Failure Modes and Dynamic Characteristics of the Landslide Dams in Strong Earthquake Area
-
摘要: 强震触发的大量崩塌滑坡所形成的松散固体物质堆积于泥石流沟道,容易形成天然堰塞体,在强降雨和上游流体的冲蚀下极易失稳形成溃决型泥石流.采用自制泥石流试验水槽,通过控制坝体颗粒组成和水动力条件,实施了12组堰塞体失稳模拟试验,获取了堰塞体的破坏过程、溃口流量和相关力学参数的演化特征. 将堰塞体划分为漫顶破坏、滑面破坏、管涌破坏3种不同失稳模式,并结合堰塞体的颗粒组成结构分析了失稳机理及特征,通过动力学过程分析分别建立了不同失稳模式下的堰塞体稳定性判别式. 研究成果对于溃决型泥石流防治工程的规划设计以及提高泥石流防灾减灾水平具有重要意义.Abstract: The loose solid materials generated by a large amount of landslides triggered by meizoseismal area fill up the valley or river, which is easy to form a landslide dam. It breaks out and forms outburst debris flow under heavy rainfall and the scouring action of rainfall-runoff. In this study, 12 experiments were designed using the self-made flume to reproduce the failure process of landslide dams with different grain size distributions and hydrodynamic conditions. The failure process, breach discharge, and mechanical parameters are carried out. The landslide dams are divided into three instability modes: overtopping, sliding, and piping. The formation reasons of these three types of dam failure mode are analyzed combined with the grain size distributions of the landslide dams. Based on the dynamic characteristics, landslide dams' stability under different failure modes is established The research results are of great significance for the planning and designing prevention and control projects of the dam-break debris flow and improving the level of debris flow disaster prevention and mitigation.
-
Key words:
- landslide dam /
- failure mode /
- dynamic characteristic /
- critical condition /
- landslides
-
表 1 堰塞体失稳模型实验参数表
Table 1. Experimental parameters of landslide dams
试验编号 坝高(cm) 坝长(cm) D50(mm) CU 水槽坡度(°) A 20 80 1.5 13.3 5 B 20 80 1.5 13.3 7 C 20 80 1.5 13.3 9 D 20 80 1.5 13.3 11 E 20 80 1.5 13.3 13 F 20 80 1.5 13.3 15 G 20 80 1.5 13.3 17 H 20 80 1.0 16.7 11 I 20 80 2.5 23.4 11 J 20 80 3.3 17.2 11 K 20 80 4.3 23.6 11 L 20 80 6.5 16.0 11 -
Casagli, N., Ermini, L., Rosati, G., 2003. Determining Grain Size Distribution of Material Composing Landslide Dams in the Northern Apennine: Sampling and Processing Methods. Engineering Geology, 69 (1): 83-97. Chang, M., Dou, X. Y., Tang, C., et al., 2019. Hazard Assessment of Typical Debris Flow Induced by Rainfall Intensity. Earth Science, 44(8): 2794-2802(in Chinese with English abstract). Costa, J. E., Schuster, R. L., 1988. The Formation and Failure of Natural Dams. Geological Society of America Bulletin, 100(7): 1054-1068. https://doi.org/10.1130/0016-7606(1988)100<1054:tfafon>2.3.co;2 doi: 10.1130/0016-7606(1988)100<1054:tfafon>2.3.co;2 Cui P, Guo, J, 2021. Evolution Models, Risk Prevention and Control Countermeasures of the Valley Disaster Chain. Advanced Engineering Sciences, 53(3): 5-18(in Chinese with English abstract). Cui, Y. F., Zhou, X. J., Guo, C. X., 2017. Experimental Study on the Moving Characteristics of Fine Grains in Wide Grading Unconsolidated Soil under Heavy Rainfall. Journal of Mountain Science, 14(3): 417-431. https://doi.org/10.1007/s11629-016-4303-x Dong, J. J., Tung, Y. H., Chen, C. C., et al., 2009. Discriminant Analysis of the Geomorphic Characteristics and Stability of Landslide Dams. Geomorphology, 110(3/4): 162-171. https://doi.org/10.1016/j.geomorph.2009.04.004 Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake‐Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018rg000626 