• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    珠江口盆地惠州凹陷转换体控沉-控储特性及其油气地质意义

    田立新

    田立新, 2021. 珠江口盆地惠州凹陷转换体控沉-控储特性及其油气地质意义. 地球科学, 46(11): 4043-4056. doi: 10.3799/dqkx.2021.121
    引用本文: 田立新, 2021. 珠江口盆地惠州凹陷转换体控沉-控储特性及其油气地质意义. 地球科学, 46(11): 4043-4056. doi: 10.3799/dqkx.2021.121
    Tian Lixin, 2021. Sedimentary-Reservoir Characteristics under Control of Transfer Model and Implications for Hydrocarbon Exploration in Huizhou Depression, Pearl River Mouth Basin. Earth Science, 46(11): 4043-4056. doi: 10.3799/dqkx.2021.121
    Citation: Tian Lixin, 2021. Sedimentary-Reservoir Characteristics under Control of Transfer Model and Implications for Hydrocarbon Exploration in Huizhou Depression, Pearl River Mouth Basin. Earth Science, 46(11): 4043-4056. doi: 10.3799/dqkx.2021.121

    珠江口盆地惠州凹陷转换体控沉-控储特性及其油气地质意义

    doi: 10.3799/dqkx.2021.121
    详细信息
      作者简介:

      田立新(1970-), 男, 博士, 教授级高级工程师, 主要从事油气勘探研究及管理工作.E-mail: tianlx@cnooc.com.cn

    • 中图分类号: P54

    Sedimentary-Reservoir Characteristics under Control of Transfer Model and Implications for Hydrocarbon Exploration in Huizhou Depression, Pearl River Mouth Basin

    • 摘要: 构造转换带以其重要石油地质意义而受到学者们的广泛关注,尤其强调转换斜坡对大型砂体展布方向及堆积范围的控制.针对转换带及附近陡坡带的砂体及优质储层分布规律的复杂性,以惠州凹陷西南缘为例提出一种基于"转换体"概念的转换体优质砂体预测方法.相比于转换带,转换体研究变"带"为"体",是对转换带的扩充和深入.研究范围上,将转换斜坡带与断控陡坡纳为组合体,强调两者在三维立体组合下沉积体存在动态时空交互作用;研究内容上,以"构造-地貌-沉积-储层"思路来分析优质砂体的成因及演化.基于"转换体"的优质砂体预测方法,指出惠州26洼西南缘可划分出"锐角-直角-钝角"三类转换体模型,在不同类型转换体的构造-地貌格局下,陡坡和转换斜坡扇体间具有孤立-叠加-联控三类控沉效应,其对应储层物性逐渐变好.系统解析惠州凹陷转换体控沉-控储特性对完善转换体系框架有理论意义,同时可服务大中型油气田的勘探需求.

       

    • 图  1  转换带水系演化模式(Athmer and Luthi, 2011)

      Fig.  1.  Evolution model of the transfer belt drainage system (Athmer and Luthi, 2011)

      图  2  转换带与陡坡带交互模式图(修改自Henstra et al., 2016)

      Fig.  2.  Dynamic space-time interaction of the transfer slope zone and fault controlled steep slope zone (modified from Henstra et al., 2016)

      图  3  惠州凹陷西南地区源‒汇单元及转换体类型图

      a.锐角‒叠加型;b.直角‒孤立型;c.钝角‒潜山联控型

      Fig.  3.  Source-to-sink units and transfer model types in the southwest of Huizhou depression

      图  4  惠州凹陷西南地区锐角‒叠加型转换体地震构型特征

      Fig.  4.  Seismic architecture characteristics of the acute angle-superposition transfer model in the southwest of Huizhou depression

      图  5  惠州凹陷西南地区直角‒孤立型转换体地震构型特征

      Fig.  5.  Seismic architecture characteristics of the right-to-isolated transfer model in the southwest of Huizhou depression

      图  6  惠州凹陷西南地区钝角‒潜山联控型转换体地震构型特征

      Fig.  6.  Seismic architecture characteristics of the obtuse angle-buried hill combined transfer model in the southwest of Huizhou depression

      图  7  锐角‒叠加型转换体储层特征

      Fig.  7.  Reservoir characteristics of the acute angle-superposition transfer model

      图  8  直角‒孤立型转换体储层特征

      Fig.  8.  Reservoir characteristics of the right-to-isolated transfer model

      图  9  钝角‒潜山联控型转换体储层特征

      Fig.  9.  Reservoir characteristics of the obtuse angle-buried hill combined transfer model

      图  10  惠西南地区古近系文昌期不同类型转换体“源‒汇”耦合模式

      Fig.  10.  Source-to-sink coupling pattern of different types of transfer models in the Wenchang period of the Paleogene in the southwest of Huizhou depression

