• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鄂西北碱性火山岩型铌矿床榍石矿物学及对铌富集机理的指示

    苌笙任 苏建辉 秦志军 赵新福

    苌笙任, 苏建辉, 秦志军, 赵新福, 2022. 鄂西北碱性火山岩型铌矿床榍石矿物学及对铌富集机理的指示. 地球科学, 47(4): 1316-1332. doi: 10.3799/dqkx.2021.134
    引用本文: 苌笙任, 苏建辉, 秦志军, 赵新福, 2022. 鄂西北碱性火山岩型铌矿床榍石矿物学及对铌富集机理的指示. 地球科学, 47(4): 1316-1332. doi: 10.3799/dqkx.2021.134
    Chang Shengren, Su Jianhui, Qin Zhijun, Zhao Xinfu, 2022. Titanite Mineralogy and Its Implications for Nb Enrichment Mechanism of Alkaline Volcanic-Rock Hosted Nb Deposit in NW Hubei Province. Earth Science, 47(4): 1316-1332. doi: 10.3799/dqkx.2021.134
    Citation: Chang Shengren, Su Jianhui, Qin Zhijun, Zhao Xinfu, 2022. Titanite Mineralogy and Its Implications for Nb Enrichment Mechanism of Alkaline Volcanic-Rock Hosted Nb Deposit in NW Hubei Province. Earth Science, 47(4): 1316-1332. doi: 10.3799/dqkx.2021.134

    鄂西北碱性火山岩型铌矿床榍石矿物学及对铌富集机理的指示

    doi: 10.3799/dqkx.2021.134
    基金项目: 

    国家重点研发计划项目 2017YFC0602401

    国家自然科学基金 41822203

    详细信息
      作者简介:

      苌笙任(1998-),男,博士,主要从事于与碱性岩-碳酸岩体系相关的稀土-铌-铁多金属成矿研究. ORCID:0000-0002-9969-0675. E-mail:srchang@cug.edu.cn

      通讯作者:

      赵新福,E-mail:xfzhao@cug.edu.cn

    • 中图分类号: P611.1

    Titanite Mineralogy and Its Implications for Nb Enrichment Mechanism of Alkaline Volcanic-Rock Hosted Nb Deposit in NW Hubei Province

    • 摘要: 位于南秦岭武当地区的天宝铌矿床是我国典型的碱性火山岩型铌矿床,但其岩浆成因、演化及成矿机理等方面的研究十分薄弱.天宝碱性火山岩主要分为粗面质岩石和碱性玄武岩两大类,两者在空间上紧密共生.在详细的岩(矿)相学及榍石显微结构研究的基础上,利用LA-ICP-MS分析技术对天宝粗面质火山岩中的榍石进行原位U-Pb定年,并利用EPMA对不同岩性中不同产状的榍石进行原位地球化学成分分析,从而反演岩浆演化过程及铌富集过程.粗面质岩石中榍石原位U-Pb定年的结果为432.4±4.4 Ma(n=30,MSWD=2.4),这与区域上其他粗面岩、基性岩、碳酸岩-碱性岩杂岩体形成年龄基本一致,说明研究区在早志留世发生过大规模的碱性岩浆活动.碱性玄武岩和粗面岩中榍石均可以分为岩浆榍石及捕获榍石.不同类型的榍石具有明显的产状和地球化学特征上的差异,其中岩浆榍石以自形、粒度大、振荡环带发育为主要特征,也有部分以微小粒状的形式产于基质或斑晶榍石周围,其通常具有贫Al和低Al/Fe的特点;而捕获榍石以破碎程度高、多产在岩屑内部及周围为典型特征,部分以晶屑的形式弥散状分布,且具有富Al及高Al/Fe的特点.早期形成的碱性玄武岩中的岩浆榍石具有相对较低Nb2O5(< 0.47%)、Na2O(< 0.05%)和REE2O3(< 0.87%)的特征,但Al2O3+Fe2O3的含量变化较大(0.80%~2.91%),说明早期玄武质岩浆的Nb含量相对较低.而粗面岩中的岩浆榍石明显富集Nb2O5(0.19%~1.50%)及REE2O3(0.02%~4.06%),结合镜下观察到微细铌铁矿、易解石等铌矿物发育在粗面质岩石中,指示了碱性岩浆从玄武质到粗面质演化的过程中,Nb的含量发生了明显的提高并最终在粗面岩中富集成矿.

