• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于数值模拟的戈龙布滑坡‒堵江‒溃决洪水地质灾害链动力学过程重建

    贾珂程 庄建琦 占洁伟 王世宝 牛鹏尧 牟家琦 王杰 郑佳 付玉婷

    贾珂程, 庄建琦, 占洁伟, 王世宝, 牛鹏尧, 牟家琦, 王杰, 郑佳, 付玉婷, 2023. 基于数值模拟的戈龙布滑坡‒堵江‒溃决洪水地质灾害链动力学过程重建. 地球科学, 48(9): 3402-3419. doi: 10.3799/dqkx.2021.124
    引用本文: 贾珂程, 庄建琦, 占洁伟, 王世宝, 牛鹏尧, 牟家琦, 王杰, 郑佳, 付玉婷, 2023. 基于数值模拟的戈龙布滑坡‒堵江‒溃决洪水地质灾害链动力学过程重建. 地球科学, 48(9): 3402-3419. doi: 10.3799/dqkx.2021.124
    Jia Kecheng, Zhuang Jianqi, Zhan Jiewei, Wang Shibao, Niu Pengyao, Mu Jiaqi, Wang Jie, Zheng Jia, Fu Yuting, 2023. Reconstruction of the Dynamic Process of the Holocene Gelongbu Landslide-Blocking-Flood Geological Disaster Chain Based on Numerical Simulation. Earth Science, 48(9): 3402-3419. doi: 10.3799/dqkx.2021.124
    Citation: Jia Kecheng, Zhuang Jianqi, Zhan Jiewei, Wang Shibao, Niu Pengyao, Mu Jiaqi, Wang Jie, Zheng Jia, Fu Yuting, 2023. Reconstruction of the Dynamic Process of the Holocene Gelongbu Landslide-Blocking-Flood Geological Disaster Chain Based on Numerical Simulation. Earth Science, 48(9): 3402-3419. doi: 10.3799/dqkx.2021.124

    基于数值模拟的戈龙布滑坡‒堵江‒溃决洪水地质灾害链动力学过程重建

    doi: 10.3799/dqkx.2021.124
    基金项目: 

    国家自然科学基金项目 41941019

    国家自然科学基金项目 41922054

    国家重点研发计划项目 2020YFC1512000

    详细信息
      作者简介:

      贾珂程(1996-),男,硕士研究生,主要从事地质工程方面研究. ORCID: 0000-0003-3344-8613. E-mail: 103494702@qq.com

      通讯作者:

      庄建琦,ORCID: 0000-0001-7565-8008. E-mail: jqzhuang@chd.edu.cn

    • 中图分类号: P642.22

    Reconstruction of the Dynamic Process of the Holocene Gelongbu Landslide-Blocking-Flood Geological Disaster Chain Based on Numerical Simulation

    • 摘要: 以全新世戈龙布古滑坡堵江溃决洪水地质灾害链为例,采用野外调查、PFC3D滑坡动力学数值模拟和HEC-RAS溃决洪水模拟,再现了该滑坡滑‒堵‒溃灾害链全过程.首先通过野外调查查明了该滑坡的特征,戈龙布滑坡总体积约7.92×107 m3,主滑方向为NW335°,最大滑动距离为2.3 km,最大堆积厚度约150 m.利用离散元软件对该滑坡启动和堆积过程模拟,戈龙布滑坡滑动过程持续了103 s,最大速度可达57 m/s,且在滑动过程中呈现出破碎程度区域差异性的运动学特性;大部分颗粒在运动过程中保持了其原始的位置顺序,堆积体物质特点为单个颗粒与块体团簇共存,破碎作用较弱.滑坡堆积体面积约为1.8×106 m2,鞍部高143 m,左岸、右岸高程分别为2 030 m和2 063 m.滑坡堵塞黄河形成的堰塞坝厚度达143 m,上游形成面积为128 km2、库容为4.87×109 m3的堰塞湖.通过模拟不同溃坝程度(15%、25%、50%和75%)下洪水演进过程,溃口下泄流量在30 mins内迅速增大达到一个顶峰,然后呈缓速减小;溃口最大峰值流量分别为15 137.9 m3/s、52 192.9 m3/s、157 375.5 m3/s和326 703.6 m3/s,并分析了下游各断面的洪峰流量和水位特征.讨论了洪水演进与喇家遗址的关系,发现在25%溃坝时,溃口洪峰流量为52 192.9 m3/s,喇家遗址处水深为27.1 m;75%溃决时,到达二里头遗址的最大流量相当于黄河百年一遇洪水流量.研究结果对开展黄河上游古滑坡动力学过程和溃决洪水研究具有一定的参考.

