• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    强震区沟道堰塞体失稳模式及其动力学特征

    周超 常鸣 徐璐 庞海松 余斌

    周超, 常鸣, 徐璐, 庞海松, 余斌, 2023. 强震区沟道堰塞体失稳模式及其动力学特征. 地球科学, 48(8): 3115-3126. doi: 10.3799/dqkx.2021.127
    引用本文: 周超, 常鸣, 徐璐, 庞海松, 余斌, 2023. 强震区沟道堰塞体失稳模式及其动力学特征. 地球科学, 48(8): 3115-3126. doi: 10.3799/dqkx.2021.127
    Zhou Chao, Chang Ming, Xu Lu, Pang Haisong, Yu Bin, 2023. Failure Modes and Dynamic Characteristics of the Landslide Dams in Strong Earthquake Area. Earth Science, 48(8): 3115-3126. doi: 10.3799/dqkx.2021.127
    Citation: Zhou Chao, Chang Ming, Xu Lu, Pang Haisong, Yu Bin, 2023. Failure Modes and Dynamic Characteristics of the Landslide Dams in Strong Earthquake Area. Earth Science, 48(8): 3115-3126. doi: 10.3799/dqkx.2021.127

    强震区沟道堰塞体失稳模式及其动力学特征

    doi: 10.3799/dqkx.2021.127
    基金项目: 

    国家重点研发计划 2018YFC1505402

    国家自然科学基金项目 42077245

    国家自然科学基金项目 41521002

    详细信息
      作者简介:

      周超(1996-),男,硕士生,主要从事工程地质与地质灾害防治方面研究. ORCID:0000-0001-8617-4340. E-mail:zc@stu.cdut.edu.cn

    • 中图分类号: P642.23

    Failure Modes and Dynamic Characteristics of the Landslide Dams in Strong Earthquake Area

    • 摘要: 强震触发的大量崩塌滑坡所形成的松散固体物质堆积于泥石流沟道,容易形成天然堰塞体,在强降雨和上游流体的冲蚀下极易失稳形成溃决型泥石流.采用自制泥石流试验水槽,通过控制坝体颗粒组成和水动力条件,实施了12组堰塞体失稳模拟试验,获取了堰塞体的破坏过程、溃口流量和相关力学参数的演化特征. 将堰塞体划分为漫顶破坏、滑面破坏、管涌破坏3种不同失稳模式,并结合堰塞体的颗粒组成结构分析了失稳机理及特征,通过动力学过程分析分别建立了不同失稳模式下的堰塞体稳定性判别式. 研究成果对于溃决型泥石流防治工程的规划设计以及提高泥石流防灾减灾水平具有重要意义.

       

    • 图  1  堰塞体失稳物理模型实验系统

      Fig.  1.  Sketch of the landslide dams experimental setup

      图  2  羊岭沟堰塞体分布图

      Fig.  2.  Distribution map of landslide dams in yangling gully

      图  3  实验土颗粒级配曲线

      Fig.  3.  The grain size distribution of the flume tests.

      图  4  漫顶破坏过程及示意图(D组)

      Fig.  4.  Experimental process of the landslide dam failure due to overtopping inexperment D

      图  5  漫顶破坏下的含水率及流量变化曲线图(D组)

      a. 含水率变化曲线;b. 溃口流量变化曲线

      Fig.  5.  Variation of water content and discharge of the landslide dam failure due to overtopping inexperment D

      图  6  滑面破坏过程及示意图(F组)

      Fig.  6.  Experimental process of the landslide dam failure due to sliding inexperment F

      图  7  滑面破坏下的含水率及流量变化曲线图(F组)

      a. 含水率变化曲线;b. 溃口流量变化曲线

      Fig.  7.  Variation of water content and discharge of the landslide dam failure due to sliding inexperment F

      图  8  管涌模式破坏过程及示意图(K组)

      Fig.  8.  Experimental process of the landslide dam failure due to piping inexperment K