       

    • 图  1  秦岭位置的大地构造简图(a)和南秦岭区域地质图(b)

      图a据张成立等(2007)修改,图b据Wang et al.(2017)修改

      Fig.  1.  Schematic diagram of the structure of Qinling belt (a) and geological map of South Qinling belt (b)

      图  2  天宝碱性火山岩型铌矿床矿区地质图

      刘万亮等(2015)修改

      Fig.  2.  Geological map of Tianbao alkaline volcanic-rock hosted Nb deposit

      图  3  天宝碱性火山岩型铌矿床钻孔2001岩性柱状图

      Fig.  3.  Lithology column of ZK2001 in the Tianbao alkaline volcanic-rock hosted Nb deposit

      图  4  粗面质岩石手标本及镜下照片

      a.长石呈斑晶产出在粗面岩中;b.钾长石斑晶;c.钾长石冷阴极发光照片显示钾长石发生了明显的钠化;d.褐帘石呈斑晶产出;e.粗面岩中具有明显核边结构的磷灰石;f.铌矿物和锆矿物以微细粒状分布在基质中;g.铌矿物产出在榍石、黑云母斑晶矿物的周围及裂隙中;h.粗面质凝灰岩手标本照片;i.粗面质凝灰岩阴极发光图像. Ab.钠长石;Ap.磷灰石;Ase.易解石;Cal.方解石;Kf.钾长石;Ilm.钛铁矿;Ksp.长石;Ttn.榍石;Zr.锆石

      Fig.  4.  Hand specimen and microscope photos of trachyte

      图  5  碱性玄武岩手标本及镜下照片

      a.玄武质角砾岩手标本照片;b,c.玄武质角砾岩镜下照片;d.玄武质凝灰岩镜下照片;e.发育有热液边的磷灰石;f.玄武质凝灰岩中的榍石;Ap.磷灰石;Px.辉石族;Ttn.榍石

      Fig.  5.  Hand specimen and microscope photos of alkaline basalt

      图  6  天宝碱性火山岩岩中不同产状的榍石BSE镜下照片

      a~c.粗面质岩石中的斑晶榍石;d.粗面质岩石中的基质榍石;e.粗面质岩石中的捕获榍石;f,g.碱性玄武岩中的岩浆榍石;h~i.碱性玄武岩中的捕获榍石

      Fig.  6.  BSE photos of different types of titanite in the Tianbao alkaline volcanic rock

      图  7  天宝粗面岩榍石U-Pb年龄

      a.反协和关系图;b.铅校正后加权平均年龄

      Fig.  7.  U-Pb age of titanate from Tianbao trachyte

      图  8  天宝碱性岩榍石Fe-Al(a)和Al-Ti(b)含量(apfu)图解

      Ttn1-1. 粗面岩中的斑晶榍石;Ttn1-2. 粗面岩中的基质榍石;Ttn1-3. 粗面岩中的捕获榍石;Ttn2-1. 碱性玄武岩中的斑晶榍石;Ttn2-2. 碱性玄武岩中的捕获榍石(下同)

      Fig.  8.  Illustrations of Fe-Al (a) and Al-Ti (b) content (in atoms per formula unit) of titanite fromTianbao alkaline rocks

      图  9  天宝碱性岩中榍石元素含量(apfu)协变图解

      Fig.  9.  Compositional variations (in atoms per formula unit) of titanite from Tianbao alkaline volcanic rocks

