] Yamada, H., Hisamori, I., Yonebayashi, K., 2002. Identification of Organically Bound Iodine in Soil Humic Substances by Size Exclusion Chromatography/Inductively Coupled Plasma Mass Spectrometry (SEC/ICP-MS). Soil Science and Plant Nutrition, 48(3): 379-385. https://doi.org/10.1080/00380768.2002.10409215
      [115] Yardley, B.W.D., 2005.100th Anniversary Special Paper: Metal Concentrations in Crustal Fluids and Their Relationship to Ore Formation. Economic Geology, 100(4): 613-632. http://doi.org/10.2113/100.4.613 doi: 10.2113/gsecongeo.100.4.613
      [116] Zajacz, Z., Seo, J.H., Candela, P.A., et al., 2011. The Solubility of Copper in High-Temperature Magmatic Vapors: A Quest for the Significance of Various Chloride and Sulfide Complexes. Geochimica et Cosmochimica Acta, 75(10): 2811-2827. https://doi.org/10.1016/j.gca.2011.02.029
      [117] Zhang, C., Wang, L.X., Marks, M.A.W., et al., 2017. Volatiles (CO2, S, F, Cl, Br) in the Dike-Gabbro Transition Zone at IODP Hole 1256D: Magmatic Imprint versus Hydrothermal Influence at Fast-Spreading Mid-Ocean Ridge. Chemical Geology, 459: 43-60. https://doi.org/https://doi.org/10.1016/j.chemgeo.2017.04.002
      [118] Zhang, W., Hu, Z.C., 2019. Recent Advances in Sample Preparation Methods for Elemental and Isotopic Analysis of Geological Samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 160: 105690. https://doi.org/10.1016/j.sab.2019.105690
      [119] Zhang, W., Hu, Z. C, Liu, Y.S., et al., 2012. Total Rock Dissolution Using Ammonium Bifluoride (NH4HF2) in Screw-Top Teflon Vials: A New Development in Open-Vessel Digestion. Analytical Chemistry, 84(24): 10686-10693. https://doi.org/10.1021/ac302327g
      [120] Zhang, Y.Y., Lin, X.H., He, X.L., et al., 2015. Determination of Chlorine and Sulfur in Marine Sediment by Ion Chromatography. Journal of Analytical Science, 31(2): 249-252(in Chinese with English abstract).
      [121] Zheng, J., Takata, H., Tagami, K., et al., 2012. Rapid Determination of Total Iodine in Japanese Coastal Seawater Using SF-ICP-MS. Microchemical Journal, 100: 42-47. https://doi.org/10.1016/j.microc.2011.08.007
      [122] Zhong, Z.H., Fang, R., She, X.L., 1990. Application of Ion Chromatography in Petrological, Mineralogical and Environmental Studies. Rock and Mineral Analysis, 9(1): 14-22(in Chinese with English abstract).
      [123] 郭伟, 林贤, 胡圣虹, 2020. 单个流体包裹体LA-ICP-MS分析及应用进展. 地球科学, 45(4): 1362-1374. doi: 10.3799/dqkx.2019.199
      [124] 胡荣国, 赵义来, 蔡永丰, 等, 2020. 广西大厂花岗斑岩黑云母成分特征及其成岩成矿意义. 地球科学. 45(4): 1213-1226. doi: 10.3799/dqkx.2019.130
      [125] 李冰, 何红蓼, 史世云, 等, 2001a. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ. 不同介质及不同阴离子形态对测定信号的影响. 岩矿测试, 20(3): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200103000.htm
      [126] 李冰, 史世云, 何红蓼, 等, 2001b. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅱ. 土壤及沉积物标准物质分析. 岩矿测试, 20(4): 241-246. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200104000.htm
      [127] 李杰, 钟立峰, 崔学军, 等, 2006. Carius管溶样-标准加入电感耦合等离子体质谱法测定土壤中碘. 岩矿测试, 25(1): 19-21. doi: 10.3969/j.issn.0254-5357.2006.01.005
      [128] 刘江潮, 1993. 离子色谱法测定岩石、土壤、水系沉积物等样品中的氯、溴、碘. 吉林地质, 12(4): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ199304009.htm
      [129] 刘崴, 杨红霞, 李冰, 2008. 碘分析方法研究进展. 岩矿测试, 27(2): 127-136. doi: 10.3969/j.issn.0254-5357.2008.02.012
      [130] 刘崴, 杨红霞, 李冰, 等, 2010. 乙醇增强-电感耦合等离子体质谱法测定植物样品中的痕量碘. 分析试验室, 29(6): 31-33. doi: 10.3969/j.issn.1000-0720.2010.06.008
      [131] 刘霞, 刘建云, 倪力军, 等, 2018. 高温裂解-离子色谱法测定煤中卤素的含量. 理化检验(化学分册), 54(1): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201801009.htm
      [132] 马新荣, 李冰, 韩丽荣, 2003. 稀氨水密封溶解-电感耦合等离子体质谱测定土壤沉积物及生物样品中的碘溴. 岩矿测试, 22(3): 174-178. doi: 10.3969/j.issn.0254-5357.2003.03.004
      [133] 宋萍, 温宏利, 2016. 液氮冷凝吸收热解-电感耦合等离子体质谱法测定岩石土壤沉积物中的溴碘. 岩矿测试, 35(4): 384-388. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201604008.htm
      [134] 童纯菡, 管和国, 李幼宁, 1986. 地质标样中卤素元素的中子活化分析. 成都地质学院学报, 13(3): 176-182. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198603018.htm
      [135] 张媛媛, 林学辉, 贺行良, 等, 2015. 离子色谱法同时测定海洋沉积物中氯和硫分析科学学报, 31(2): 249-252. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201502021.htm
      [136] 钟展环, 方容, 佘小林, 1990. 离子色谱在岩石矿物、环境地质研究中的应用. 岩矿测试, 9(1): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS199001002.htm
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  322
    • HTML全文浏览量:  79
    • PDF下载量:  40
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-06-18
    • 刊出日期:  2021-12-15

    目录

      /

      返回文章
      返回