Fan, X., Tang, C. X., van Westen, C. J., et al., 2012. Simulating Dam-Breach Flood Scenarios of the Tangjiashan Landslide Dam Induced by the Wenchuan Earthquake. Natural Hazards and Earth System Sciences, 12(10): 3031-3044. https://doi.org/10.5194/nhess-12-3031-2012 Fu, J. K., Luo, G., Hu, X. W., et al., 2018. Physical Model Experiment on Overtopping Overflow Failure of Landslide Dam. Journal of Jilin University(Earth Science Edition), 48(1): 203-212(in Chinese with English abstract). Hanson, G. J., Cook, K. R., Hunt, S. L., et al., 2005. Physical Modeling of Overtopping Erosion and Breach Formation of Cohesive Embankments. Transactions of ASAE, 48(5): 1783-1794. doi: 10.13031/2013.20012 Hu, X. W., Han, M., Liang, J. X., et al., 2016. Some Key Problems on Debris Flow in Wenchuan Earthquake Area. Journal of Southwest Jiaotong University, 51(2): 331-340(in Chinese with English abstract). doi: 10.3969/j.issn.0258-2724.2016.02.012 Jiang, X. G., Wei, Y. W., Wu, L., et al., 2018. Experimental Investigation of Failure Modes and Breaching Characteristics of Natural Dams. Geomatics, Natural Hazards and Risk, 9(1): 33-48. https://doi.org/10.1080/19475705.2017.1407367 Lin, K., Takahashi, A., 2012. Strength Reduction of Cohesionless Soil Due to Internal Erosion Induced by One-Dimensional Upward Seepage Flow. Soils and Foundations, 52(4): 698-711. https://doi.org/10.1016/j.sandf.2012.07.010 Liu, D. Z., Cui, P., Jiang, D. W., et al., 2017. Experimental Study on Breach Broadening Process of Landslide Dam. Science of Soil and Water Conservation, 15(6): 19-26(in Chinese with English abstract). Liu, J. F., You, Y., Chen, X. C., et al., 2010. The Characteristics and Countermeasures of Dam-Breaking Debris Flow after Wenchuan Earthquake: A Case Study of the Tangfang Gully in Pingwu County, Sichuan Province. Advanced Engineering Sciences, 42(5): 68-75(in Chinese with English abstract). Lu, G. M., Xia, Y. Y., Rui, R., 2016. Improvement of Piping's Critical Slope Ratio Equation Based on the Tortuosity and Chords Model. Journal of Wuhan University of Technology, 38(3): 41-47(in Chinese with English abstract). Morris, M. W., Hassan, M. A. A. M., Vaskinn, K. A., 2007. Breach Formation: Field Test and Laboratory Experiments. Journal of Hydraulic Research, 45(sup1): 9-17. https://doi.org/10.1080/00221686.2007.9521828 Shan, Y. B., Chen, S. S., Zhong, Q. M., 2020. A Rapid Evaluation Method of Landslide Dam Stability. Chinese Journal of Rock Mechanics and Engineering, 39(9): 1847-1859(in Chinese with English abstract). Shi, Z. M., Zhou, M. J., Peng, M., et al., 2021. Research Progress on the Mechanisms and Breaching Flood of Overtopping Failure of Landslide Dams Caused by Landslides and Avalanches. Chinese Journal of Rock Mechanics and Engineering, 1-16(in Chinese with English abstract). Shu, A. P., Zhu, F. Y., Wang, S., et al., 2019. Starting Processes and Dynamic Characteristics of Dam-Break Debris Flow. Journal of Hydraulic Engineering, 50(6): 661-669(in Chinese with English abstract). Wu, M. X., Gao, G. Y., Yang, J. X., et al., 2019. A method of Predicting Critical Gradient for Piping of Sand and Gravel Soils. Rock and Soil Mechanics, 40(3): 861-870(in Chinese with English abstract). Yu, B., Yang, L. Y., Liu, Q. H., et al., 2020. A Precise Prediction Model on Debris Flows Caused by Runoff Mechanism Based on Channel Width and Particle Size. Earth Science, 