       

    • 图  1  研究区域概况

      Fig.  1.  Study area setting

      图  2  戈龙布滑坡分布特征

      a. 戈龙布滑坡启动区和堆积区;b. A-A′纵剖面,据彭建兵等(1997

      Fig.  2.  Distribution characteristics of gelongbu landslide

      图  3  滑坡启动区特征

      a. 滑床;b. 冲沟;c. 上浪子沟左侧与滑面产状相近的层状岩体

      Fig.  3.  Characteristics of landslide starting zone

      图  4  左岸堆积体

      Fig.  4.  Left bank accumulation body

      图  5  右岸堆积体

      Fig.  5.  Right bank accumulation body

      图  6  模拟单轴压缩试验模型

      Fig.  6.  Simulated triaxial test model

      图  7  三维模型构建

      a. 滑坡模型;b. 滑体分块;c. 剖面图

      Fig.  7.  3D model building

      图  8  平均速度‒时间曲线

      Fig.  8.  Average velocity-time curve of sliding masses

      图  9  不同时刻滑坡分析结果

      Fig.  9.  Landslide analysis results at different times

      a. t=8 s; b. t=23 s; c. t=32 s; d. t=50 s; e. t=70 s; f. t=103 s

      图  10  监测点运动速度

      Fig.  10.  Velocity of movement of monitoring points

      图  11  滑坡堆积特征

      a. 野外考察堆积区和模拟堆积区;b. 堆积厚度;c和d. 粘结网络,其中蓝色代表破碎颗粒间的粘结,红色代表团簇粘结

      Fig.  11.  Landslide accumulation characteristics

      图  12  块体团簇分布特征

      a. 平面分布;b. 分段统计

      Fig.  12.  Distribution of clusters

      图  13  l-l′纵剖面

      Fig.  13.  Cross-section l-l

      图  14  库容‒高程曲线

      Fig.  14.  Reservoir capacity-elevation curve

      图  15  不同程度大坝溃坝下溃口流量过程线

      Fig.  15.  Process lines of burst flow under different degrees of dam failure

      图  16  沿程洪峰流量变化趋势

      Fig.  16.  Trend of peak flow along the path

      图  17  不同溃决程度下断面最高水位及河道宽度

      Fig.  17.  The highest water level and channel width of different outburst degrees

      图  18  堰塞湖溃决前的保存时间

      Fig.  18.  Survival time before the failure of landslide dams

      图  19  沿程溃决洪水最大水深及喇家遗址剖面(据吴庆龙等,2009, 修改)

      Fig.  19.  Maximum depth of the water and the geological section of Lajia Site (modified by Wu et al., 2009)

      表  1  数值模型与室内试验的单轴试验比较

      Table  1.   Comparison of the uniaxial test between the numerical model and the laboratory experiment

      参数 室内试验 模型试验
      密度(kg/m3 2 650 2 650
      杨氏模量(GPa) 19 18
      单轴抗压强度(MPa) 64 64
      泊松比 0.27 0.26
      下载: 导出CSV