      图  9  管涌破坏下的含水率及流量变化曲线图(K组)

      a. 含水率变化曲线;b. 溃口流量变化曲线

      Fig.  9.  Variation of water content and discharge of the landslide dam failure due to piping inexperment K

      图  10  漫顶破坏下堰塞体坡面颗粒受力分析图

      Fig.  10.  Stability analysis oflandslide dam due to overtopping

      图  11  滑面破坏下堰塞体稳定性分析图

      Fig.  11.  Stability analysis of landslide dam due to sliding

      表  1  堰塞体失稳模型实验参数表

      Table  1.   Experimental parameters of landslide dams

      试验编号 坝高(cm) 坝长(cm) D50(mm) CU 水槽坡度(°)
      A 20 80 1.5 13.3 5
      B 20 80 1.5 13.3 7
      C 20 80 1.5 13.3 9
      D 20 80 1.5 13.3 11
      E 20 80 1.5 13.3 13
      F 20 80 1.5 13.3 15
      G 20 80 1.5 13.3 17
      H 20 80 1.0 16.7 11
      I 20 80 2.5 23.4 11
      J 20 80 3.3 17.2 11
      K 20 80 4.3 23.6 11
      L 20 80 6.5 16.0 11
      下载: 导出CSV
    • Casagli, N., Ermini, L., Rosati, G., 2003. Determining Grain Size Distribution of Material Composing Landslide Dams in the Northern Apennine: Sampling and Processing Methods. Engineering Geology, 69 (1): 83-97.
      Chang, M., Dou, X. Y., Tang, C., et al., 2019. Hazard Assessment of Typical Debris Flow Induced by Rainfall Intensity. Earth Science, 44(8): 2794-2802(in Chinese with English abstract).
      Costa, J. E., Schuster, R. L., 1988. The Formation and Failure of Natural Dams. Geological Society of America Bulletin, 100(7): 1054-1068. https://doi.org/10.1130/0016-7606(1988)100<1054:tfafon>2.3.co;2 doi: 10.1130/0016-7606(1988)100<1054:tfafon>2.3.co;2
      Cui P, Guo, J, 2021. Evolution Models, Risk Prevention and Control Countermeasures of the Valley Disaster Chain. Advanced Engineering Sciences, 53(3): 5-18(in Chinese with English abstract).
      Cui, Y. F., Zhou, X. J., Guo, C. X., 2017. Experimental Study on the Moving Characteristics of Fine Grains in Wide Grading Unconsolidated Soil under Heavy Rainfall. Journal of Mountain Science, 14(3): 417-431. https://doi.org/10.1007/s11629-016-4303-x
      Dong, J. J., Tung, Y. H., Chen, C. C., et al., 2009. Discriminant Analysis of the Geomorphic Characteristics and Stability of Landslide Dams. Geomorphology, 110(3/4): 162-171. https://doi.org/10.1016/j.geomorph.2009.04.004
      Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake‐Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018rg000626
      Fan, X., Tang, C. X., van Westen, C. J., et al., 2012. Simulating Dam-Breach Flood Scenarios of the Tangjiashan Landslide Dam Induced by the Wenchuan Earthquake. Natural Hazards and Earth System Sciences, 12(10): 3031-3044. https://doi.org/10.5194/nhess-12-3031-2012
      Fu, J. K., Luo, G., Hu, X. W., et al., 2018. Physical Model Experiment on Overtopping Overflow Failure of Landslide Dam. Journal of Jilin University(Earth Science Edition), 48(1): 203-212(in Chinese with English abstract).
      Hanson, G. J., Cook, K. R., Hunt, S. L., et al., 2005. Physical Modeling of Overtopping Erosion and Breach Formation of Cohesive Embankments. Transactions of ASAE, 48(5): 1783-1794. doi: 10.13031/2013.20012
      Hu, X. W., Han, M., Liang, J. X., et al., 2016. Some Key Problems on Debris Flow in Wenchuan Earthquake Area. Journal of Southwest Jiaotong University, 51(2): 331-340(in Chinese with English abstract). doi: 10.3969/j.issn.0258-2724.2016.02.012