      图  10  南秦岭地区早古生代碱性岩浆岩年龄汇总

      Fig.  10.  Age summary of alkaline magmatic rocks from the South Qinling belt

      表  1  天宝粗面岩LA-ICP-MS榍石U-Pb定年结果

      Table  1.   LA-ICP-MS titanite U-Pb dating results of trachyte from Tianbao

      分析点号 Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U
      (10-6) Ratio Ratio Ratio Age (Ma)
      B20-01 3.45 80.5 10.50 0.396 6 0.05 4.265 6 0.35 0.099 0 0.00 386.9 23.7
      TB20-02 3.76 85.1 10.50 0.280 7 0.03 3.963 7 0.30 0.118 2 0.00 499.1 27.7
      TB20-03 3.85 90.1 10.60 0.298 5 0.03 3.823 5 0.31 0.110 0 0.00 464.5 27.7
      TB20-04 3.49 79.5 10.50 0.310 7 0.03 3.774 3 0.25 0.110 3 0.01 458.1 26.8
      TB20-05 3.49 76.6 10.30 0.316 0 0.03 3.832 2 0.37 0.108 4 0.01 449.9 26.7
      TB20-06 3.96 105.9 11.90 0.295 4 0.03 3.634 4 0.32 0.104 8 0.00 451.4 28.8
      TB20-07 3.62 82.1 10.70 0.388 2 0.07 4.290 4 0.31 0.108 6 0.00 413.0 22.4
      TB20-08 3.99 100.9 10.60 0.402 2 0.05 4.613 6 0.31 0.109 6 0.01 408.6 21.6
      TB20-09 3.68 88.8 10.20 0.321 6 0.03 4.261 6 0.31 0.114 3 0.01 462.2 25.4
      TB20-10 3.40 81.4 10.40 0.401 4 0.06 4.367 9 0.33 0.107 6 0.00 404.6 21.9
      TB20-11 3.83 90.1 10.60 0.394 4 0.04 4.961 3 0.37 0.111 4 0.00 416.3 21.7
      TB20-12 3.66 89.0 10.70 0.347 3 0.03 4.556 6 0.35 0.108 7 0.00 433.6 24.7
      TB20-13 3.64 85.0 10.50 0.402 2 0.05 4.298 3 0.31 0.106 6 0.00 402.0 22.1
      TB20-14 3.64 80.2 10.10 0.396 3 0.06 4.626 7 0.44 0.110 3 0.01 412.9 21.7
      TB20-15 4.14 95.0 10.30 0.348 2 0.04 4.721 3 0.32 0.127 5 0.01 477.3 21.7
      TB20-16 3.45 75.0 9.45 0.405 0 0.04 4.914 0 0.40 0.108 9 0.00 405.8 21.5
      TB20-17 3.12 79.7 9.91 0.425 8 0.07 4.201 6 0.39 0.094 2 0.00 364.1 23.2
      TB20-18 3.05 71.9 9.84 0.400 5 0.05 3.862 7 0.29 0.100 6 0.00 389.0 23.2
      TB20-19 3.51 80.6 10.80 0.432 2 0.05 4.766 5 0.32 0.101 1 0.00 377.2 21.6
      TB20-20 4.17 81.5 10.10 0.420 6 0.04 6.413 3 0.52 0.134 7 0.01 448.2 17.2
      TB20-21 3.89 92.5 11.50 0.291 4 0.03 3.741 6 0.32 0.108 7 0.00 465.1 28.4
      TB20-22 3.92 96.6 11.10 0.313 4 0.03 4.212 6 0.31 0.104 5 0.00 440.6 27.6
      TB20-23 3.75 86.5 11.40 0.300 6 0.02 3.930 2 0.25 0.107 5 0.00 456.2 27.9
      TB20-24 4.01 78.6 10.90 0.310 1 0.02 5.077 6 0.35 0.133 1 0.01 516.5 23.4
      TB20-25 3.41 75.0 10.00 0.407 8 0.06 4.146 0 0.38 0.108 5 0.01 403.7 21.5
      TB20-26 3.24 72.2 9.56 0.320 4 0.05 3.709 8 0.41 0.109 5 0.01 450.3 26.2
      TB20-27 3.67 75.9 10.50 0.346 6 0.03 4.809 1 0.31 0.115 3 0.00 450.2 23.7
      TB20-28 4.18 97.7 11.60 0.333 5 0.04 4.593 3 0.35 0.121 7 0.01 473.3 23.5
      TB20-29 4.05 108.0 11.10 0.228 3 0.03 2.971 0 0.32 0.104 9 0.01 493.5 34.4
      TB20-30 3.47 83.4 10.80 0.353 1 0.03 4.555 4 0.35 0.105 7 0.00 423.1 24.9
         注:利用在线Isoplot(http://www.isoplotr.com/isoplotr/)中等时线型普通铅(Isochron)法进行普通铅校正.
      下载: 导出CSV