      表  2  三轴试验模拟结果参数

      Table  2.   Parameters of triaxial test results

      参数 参数取值
      颗粒法向刚度$ {\mathit{k}}_{\bf{n}} $(MPa) 6.7
      颗粒刚度比$ {\mathit{k}}_{\bf{n}}/{\mathit{k}}_{\bf{s}} $ 1
      颗粒摩擦因子μ 0.3
      颗粒粘结半径系数$ \stackrel{-}{\mathit{\lambda }} $ 1
      平行粘结模量$ \overline{{\mathit{E}}_{\bf{c}}} $(GPa) 3.1
      粘结刚度比$ \overline{{\mathit{k}}_{\bf{n}}}/\overline{{\mathit{k}}_{\bf{s}}} $ 1.2
      平行法向粘结应力$ \overline{{\mathit{\sigma }}_{\bf{b}}} $(MPa) 71
      平行切向粘结强度$ \overline{{\mathit{\tau }}_{\bf{b}}} $(MPa) 71
      下载: 导出CSV
    • Amicarelli, A., Kocak, B., Sibilla, S., et al., 2017. A 3D Smoothed Particle Hydrodynamics Model for Erosional Dam-Break Floods. International Journal of Computational Fluid Dynamics, 31(10): 413-434. https://doi.org/10.1080/10618562.2017.1422731
      Bandara, S., Soga, K., 2015. Coupling of Soil Deformation and Pore Fluid Flow Using Material Point Method. Computers and Geotechnics, 63: 199-214. https://doi.org/10.1016/j.compgeo.2014.09.009
      Cao, L. Z., Wang, Z., Wang, D., et al., 2017. Numerical Simulation of Stability in Loading Dump with Weak Basement. Journal of Disaster Prevention and Mitigation Engineering, 37(5): 776-781 (in Chinese with English abstract).
      Cheng, Q. G., Zhang, Z. Y., Huang, R. Q., 2007. Study on Dynamics of Rock Avalanches: State of the Art Report. Journal of Mountain Science, 25(1): 72-84 (in Chinese with English abstract).
      Costa, J. E., Schuster, R. L., 1988. The Formation and Failure of Natural Dams. Geological Society of America Bulletin, 100(7): 1054-1068. https://doi.org/10.1130/0016-7606(1988)1001054:tfafon>2.3.co;2 doi: 10.1130/0016-7606(1988)1001054:tfafon>2.3.co;2
      Cui, Y., Kong, J. M., Tian, S. J., et al., 2011. The Critical Role for Heavy Rainfall in the Evolution of the Mountain Hazards Chains. Journal of Mountain Science, 29(1): 87-94 (in Chinese with English abstract).
      Dong, J. J., Yang, C. M., Yu, W. L., et al., 2013. Velocity-Displacement Dependent Friction Coefficient and the Kinematics of Giant Landslide. International Symposium on Earthquake-Induced Landslides. Kiryu. https://doi.org/10.1007/978-3-642-32238-9_41
      Dortch, J. M., Owen, L. A., Haneberg, W. C., et al., 2009. Nature and Timing of Large Landslides in the Himalaya and Transhimalaya of Northern India. Quaternary Science Reviews, 28(11-12): 1037-1054. https://doi.org/10.1016/j.quascirev.2008.05.002
      Ermini, L., Casagli, N., 2003. Prediction of the Behaviour of Landslide Dams Using a Geomorphological Dimensionless Index. Earth Surface Processes and Landforms, 28(1): 31-47. https://doi.org/10.1002/esp.424
      Fan, X. M., Dufresne, A., Subramanian, S. S., et al., 2020a. The Formation and Impact of Landslide Dams-State of the Art. Earth-Science Reviews, 203: 103116. https://doi.org/10.1016/j.earscirev.2020.103116
      Fan, X. M., Yang, F., Subramanian, S. S., et al., 2020b. Prediction of a Multi-Hazard Chain by an Integrated Numerical Simulation Approach: The Baige Landslide, Jinsha River, China. Landslides, 17(1): 147-164. https://doi.org/10.1007/s10346-019-01313-5
      Fan, X. M., van Westen, C. J., Xu, Q., et al., 2012. Analysis of Landslide Dams Induced by the 2008 Wenchuan Earthquake. Journal of Asian Earth Sciences, 57: 25-37. https://doi.org/10.1016/j.jseaes.2012.06.002
      Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949 (in Chinese with English abstract).