      表  1  惠州凹陷西南地区锐角‒叠加型转换体“源‒汇”参数统计

      Table  1.   Source-to-sink parametric statistics of the acute angle-superposition transfer model in the southwest of Huizhou depression

      源汇单元 A B C D E
      基岩性质 花岗岩
      汇水面积(km2)-Tg 104 27 18 43 24
      集水高差(ms)-Tg 180 250 160 210 230
      沟谷编号 V1 V2 V3 V4 V5 V6 V7
      沟谷形态 V/U V/U V V W U U
      宽度(m) 1 662.50 4 010.00 123.75 3 051.25 3 555.00 1 100.00 2 761.25
      深度(m) 182.23 423.87 54.12 291.83 124.68 79.43 171.87
      宽深比 9.12 9.46 2.29 10.46 28.51 13.85 16.07
      边界样式 转换斜坡 断裂陡坡
      断裂角度(°) 先陡后缓21.8~8.4 21.6 22.5 24.8 27.1
      相带类型 辫状河三角洲 扇三角洲 扇三角洲 扇三角洲 扇三角洲
      展布形态 帚状 扇裙状 扇状 扇状
      面积(km2) 41.95 10.19 4.50 3.54 2.83
      厚度(km) 0.53 0.30 0.23 0.33 0.69
      体积(km3) 11.09 1.51 0.53 0.58 0.98
      下载: 导出CSV

      表  2  惠州凹陷西南地区直角‒孤立型转换体“源‒汇”参数统计

      Table  2.   Source-to-sink parametric statistics of the right-to-isolated transfer model in the southwest of Huizhou depression

      源汇单元 L M N
      基岩性质 花岗岩
      汇水面积(km2) 28 79 97
      集水高差(ms)-Tg 200 215 240
      沟谷编号 V17 V18 V19 V20
      沟谷形态 V U 断槽
      宽度(m) 2 352.77 1 881.93 2 785.21 2 634.42
      深度(m) 294.97 218.83 395.91 381.55
      宽深比 7.98 8.60 7.04 6.90
      边界样式 断裂陡坡 转换斜坡
      断裂角度(°) 29.5 32.9 先缓后陡12.3~25.4
      相带类型 扇三角洲 扇三角洲 扇辫叠置
      展布形态 扇状 扇状 朵状
      面积(km2) 2.93 3.79 20.28
      厚度(km) 0.56 0.60 0.66
      体积(km3) 0.82 1.14 6.71
      下载: 导出CSV

      表  3  惠西南地区钝角‒潜山联控转换体“源‒汇”参数统计

      Table  3.   Source-to-sink parametric statistics of the obtuse angle-buried hill combined transfer model in the southwest of Huizhou depression