      表  2  天宝碱性火山岩中榍石主微量元素分析结果(均值:%)

      Table  2.   Major and trace element compositions (%) of titanite from Tianbao alkaline volcanic rocks (average)

      岩性 粗面质岩石 碱性玄武岩
      类型 Ttn1-1 Ttn1-2 Ttn1-3 Ttn2-1 Ttn2-2
      样品编号(数量) TB14、ZK37、ZK51(N=28) ZK51(N=5) TB14(N=8) TB8、ZK116(N=22) TB3、TB8(N=15)
      Al2O3 1.05 0.73 3.70 0.94 3.24
      TiO2 34.60 36.80 32.80 38.10 33.90
      CaO 26.90 27.50 29.60 29.50 29.60
      Y2O3 0.25 0.19 0.02 0.07 0.01
      Ta2O5 0.00 0.00 0.00 0.00 0.00
      MnO 0.18 0.05 0.01 0.03 0.01
      Nd2O3 0.57 0.21 0.07 0.10 0.04
      Na2O 0.27 0.72 0.05 0.02 0.05
      MgO 0.09 0.05 0.08 0.03 0.11
      SiO2 29.60 31.00 31.60 30.60 31.50
      Nb2O5 1.00 0.81 0.70 0.24 0.15
      Fe2O3 2.35 1.91 1.48 0.84 1.47
      Pr2O3 0.18 0.06 0.03 0.06 0.02
      Ce2O3 1.31 0.07 0.00 0.08 0.00
      La2O3 0.46 0.01 0.01 0.03 0.01
      F 0.15 0.12 0.60 0.03 0.32
      Cl 0.00 0.01 0.00 0.00 0.01
      总量 98.60 100.00 100.40 100.60 100.20
      下载: 导出CSV
    • [1] Aleinikoff, J.N., Wintsch, R.P., Fanning, C.M., et al., 2002. U-Pb Geochronology of Zircon and Polygenetic Titanite from the Glastonbury Complex, Connecticut, USA: An Integrated SEM, EMPA, TIMS, and SHRIMP Study. Chemical Geology, 188(1/2): 125-147. https://doi.org/10.1016/S0009-2541(02)00076-1
      [2] Armstrong, J.T., 1991. Quantitative Elemental Analysis of Individual Microparticles with Electron Beam Instruments. In: Heinrich, K.F.J., Newbury, D.E., eds., Electron Probe Quantitation. Springer US, Boston, MA, 261-315. https://doi.org/10.1007/978-1-4899-2617-3_15
      [3] Chakhmouradian, A.R., 2004. Crystal Chemistry and Paragenesis of Compositionally Unique (Al-, Fe-, Nb-, and Zr-Rich) Titanite from Afrikanda, Russia. American Mineralogist, 89(11-12): 1752-1762. https://doi.org/10.2138/am-2004-11-1222
      [4] Chen, W., Lu, J., Jiang, S.Y., et al., 2018. Radiogenic Pb Reservoir Contributes to the Rare Earth Element (REE) Enrichment in South Qinling Carbonatites. Chemical Geology, 494: 80-95. https://doi.org/10.1016/j.chemgeo.2018.07.019
      [5] Faure, M., Lin, W., Monié, P., et al., 2008. Palaeozoic Collision between the North and South China Blocks, Triassic Intracontinental Tectonics, and the Problem of the Ultrahigh-Pressure Metamorphism. Comptes Rendus Geoscience, 340(2/3): 139-150. https://doi.org/10.1016/j.crte.2007.10.007
      [6] Frost, B.R., Chamberlain, K.R., Schumacher, J.C., 2001. Sphene (Titanite): Phase Relations and Role as a Geochronometer. Chemical Geology, 172(1/2): 131-148. https://doi.org/10.1016/S0009-2541(00)00240-0
      [7] Gao, X.Y., Zheng, Y.F., Chen, Y.X., et al., 2012. Geochemical and U-Pb Age Constraints on the Occurrence of Polygenetic Titanites in UHP Metagranite in the Dabie Orogen. Lithos, 136/137/138/139: 93-108. https://doi.org/10.1016/j.lithos.2011.03.020