45(4): 1447-1456(in Chinese with English abstract). Zhang, H. H., 2011. An Study On Debris Flow Disaster Caused by Flood-Triggering Channel Accumulation in Post-Earthquake Meizoseismal Areas(Dissertation). Chengdu University of Technology, Chengdu: 24-35 (in Chinese with English abstract). Zhang, J. Y., Li, Y., Xuan, G. X., et al., 2009. Overtopping Breaching of Cohesive Homogeneous Earth Dam with Different Cohesive Strength. Science in China Series E: Technological Sciences, 52(10): 3024-3029. https://doi.org/10.1007/s11431-009-0275-1 Zhao, T. L., Chen, S. S., Fu, C. J., et al., 2019. Centrifugal Model Tests and Numerical Simulations for Barrier Dam Break Due to Overtopping. Journal of Mountain Science, 16(3): 630-640. https://doi.org/10.1007/s11629-018-5024-0 Zhao, W. Y., Chen, X. Q., You, Y., et al., 2015. Dam-Break Characteristics of Landslide Dams with Different Types of Open Channel Discharge Sections. Environmental Earth Sciences, 74(6): 5331-5340. https://doi.org/10.1007/s12665-015-4543-z Zhong, Q. M., Chen, S. S., Mei, S. A., et al., 2017. Numerical Simulation of Landslide Dam Breaching Due to Overtopping. Landslides, 15(6): 1183-1192. https://doi.org/10.1007/s10346-017-0935-3 Zhou, G. G. D., Cui, P., Zhu, X. H., et al., 2015. A Preliminary Study of the Failure Mechanisms of Cascading Landslide Dams. International Journal of Sediment Research, 30(3): 223-234. https://doi.org/10.1016/j.ijsrc.2014.09.003 Zhu, X. H., Peng, J. B., Jiang, C., et al., 2019. A Preliminary Study of the Failure Modes and Process of Landslide Dams Due to Upstream Flow. Water, 11(6): 1115. https://doi.org/10.3390/w11061115 Zhu, X. H., Peng, J. B., Liu, B. X., et al., 2020. Influence of Textural Properties on the Failure Mode and Process of Landslide Dams. Engineering Geology, 271(2): 105613. https://doi.org/10.1016/j.enggeo.2020.105613 常鸣, 窦向阳, 唐川, 等, 2019. 降雨驱动泥石流危险性评价. 地球科学, 44(8): 2794-2802. doi: 10.3799/dqkx.2017.547 崔鹏, 郭剑, 2021. 沟谷灾害链演化模式与风险防控对策. 工程科学与技术, 53(3): 5-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202103003.htm 付建康, 罗刚, 胡卸文, 等, 2018. 滑坡堰塞坝越顶溢流破坏的物理模型实验. 吉林大学学报(地球科学版), 48(1): 203-212. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201801015.htm 胡卸文, 韩玫, 梁敬轩, 等, 2016. 汶川地震灾区泥石流若干关键问题. 西南交通大学学报, 51(2): 331-340. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602013.htm 刘定竺, 崔鹏, 蒋德旺, 等, 2017. 堰塞坝溃口展宽过程实验研究. 国水土保持科学, 15(6): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201706003.htm 柳金峰, 游勇, 陈兴长, 等, 2010. 震后堵溃泥石流的特征及防治对策研究——以四川省平武县唐房沟为例. 四川大学学报(工程科学版), 42(5): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201005011.htm 陆高明, 夏元友, 芮瑞, 2016. 基于弯曲度与链索模型的管涌临界坡降比公式改进. 武汉理工大学学报, 38(3): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201603008.htm 单熠博, 陈生水, 钟启明, 2020. 堰塞体稳定性快速评价方法研究. 岩石力学与工程学报, 39(9): 1847-1859. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009011.htm 石振明, 周明俊, 彭铭, 等, 2021. 崩滑型堰塞坝漫顶溃决机制及溃坝洪水研究进展. 岩石力学与工程学报, 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202111002.htm 舒安平, 朱福杨, 王澍, 等, 2019. 溃坝泥石流起动过程及其动力学特征. 水利学报, 50(6): 661-669. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201906001.htm 吴梦喜, 高桂云, 杨家修, 等, 2019. 砂砾石土的管涌临界渗透坡降预测方法. 岩土力学, 40(3): 861-870. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903005.htm 余斌, 杨凌崴, 刘清华, 等, 2020. 基于沟床宽度与颗粒粒径的泥石流精细化预报模型. 地球科学, 45(4): 1447-1456. doi: 10.3799/dqkx.2019.131 张惠惠, 2011. 震后强震区洪水启动沟道堆积物引发泥石流灾害研究(硕士学位论文). 成都: 成都理工大学, 24-35.