      Guo, X. H., Lai, Z. P., Sun, Z., et al., 2014. Luminescence Dating of Suozi Landslide in the Upper Yellow River of the Qinghai-Tibetan Plateau, China. Quaternary International, 349: 159-166. https://doi.org/10.1016/j.quaint.2014.03.014
      Guo, Z. Z., Chen, L. X., Yin, K. L., et al., 2020. Quantitative Risk Assessment of Slow-Moving Landslides from the Viewpoint of Decision-Making: A Case Study of the Three Gorges Reservoir in China. Engineering Geology, 273: 105667. https://doi.org/10.1016/j.enggeo.2020.105667
      Han, R., Shimamoto, T., Hirose, T., et al., 2007. Ultralow Friction of Carbonate Faults Caused by Thermal Decomposition. Science, 316(5826): 878-881. https://doi.org/10.1126/science.1139763
      He, X. L., Xu, C., Qi, W. W., et al., 2021. Landslides Triggered by the 2020 Qiaojia Mw5.1 Earthquake, Yunnan, China: Distribution, Influence Factors and Tectonic Significance. Journal of Earth Science, 32(5): 1056-1068. https://doi.org/10.1007/s12583-021-1492-1
      Hu, X. W., Huang, R. Q., Shi, Y. B., et al., 2009. Analysis of Blocking River Mechanism of Tangjiashan Landslide and Dam-Breaking Mode of Its Barrier Dam. Chinese Journal of Rock Mechanics and Engineering, 28(1): 181-189 (in Chinese with English abstract).
      Huang, C. C., Zhou, Y., Zhang, Y., et al., 2017. Comment on Outburst Flood at 1920 BCE Supports Historicity of China's Great Flood and the Xia Dynasty. Science, 355(6332): 1382. https://doi.org/10.1126/science.aal1369
      Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract).
      Itasca Consulting Group, Inc., 2006. PFC3D User'S Manual. USA: Itasca Consulting Group, Inc., Minneapolis.
      Korup, O., Strom, A. L., Weidinger, J. T., 2006. Fluvial Response to Large Rock-Slope Failures: Examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand. Geomorphology, 78(1-2): 3-21. https://doi.org/10.1016/j.geomorph.2006.01.020
      Li, J. J., Fang, X. M., Ma, H. Z., et al., 1996. Geomorphological and Environmental Evolution in the Upper Reaches of the Yellow River during the Late Cenozoic. Science in China (Series D), 26(4): 316-322 (in Chinese).
      Li, K., Cheng, Q. G., Lin, Q. W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912 (in Chinese with English abstract).
      Li, Q. Q., Huang, D., Pei, S. F., et al., 2021. Using Physical Model Experiments for Hazards Assessment of Rainfall-Induced Debris Landslides. Journal of Earth Science, 32(5): 1113-1128. https://doi.org/10.1007/s12583-020-1398-3
      Li, X. L., Guo, X. H., Li, W. H., 2011. Mechanism of Giant Landslides from Longyangxia Valley to Liujiaxia Valley along Upper Yellow River. Journal of Engineering Geology, 19(4): 516-529 (in Chinese with English abstract).
      Lin, Q. W., Cheng, Q. G., Li, K., et al., 2020. Contributions of Rock Mass Structure to the Emplacement of Fragmenting Rockfalls and Rockslides: Insights from Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB019296. https://doi.org/10.1029/2019jb019296
      Liu, W. M., Carling, P. A., Hu, K. H., et al., 2019. Outburst Floods in China: A Review. Earth-Science Reviews, 197: 102895. https://doi.org/10.1016/j.earscirev.2019.102895
      Liu, W., He, S. M., 2020. Numerical Simulation of the Evolution Process of Disaster Chain Induced by Potential Landslide in Woda of Jinsha River Basin. Advanced Engineering Sciences, 52(2): 38-46 (in Chinese with English abstract).