      [8] He, Q., Zheng, Y.F., 2019. High-Temperature/Low-Pressure Metamorphism in a Continental Rift in the Northern Margin of the South China Block. Earth Science, 44(12): 4186-4194 (in Chinese with English abstract).
      [9] Vuorinen, J.H., Hålenius, U., 2005. Nb-, Zr- and LREE-Rich Titanite from the Alnö Alkaline Complex: Crystal Chemistry and Its Importance as a Petrogenetic Indicator. Lithos, 83(1/2): 128-142. https://doi.org/10.1016/j.lithos.2005.01.008
      [10] Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093. https://doi.org/10.1039/b804760j
      [11] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007
      [12] King, P.L., Sham, T.K., Gordon, R.A., et al., 2013. Microbeam X-Ray Analysis of Ce3+/Ce4+ in Ti-Rich Minerals: A Case Study with Titanite (Sphene) with Implications for Multivalent Trace Element Substitution in Minerals. American Mineralogist, 98(1): 110-119. https://doi.org/10.2138/am.2013.3959
      [13] Kohn, M.J., 2017. Titanite Petrochronology. Reviews in Mineralogy and Geochemistry, 83(1): 419-441. https://doi.org/10.2138/rmg.2017.83.13
      [14] Li, J.K., Li, P., Wang, D.H., et al., 2019. A Review of Niobium and Tantalum Metallogenic Regularity in China. Chinese Science Bulletin, 64(15): 1545-1566 (in Chinese). doi: 10.1360/N972018-00933
      [15] Li, J.W., Deng, X.D., Zhou, M.F., et al., 2010. Laser Ablation ICP-MS Titanite U-Th-Pb Dating of Hydrothermal Ore Deposits: A Case Study of the Tonglushan Cu-Fe-Au Skarn Deposit, SE Hubei Province, China. Chemical Geology, 270(1/2/3/4): 56-67. https://doi.org/10.1016/j.chemgeo.2009.11.005
      [16] Liu, W.L., Liu, C.X., Yang, C., et al., 2015. Geological Characteristics and Prospecting Potential of Niobium Ore of Tianbao Area, Zhuxi, Southern Qinling. Resources Environment & Engineering, 29(6): 779-784 (in Chinese with English abstract).
      [17] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [18] Mitchell, R.H., 2015. Primary and Secondary Niobium Mineral Deposits Associated with Carbonatites. Ore Geology Reviews, 64: 626-641. https://doi.org/10.1016/j.oregeorev.2014.03.010
      [19] Nie, X., Wang, Z.Q., Chen, L., et al., 2020. Mineralogical Constraints on Nb-REE Mineralization of the Zhujiayuan Nb (-REE) Deposit in the North Daba Mountain, South Qinling, China. Geological Journal, 55(6): 4845-4863. https://doi.org/10.1002/gj.3710
      [20] Pan, L.C., Hu, R.Z., Bi, X.W., et al., 2018. Titanite Major and Trace Element Compositions as Petrogenetic and Metallogenic Indicators of Mo Ore Deposits: Examples from Four Granite Plutons in the Southern Yidun Arc, SW China. American Mineralogist, 103(9): 1417-1434. https://doi.org/10.2138/am-2018-6224
      [21] Simandl, G.J., Burt, R.O., Trueman, D.L., et al., 2018. Economic Geology Models 2. Tantalum and Niobium: Deposits, Resources, Exploration Methods and Market—A Primer for Geoscientists. Geoscience Canada, 45(2): 85-96. https://doi.org/10.12789/geocanj.2018.45.135