      Jiang, X. G., Wei, Y. W., Wu, L., et al., 2018. Experimental Investigation of Failure Modes and Breaching Characteristics of Natural Dams. Geomatics, Natural Hazards and Risk, 9(1): 33-48. https://doi.org/10.1080/19475705.2017.1407367
      Lin, K., Takahashi, A., 2012. Strength Reduction of Cohesionless Soil Due to Internal Erosion Induced by One-Dimensional Upward Seepage Flow. Soils and Foundations, 52(4): 698-711. https://doi.org/10.1016/j.sandf.2012.07.010
      Liu, D. Z., Cui, P., Jiang, D. W., et al., 2017. Experimental Study on Breach Broadening Process of Landslide Dam. Science of Soil and Water Conservation, 15(6): 19-26(in Chinese with English abstract).
      Liu, J. F., You, Y., Chen, X. C., et al., 2010. The Characteristics and Countermeasures of Dam-Breaking Debris Flow after Wenchuan Earthquake: A Case Study of the Tangfang Gully in Pingwu County, Sichuan Province. Advanced Engineering Sciences, 42(5): 68-75(in Chinese with English abstract).
      Lu, G. M., Xia, Y. Y., Rui, R., 2016. Improvement of Piping's Critical Slope Ratio Equation Based on the Tortuosity and Chords Model. Journal of Wuhan University of Technology, 38(3): 41-47(in Chinese with English abstract).
      Morris, M. W., Hassan, M. A. A. M., Vaskinn, K. A., 2007. Breach Formation: Field Test and Laboratory Experiments. Journal of Hydraulic Research, 45(sup1): 9-17. https://doi.org/10.1080/00221686.2007.9521828
      Shan, Y. B., Chen, S. S., Zhong, Q. M., 2020. A Rapid Evaluation Method of Landslide Dam Stability. Chinese Journal of Rock Mechanics and Engineering, 39(9): 1847-1859(in Chinese with English abstract).
      Shi, Z. M., Zhou, M. J., Peng, M., et al., 2021. Research Progress on the Mechanisms and Breaching Flood of Overtopping Failure of Landslide Dams Caused by Landslides and Avalanches. Chinese Journal of Rock Mechanics and Engineering, 1-16(in Chinese with English abstract).
      Shu, A. P., Zhu, F. Y., Wang, S., et al., 2019. Starting Processes and Dynamic Characteristics of Dam-Break Debris Flow. Journal of Hydraulic Engineering, 50(6): 661-669(in Chinese with English abstract).
      Wu, M. X., Gao, G. Y., Yang, J. X., et al., 2019. A method of Predicting Critical Gradient for Piping of Sand and Gravel Soils. Rock and Soil Mechanics, 40(3): 861-870(in Chinese with English abstract).
      Yu, B., Yang, L. Y., Liu, Q. H., et al., 2020. A Precise Prediction Model on Debris Flows Caused by Runoff Mechanism Based on Channel Width and Particle Size. Earth Science, 45(4): 1447-1456(in Chinese with English abstract).
      Zhang, H. H., 2011. An Study On Debris Flow Disaster Caused by Flood-Triggering Channel Accumulation in Post-Earthquake Meizoseismal Areas(Dissertation). Chengdu University of Technology, Chengdu: 24-35 (in Chinese with English abstract).
      Zhang, J. Y., Li, Y., Xuan, G. X., et al., 2009. Overtopping Breaching of Cohesive Homogeneous Earth Dam with Different Cohesive Strength. Science in China Series E: Technological Sciences, 52(10): 3024-3029. https://doi.org/10.1007/s11431-009-0275-1