      Liu, W., Ju, N. P., Zhang, Z., et al., 2020. Simulating the Process of the Jinshajiang Landslide-Caused Disaster Chain in October 2018. Bulletin of Engineering Geology and the Environment, 79(5): 2189-2199. https://doi.org/10.1007/s10064-019-01717-6
      Mao, J., Liu, X. N., Zhang, C., et al., 2021. Runout Prediction and Deposit Characteristics Investigation by the Distance Potential-Based Discrete Element Method: The 2018 Baige Landslides, Jinsha River, China. Landslides, 18(1): 235-249. https://doi.org/10.1007/s10346-020-01501-8
      Morris, M. W., Hassan, M. A. A. M., Vaskinn, K. A., 2007. Breach Formation: Field Test and Laboratory Experiments. Journal of Hydraulic Research, 45(Supp1.): 9-17. https://doi.org/10.1080/00221686.2007.9521828
      Ouyang, C. J., Zhou, K. Q., Xu, Q., et al., 2017. Dynamic Analysis and Numerical Modeling of the 2015 Catastrophic Landslide of the Construction Waste Landfill at Guangming, Shenzhen, China. Landslides, 14(2): 705-718. https://doi.org/10.1007/s10346-016-0764-9
      Pastor, M., Blanc, T., Haddad, B., et al., 2015. Depth Averaged Models for Fast Landslide Propagation: Mathematical, Rheological and Numerical Aspects. Archives of Computational Methods in Engineering, 22(1): 67-104. https://doi.org/10.1007/s11831-014-9110-3
      Pei, X. J., Cui, S. H., Huang, R. Q., 2018. A Model of Initiation of Daguangbao Landslide: Dynamic Dilation and Water Hammer in Sliding Zone during Strong Seismic Shaking. Chinese Journal of Rock Mechanics and Engineering, 37(2): 430-448 (in Chinese with English abstract).
      Peng, J. B., 1997. Research on Reservoir Landslide Engineering Geology of Jishi Gorge Hydropower Station in the Yellow River. Shanxi Science and Technology Press, Xi'an (in Chinese).
      Peng, J. B., Lan, H. X., Qian, H., et al., 2020. Scientific Research Framework of Livable Yellow River. Journal of Engineering Geology, 28(2): 189-201 (in Chinese with English abstract).
      Peng, M., Zhang, L. M., 2012. Breaching Parameters of Landslide Dams. Landslides, 9(1): 13-31. https://doi.org/10.1007/s10346-011-0271-y
      Reneau, S. L., Dethier, D. P., 1996. Late Pleistocene Landslide-Dammed Lakes along the Rio Grande, White Rock Canyon, New Mexico. Geological Society of America Bulletin, 108(11): 1492-1507. https://doi.org/10.1130/0016-7606(1996)1081492:lpldla>2.3.co;2 doi: 10.1130/0016-7606(1996)1081492:lpldla>2.3.co;2
      Stefanelli, C. T., Catani, F., Casagli, N., 2015. Geomorphological Investigations on Landslide Dams. Geoenvironmental Disasters, 2(1): 1-15. https://doi.org/10.1186/s40677-015-0030-9
      Sun, X. P., He, S. M., Gao, C. F., et al., 2017. Discrete Element Numerical Analysis of Niujuangou Landslide. Journal of Lanzhou University (Natural Sciences), 53(1): 48-53 (in Chinese with English abstract).
      Wang, C., Tannant, D. D., Lilly, P. A., 2003. Numerical Analysis of the Stability of Heavily Jointed Rock Slopes Using PFC2D. International Journal of Rock Mechanics and Mining Sciences, 40(3): 415-424. https://doi.org/10.1016/S1365-1609(03)00004-2
      Wang, G. J., Tang, Y. J., Du, C., et al., 2018. Experimental Study on Dam Break under Water Level Variation in Reservoir. Journal of Sediment Research, 43(4): 67-73 (in Chinese with English abstract).