      [22] Su, J.H., Zhao, X.F., Li, X.C., et al., 2019. Geological and Geochemical Characteristics of the Miaoya Syenite-Carbonatite Complex, Central China: Implications for the Origin of REE-Nb-Enriched Carbonatite. Ore Geology Reviews, 113: 103101. https://doi.org/10.1016/j.oregeorev.2019.103101
      [23] Vermeesch, P., 2018. Isoplot R: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      [24] Wan, J., Liu, C.X., Yang, C., et al., 2016. Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Age of the Trachytic Volcanic Rocks in Zhushan Area of Southern Qinling Mountains and Their Significance. Geological Bulletin of China, 35(7): 1134-1143 (in Chinese with English abstract).
      [25] Wang, C.Z., Yang, K.G., Xu, Y., et al., 2009. Geochemistry and LA-ICP-MS Zircon U-Pb Age of Basic Dike Swarms in North Daba Mountains and Its Tectonic Significance. Geological Science and Technology Information, 28(3): 19-26 (in Chinese with English abstract).
      [26] Wang, K., Wang, L.X., Ma, C.Q., et al., 2021. Mineralogy and Geochemistry of the Zhuxi Nb-Rich Trachytic Rocks, South Qinling (China): Insights into the Niobium Mineralization during Magmatic-Hydrothermal Processes. Ore Geology Reviews, 138: 104346. https://doi.org/10.1016/j.oregeorev.2021.104346
      [27] Wang, K. M., Wang, Z. Q., Zhang, Y. L., et al., 2015. Geochronology and Geochemistry of Mafic Rocks in the Xuhe, Shaanxi, China: Implications for Petrogenesis and Mantle Dynamics. Acta Geologica Sinica, 89(1): 187-202. doi: 10.1111/1755-6724.12404
      [28] Wang, R.C., Xie, L., Chen, J., et al., 2011. Titanite as an Indicator Mineral of Tin Mineralizing Potential of Granites in the Middle Nanling Range. Geological Journal of China Universities, 17(3): 368-380 (in Chinese with English abstract).
      [29] Wang, R.R., Xu, Z.Q., Santosh, M., et al., 2017. Petrogenesis and Tectonic Implications of the Early Paleozoic Intermediate and Mafic Intrusions in the South Qinling Belt, Central China: Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Tectonophysics, 712/713: 270-288. https://doi.org/10.1016/j.tecto.2017.05.021
      [30] Wu, Y.B., 2019. Paleozoic Magmatism in the Qinling Orogen and Its Geodynamic Significance. Earth Science, 44(12): 4173-4177 (in Chinese with English abstract).
      [31] Wu, Y.B., Zheng, Y.F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402-1428. https://doi.org/10.1016/j.gr.2012.09.007
      [32] Xia, L. Q., Xia, Z. C., Li, X. M., et al., 2008. Petrogenesis of Volcanic Rocks and Basic Dike Groups of Yaolinghe Group, Yunxi Group and Wudang Mountain Group in the Eastern Part of South Qinling Mountains. Northwestern Geology, (3): 1-29 (in Chinese with English abstract).