      源汇单元 F G H I J K
      基岩性质 花岗岩
      汇水面积(km2) 61 15 19 18 52 109
      集水高差(ms)-Tg 200 190 180 185 175 180
      沟谷编号 V9 V10 V11 V12 V13 V14 V15 V16
      沟谷形态 V V V V V V V/U V/U
      宽度(m) 893.72 1 058.10 1 368.45 1 406.24 1 137.46 1 824.75 1 674.54 1 900.43
      深度(m) 83.65 98.68 145.20 133.29 127.98 103.86 332.67 356.34
      宽深比 10.68 10.72 9.42 10.55 8.89 17.57 5.03 5.33
      边界样式 断裂陡坡 转换斜坡 转换斜坡
      断裂角度(°) 35.8 38.6 27.5 21.8 先陡后缓21.8~8.4 先缓后陡15.4~40
      相带类型 扇三角洲 扇三角洲 扇三角洲 扇三角洲 扇三角洲 扇三角洲
      展布形态 扇状 扇状 扇/裙边 扇/裙边 帚状 朵状
      面积(km2) 11.47 3.00 4.30 0.85 45.02 19.31
      厚度(km) 0.97 0.77 0.64 0.51 0.77 0.85
      体积(km3) 5.56 1.02 1.16 0.22 13.96 8.19
      下载: 导出CSV
    • [1] Athmer, W., Luthi, S. M., 2011. The Effect of Relay Ramps on Sediment Routes and Deposition: A Review. Sedimentary Geology, 242(1-4) : 1-17. doi: 10.1016/j.sedgeo.2011.10.002
      [2] Dahlstrom, C.D.A., 1970. Structural Geology in the Eastern Margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, 187: 332-406. http://archives.datapages.com/data/bulletns/1968-70/images/pg/00540005/0800/08430.pdf
      [3] Gawthorpe, R. L., Leeder, M. R., 2000. Tectono‐Sedimentary Evolution of Active Extensional Basins. Basin Research, 12(3-4): 195-218. doi: 10.1111/j.1365-2117.2000.00121.x
      [4] Gupta, A., Scholz, C.H., 2000. A Model of Normal Fault Interaction Based on Observations and Theory. Journal of Structural Geology, 22: 865-879. doi: 10.1016/S0191-8141(00)00011-0
      [5] Henstra, G. A., Grundvag, S. A., Johannessen, E. P., et al., 2016. Depositional Processes and Stratigraphic Architecture within a Coarse-Grained Rift-Margin Turbidite System: The Wollaston Forland Group, East Greenland. Marine and Petroleum Geology, 76: 187-209. doi: 10.1016/j.marpetgeo.2016.05.018
      [6] Liu, E.T., Wang, H., Lin, Z.L., et al., 2012. Characteristics and Hydrocarbon Enrichment Rules of Transfer Zone in Fushan Sag, Beibuwan Basin. Journal of Central South University (Science and Technology), 43(10): 3946-3953 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=ZNGD201210031&dbcode=CJFD&year=2012&dflag=pdfdown
      [7] Liu, Z.X., Wu, D., 2016. Structural Transform Zone on Sandbody Distribution in a Fault Basin. Complex Hydrocarbon Reservoirs, 9(1): 17-21, 34 (in Chinese with English abstract). http://www.researchgate.net/publication/318992303_The_effect_of_structural_transform_zone_on_sandbody_distribution_in_a_fault_basin
      [8] Peacock, D.C.P., Sanderson, D.J., 1994. Geometry and Development of Relay Ramps in Normal Fault Systems. AAPG Bulletin, 78(2): 147-165. http://www.researchgate.net/profile/David_Sanderson4/publication/246318518_Geometry_and_Development_of_Relay_Ramps_in_Normal_Fault_Systems/links/550d04580cf275261097a3e9.pdf
      [9] Sun, X.Y., Ren, J.Y., 2004. Transfer Zone and Its Relative Reservoir Distribution in Northern Zone of Dongying Sag. Petroleum Exploration and Development, 31(1): 21-23 (in Chinese with English abstract). http://www.researchgate.net/publication/292875392_Transfer_zone_and_its_relative_reservoir_distribution_in_northern_zone_of_Dongying_Sag
      [10] Trudgill, B. D., 2002. Structural Controls on Drainage Development in the Canyonlands Grabens of Southeast Utah. AAPG Bulletin, 86(6): 1095-1112.
      [11] Wu, K.J., Gong, F.H., Yi, X.F., 2011. A Brief Description of the Classification of Conversion Bands. Journal of Yangtze University (Natural Science Edition), 8(12): 67-70 (in Chinese).
      [12] Zhang, L., Wu, Z.P., Li, W., et al., 2012. Research on Extensional Transfer Structures in the Jiyang Depression. Geotectonica et Metallogenia, 36(1): 24-31 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DGYK201201007&dbcode=CJFD&year=2012&dflag=pdfdown
      [13] Zhou, X.H., Yu, Y.X., Wei, G., et al., 2008. Relationship between JZ25-1S Transfer Zone and Hydrocarbon Accumulation in Liaodongwan Offshore of Bohai Bay Basin. Acta Petrolei Sinica, 29(6): 837-840 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200806010.htm
      [14] 刘恩涛, 王华, 林正良, 等, 2012. 北部湾盆地福山凹陷构造转换带及其油气富集规律. 中南大学学报(自然科学版), 43(10): 3946-3953. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201210031.htm
      [15] 刘子漩, 吴冬, 2016. 断陷盆地构造转换带对砂体分布影响研究. 复杂油气藏, 9(1): 17-21, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201601004.htm
      [16] 孙向阳, 任建业, 2004. 东营凹陷北带转换带构造与储集体分布. 石油勘探与开发, 31(1): 21-23. doi: 10.3321/j.issn:1000-0747.2004.01.006
      [17] 吴康军, 龚福华, 易雪斐, 2011. 转换带的分类浅述. 长江大学学报(自然科学版), 8(12): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201112027.htm
      [18] 张林, 吴智平, 李伟, 等, 2012. 济阳坳陷伸展背景下的变换构造研究. 大地构造与成矿学, 36(1): 24-31. doi: 10.3969/j.issn.1001-1552.2012.01.004
      [19] 周心怀, 余一欣, 魏刚, 等, 2008. 渤海辽东湾海域JZ25-1S转换带与油气成藏的关系. 石油学报, 29(6): 837-840. doi: 10.3321/j.issn:0253-2697.2008.06.009
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  236
    • HTML全文浏览量:  173
    • PDF下载量:  60
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-04-09
    • 网络出版日期:  2021-12-04
    • 刊出日期:  2021-11-30

    目录

      /

      返回文章
      返回