      Wang, H. Y., Pang, J. L., Huang, C. C., et al., 2020. Stratigraphic Subdivisions and Formation of the Sediment Overlying the Lajia Ruins of the Qinghai Province. Scientia Geographica Sinica, 40(5): 853-862 (in Chinese with English abstract).
      Wang, L. S., Yang, L. Z., Wang, X. Q., et al., 2005. Discovery of Huge Ancient Dammed Lake on Upstream of Minjiang River in Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 32(1): 1-11 (in Chinese with English abstract).
      Wang, T., Wang, J. K., Pan, D., 2020. Analysis on Mechanism of Kangjiapo Landslide and Consequent Debris Flow in Hanyuan County of Sichuan Province. The Chinese Journal of Geological Hazard and Control, 31(1): 1-7 (in Chinese with English abstract).
      Wang, Y., Zhuang, J. Q., Li, W., et al., 2018. Discrete Element Simulation of Instability and Movement Process of Loess Slope under Seismic Loads. Journal of Engineering Geology, 26(5): 1139-1154 (in Chinese with English abstract).
      Wei, Z. X., Ma, W. L., Xiao, J. B., et al., 2017. Study on the Large-Scale Landslide Dammed Lake of Songba Gorge and Its Geomorphological Effect of the Upper Reaches of Yellow River. The Chinese Journal of Geological Hazard and Control, 28(3): 16-23 (in Chinese with English abstract).
      Wu, A. Q., Yang, Q. G., Ma, G. S., et al., 2011. Study on the Formation Mechanism of Tangjiashan Landslide Triggered by Wenchuan Earthquake Using DDA Simulation. International Journal of Computational Methods, 8(2): 229-245. https://doi.org/10.1142/s0219876211002563
      Wu, J. H., Lin, J. S., Chen, C. S., 2009. Dynamic Discrete Analysis of an Earthquake-Induced Large-Scale Landslide. International Journal of Rock Mechanics and Mining Sciences, 46(2): 397-407. https://doi.org/10.1016/j.ijrmms.2008.07.010
      Wu, Q. L., Zhang, P. Z., Zhang, H. P., et al., 2009. Weir Dam Break of Jishixia Ancient Earthquake in the Upper Reaches of the Yellow River and Abnormal Ancient Flood Disaster in Lajia Site. Science in China (Series D), 39(8): 1148-1159 (in Chinese with English abstract).
      Wu, Q. L., Zhao, Z. J., Liu, L., et al., 2016. Outburst Flood at 1920 BCE Supports Historicity of China's Great Flood and the Xia Dynasty. Science, 353(6299): 579-582. https://doi.org/10.1126/science.aaf0842
      Xing, A. G., Hu, H. T., Yang, M., 2002. Testing Study on Frictional Characteristic of Large-Scale and high-Speed Landslide during Sliding. Chinese Journal of Rock Mechanics and Engineering, 21(4): 522-525 (in Chinese with English abstract).
      Xu, M. Z., Wang, Z. Y., Qi, L. J., 2012. Disaster Chains Initiated by the Wenchuan Earthquake. Journal of Mountain Science, 30(4): 502-512 (in Chinese with English abstract).
      Yang, C. M., Yu, W. L., Dong, J. J., et al., 2014. Initiation, Movement, and Run-Out of the Giant Tsaoling Landslide-What Can We Learn from a Simple Rigid Block Model and a Velocity-Displacement Dependent Friction Law? Engineering Geology, 182: 158-181. https://doi.org/10.1016/j.enggeo.2014.08.008
      Yang, Q. Q., Zheng, X. Y., Su, Z. M., et al., 2022. Review on Rock-Ice Avalanches. Earth Science, 47(3): 935-949 (in Chinese with English abstract).
      Yang, X. Y., Xia, Z. K., Cui, Z. J., 2005. Holocene Extreme Floods and Its Sedimentary Characteristic in the Upper Reaches of the Yellow River. Quaternary Sciences, 25(1): 80-85 (in Chinese with English abstract).