      Zhao, T. L., Chen, S. S., Fu, C. J., et al., 2019. Centrifugal Model Tests and Numerical Simulations for Barrier Dam Break Due to Overtopping. Journal of Mountain Science, 16(3): 630-640. https://doi.org/10.1007/s11629-018-5024-0
      Zhao, W. Y., Chen, X. Q., You, Y., et al., 2015. Dam-Break Characteristics of Landslide Dams with Different Types of Open Channel Discharge Sections. Environmental Earth Sciences, 74(6): 5331-5340. https://doi.org/10.1007/s12665-015-4543-z
      Zhong, Q. M., Chen, S. S., Mei, S. A., et al., 2017. Numerical Simulation of Landslide Dam Breaching Due to Overtopping. Landslides, 15(6): 1183-1192. https://doi.org/10.1007/s10346-017-0935-3
      Zhou, G. G. D., Cui, P., Zhu, X. H., et al., 2015. A Preliminary Study of the Failure Mechanisms of Cascading Landslide Dams. International Journal of Sediment Research, 30(3): 223-234. https://doi.org/10.1016/j.ijsrc.2014.09.003
      Zhu, X. H., Peng, J. B., Jiang, C., et al., 2019. A Preliminary Study of the Failure Modes and Process of Landslide Dams Due to Upstream Flow. Water, 11(6): 1115. https://doi.org/10.3390/w11061115
      Zhu, X. H., Peng, J. B., Liu, B. X., et al., 2020. Influence of Textural Properties on the Failure Mode and Process of Landslide Dams. Engineering Geology, 271(2): 105613. https://doi.org/10.1016/j.enggeo.2020.105613
      常鸣, 窦向阳, 唐川, 等, 2019. 降雨驱动泥石流危险性评价. 地球科学, 44(8): 2794-2802. doi: 10.3799/dqkx.2017.547
      崔鹏, 郭剑, 2021. 沟谷灾害链演化模式与风险防控对策. 工程科学与技术, 53(3): 5-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202103003.htm
      付建康, 罗刚, 胡卸文, 等, 2018. 滑坡堰塞坝越顶溢流破坏的物理模型实验. 吉林大学学报(地球科学版), 48(1): 203-212. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201801015.htm
      胡卸文, 韩玫, 梁敬轩, 等, 2016. 汶川地震灾区泥石流若干关键问题. 西南交通大学学报, 51(2): 331-340. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602013.htm
      刘定竺, 崔鹏, 蒋德旺, 等, 2017. 堰塞坝溃口展宽过程实验研究. 国水土保持科学, 15(6): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201706003.htm
      柳金峰, 游勇, 陈兴长, 等, 2010. 震后堵溃泥石流的特征及防治对策研究——以四川省平武县唐房沟为例. 四川大学学报(工程科学版), 42(5): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201005011.htm
      陆高明, 夏元友, 芮瑞, 2016. 基于弯曲度与链索模型的管涌临界坡降比公式改进. 武汉理工大学学报, 38(3): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201603008.htm
      单熠博, 陈生水, 钟启明, 2020. 堰塞体稳定性快速评价方法研究. 岩石力学与工程学报, 39(9): 1847-1859. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009011.htm
      石振明, 周明俊, 彭铭, 等, 2021. 崩滑型堰塞坝漫顶溃决机制及溃坝洪水研究进展. 岩石力学与工程学报, 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202111002.htm
      舒安平, 朱福杨, 王澍, 等, 2019. 溃坝泥石流起动过程及其动力学特征. 水利学报, 50(6): 661-669. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201906001.htm
      吴梦喜, 高桂云, 杨家修, 等, 2019. 砂砾石土的管涌临界渗透坡降预测方法. 岩土力学, 40(3): 861-870. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903005.htm
      余斌, 杨凌崴, 刘清华, 等, 2020. 基于沟床宽度与颗粒粒径的泥石流精细化预报模型. 地球科学, 45(4): 1447-1456. doi: 10.3799/dqkx.2019.131
      张惠惠, 2011. 震后强震区洪水启动沟道堆积物引发泥石流灾害研究(硕士学位论文). 成都: 成都理工大学, 24-35.
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  498
    • HTML全文浏览量:  468
    • PDF下载量:  51
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-05-13
    • 刊出日期:  2023-08-25

    目录

      /

      返回文章
      返回