      Yin, Z. Q., Cheng, G. M., Hu, G. S., et al., 2010. Preliminary Study on Characteristic and Mechanism of Super-Large Landslides in Upper Yellow River since Late-Pleistocene. Journal of Engineering Geology, 18(1): 41-51 (in Chinese with English abstract).
      Yin, Z. Q., Qin, X. G., Zhao, W. J., et al., 2016. Temporal and Spatial Evolution and Trigger Mechanism of Landslide and Debris Flow in the Upper Reaches of the Yellow River. Science Press, Beijing (in Chinese).
      Zhang, D. Q., Jiang, X. Y., Zou, N. N., et al., 2019. Numerical Analysis of Colluvial Landslide Stability under the Effect of Rainfall Infiltration: Taking Darong Landslide of Guizhou Province for an Example. Science Technology and Engineering, 19(26): 338-344 (in Chinese with English abstract).
      Zhang, M., Wu, L. Z., Zhang, J. C., et al., 2019a. The 2009 Jiweishan Rock Avalanche, Wulong, China: Deposit Characteristics and Implications for Its Fragmentation. Landslides, 16(5): 893-906. https://doi.org/10.1007/s10346-019-01142-6
      Zhang, X. R., Yin, K. L., Xia, H., et al., 2017. Influence of Permeability Coefficient and Reservoir Water Level Fluctuation on Xiaping Landslide Stability. Journal of Engineering Geology, 25(2): 488-495 (in Chinese with English abstract).
      Zhang, Y. Z., Huang, C. C., Shulmeister, J., et al., 2019b. Formation and Evolution of the Holocene Massive Landslide-Dammed Lakes in the Jishixia Gorges along the Upper Yellow River: No Relation to China's Great Flood and the Xia Dynasty. Quaternary Science Reviews, 218: 267-280. https://doi.org/10.1016/j.quascirev.2019.06.011
      Zhou, B., Peng, J. B., Lai, Z. P., et al., 2014. Research on Geochronology of Super Large Landslide in the Upper Yellow River. Quaternary Sciences, 34(2): 346-353 (in Chinese with English abstract).
      Zhou, C., Yin, K. L., Cao, Y., et al., 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science, 45(6): 1865-1876 (in Chinese with English abstract).
      Zhou, J. W., Xu, F. G., Yang, X. G., et al., 2016. Comprehensive Analyses of the Initiation and Landslide-Generated Wave Processes of the 24 June 2015 Hongyanzi Landslide at the Three Gorges Reservoir, China. Landslides, 13(3): 589-601. https://doi.org/10.1007/s10346-016-0704-8
      Zhu, H. L., 2006. Flood Frequency Design in the Lower of Yellow River by Regional L-Moments Method (Dissertation). Tongji University, Shanghai, 22-49 (in Chinese with English abstract).
      Zou, Z. X., Tang, H. M., Xiong, C. R., et al., 2017. Kinetic Characteristics of Debris Flows as Exemplified by Field Investigations and Discrete Element Simulation of the Catastrophic Jiweishan Rockslide, China. Geomorphology, 295: 1-15. https://doi.org/10.1016/j.geomorph.2017.06.012
      曹兰柱, 王珍, 王东, 等, 2017. 软弱基底排土场堆载过程中稳定性数值模拟. 防灾减灾工程学报, 37(5): 776-781. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201705013.htm
      程谦恭, 张倬元, 黄润秋, 2007. 高速远程崩滑动力学的研究现状及发展趋势. 山地学报, 25(1): 72-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200701007.htm
      崔云, 孔纪名, 田述军, 等, 2011. 强降雨在山地灾害链成灾演化中的关键控制作用. 山地学报, 29(1): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201101013.htm
      葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589
      胡卸文, 黄润秋, 施裕兵, 等, 2009. 唐家山滑坡堵江机制及堰塞坝溃坝模式分析. 岩石力学与工程学报, 28(1): 181-189. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901027.htm
      黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm
      李吉均, 方小敏, 马海洲, 等, 1996. 晚新生代黄河上游地貌演化与青藏高原隆起. 中国科学(D辑), 26(4): 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604004.htm
      李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展. 地球科学, 47(3): 893-912. doi: 10.3799/dqkx.2021.169
      李小林, 郭小花, 李万花, 2011. 黄河上游龙羊峡‒刘家峡河段巨型滑坡形成机理分析. 工程地质学报, 19(4): 516-529. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201104014.htm
      刘威, 何思明, 2020. 金沙江沃达潜在滑坡诱发灾害链成灾过程数值模拟. 工程科学与技术, 52(2): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202002005.htm
      裴向军, 崔圣华, 黄润秋, 2018. 大光包滑坡启动机制: 强震过程滑带动力扩容与水击效应. 岩石力学与工程学报, 37(2): 430-448. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003008.htm
      彭建兵, 1997. 黄河积石峡水电站水库滑坡工程地质研究. 陕西: 陕西科学技术出版社.
      彭建兵, 兰恒星, 钱会, 等, 2020. 宜居黄河科学构想. 工程地质学报, 28(2): 189-201. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002001.htm
      孙新坡, 何思明, 高成凤, 等, 2017. 牛圈沟滑坡离散元数值分析. 兰州大学学报(自然科学版), 53(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201701007.htm
      王光进, 唐永俊, 杜超, 等, 2018. 尾矿库水位变化下的溃坝试验研究. 泥沙研究, 43(4): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-NSYJ201804013.htm
      王海燕, 庞奖励, 黄春长, 等, 2020. 青海喇家遗址地层划分及齐家文化废墟覆盖层成因分析. 地理科学, 40(5): 853-862. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX202005020.htm
      王兰生, 杨立铮, 王小群, 等, 2005. 岷江叠溪古堰塞湖的发现. 成都理工大学学报(自然科学版), 32(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200501001.htm
      王涛, 王嘉昆, 潘冬, 2020. 四川汉源康家坡滑坡形成机理与滑坡‒堰塞坝‒泥石流灾害链分析. 中国地质灾害与防治学报, 31(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202001001.htm
      王颖, 庄建琦, 李威, 等, 2018. 地震作用下黄土斜坡失稳及运动过程的离散元模拟. 工程地质学报, 26(5): 1139-1154. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805004.htm
      吴庆龙, 张培震, 张会平, 等, 2009. 黄河上游积石峡古地震堰塞溃决事件与喇家遗址异常古洪水灾害. 中国科学(D辑), 39(8): 1148-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200908013.htm
      魏占玺, 马文礼, 肖建兵, 等, 2017. 黄河上游松坝峡特大型滑坡堰塞湖及地貌效应研究. 中国地质灾害与防治学报, 28(3): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201703003.htm
      邢爱国, 胡厚田, 杨明, 2002. 大型高速滑坡滑动过程中摩擦特性的试验研究. 岩石力学与工程学报, 21(4): 522-525. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200204013.htm
      徐梦珍, 王兆印, 漆力健, 2012. 汶川地震引发的次生灾害链. 山地学报, 30(4): 502-512. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201403012.htm
      杨情情, 郑欣玉, 苏志满, 等, 2022. 高速远程冰‒岩碎屑流研究进展. 地球科学, 47(3): 935-949. doi: 10.3799/dqkx.2021.158
      杨晓燕, 夏正楷, 崔之久, 2005. 黄河上游全新世特大洪水及其沉积特征. 第四纪研究, 25(1): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ20050100A.htm
      殷志强, 程国明, 胡贵寿, 等, 2010. 晚更新世以来黄河上游巨型滑坡特征及形成机理初步研究. 工程地质学报, 18(1): 41-51. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201001007.htm
      殷志强, 秦小光, 赵无忌, 等, 2016. 黄河上游滑坡泥石流时空演化及触发机制. 北京: 科学出版社.
      张大权, 江兴元, 邹妞妞, 等, 2019. 降雨渗流对堆积型滑坡稳定性影响的数值模拟: 以贵州大榕滑坡为例. 科学技术与工程, 19(26): 338-344. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201926056.htm
      张夏冉, 殷坤龙, 夏辉, 等, 2017. 渗透系数与库水位升降对下坪滑坡稳定性的影响研究. 工程地质学报, 25(2): 488-495. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702028.htm
      周保, 彭建兵, 赖忠平, 等, 2014. 黄河上游特大型滑坡群发特性的年代学研究. 第四纪研究, 34(2): 346-353. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201402008.htm
      周超, 殷坤龙, 曹颖, 等, 2020. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价. 地球科学, 45(6): 1865-1876. doi: 10.3799/dqkx.2020.071
      朱惠玲, 2006. 区域线性矩法在黄河下游洪水频率分析中的应用研究(硕士学位论文). 上海: 同济大学.
    • 加载中
    图(19) / 表(2)
    计量
    • 文章访问数:  794
    • HTML全文浏览量:  545
    • PDF下载量:  103
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-06-02
    • 网络出版日期:  2023-10-07
    • 刊出日期:  2023-09-25

    目录

      /

      返回文章
      返回