      [33] Xu, C., Campbell, I.H., Allen, C.M., et al., 2008. U-Pb Zircon Age, Geochemical and Isotopic Characteristics of Carbonatite and Syenite Complexes from the Shaxiongdong, China. Lithos, 105(1-2): 118-128. https://doi.org/10.1016/j.lithos.2008.03.002
      [34] Yang, C., Liu, C.X., Liu, W.L., et al., 2017. Geochemical Characteristics of Trachyte and Nb Mineralization Process in Tianbao Township, Zhuxi County, Southern Qinling. Acta Petrologica et Mineralogica, 36(5): 605-618 (in Chinese with English abstract).
      [35] Yao, S.Z., Ding, Z.J., Zhou, Z.G., et al., 2002. Metallogenic Systems of Qinling Orogen. Earth Science, 27(5): 599-604 (in Chinese with English abstract).
      [36] Ying, Y.C., Chen, W., Lu, J., et al., 2017. In Situ U-Th-Pb Ages of the Miaoya Carbonatite Complex in the South Qinling Orogenic Belt, Central China. Lithos, 290/291: 159-171. https://doi.org/10.1016/j.lithos.2017.08.003
      [37] Zhang, C. L., Gao, S., Yuan, H. L., et al., 2007. Early Paleozoic Mantle Properties in the Southern Qinling Mountains: Sr-Nd-Pb Isotopic Evidence from Ultramafic and Mafic Dike and Volcanic Rocks. Science in China (Series D), (7): 857-865 (in Chinese).
      [38] Zhang, G.W., Dong, Y.P., Yao, A.P., 1997. The Crustal Compositions, Structures and Tectonic Evolution of the Qinling Orogenic Belt. Geology of Shaanxi, 15(2): 1-14 (in Chinese with English abstract).
      [39] Zhang, G.W., Meng, Q.R., Lai, S.C., 1995. Tectonics and Structure of Qinling Orogenic Belt. Science in China (Series B), 25(9): 994-1003(in Chinese).
      [40] Zhang, W., Chen, W.T., Gao, J.F., et al., 2019. Two Episodes of REE Mineralization in the Qinling Orogenic Belt, Central China: In-Situ U-Th-Pb Dating of Bastnäsite and Monazite. Mineralium Deposita, 54(8): 1265-1280. https://doi.org/10.1007/s00126-019-00875-7
      [41] Zhu, J., Cheng, C.H., Wang, L.X., et al., 2017. Some New Knowledge Concerning Silurian Alkaline Magmatism and Related Nb-REE Mineralization in the Zhushan Region, South Qinling. Acta Petrologica et Mineralogica, 36(5): 681-690 (in Chinese with English abstract).
      [42] Zou, X.W., Duan, Q.F., Tang, C.Y., et al., 2011. SHRIMP Zircon U-Pb Dating and Lithogeochemical Characteristics of Diabase from Zhenping Area in North Daba Mountain. Geology in China, 38(2): 282-291 (in Chinese with English abstract).
      [43] 贺强, 郑永飞, 2019. 华南陆块北缘大陆裂断带高温低压变质作用. 地球科学, 44(12): 4186-4194. doi: 10.3799/dqkx.2019.267
      [44] 李建康, 李鹏, 王登红, 等, 2019. 中国铌钽矿成矿规律. 科学通报, 64(15): 1545-1566. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htm
      [45] 刘万亮, 刘成新, 杨成, 等, 2015. 南秦岭竹溪天宝一带铌矿地质特征及找矿前景分析. 资源环境与工程, 29(6): 779-784. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201506006.htm
      [46] 万俊, 刘成新, 杨成, 等, 2016. 南秦岭竹山地区粗面质火山岩地球化学特征、LA-ICP-MS锆石U-Pb年龄及其大地构造意义. 地质通报, 35(7): 1134-1143. doi: 10.3969/j.issn.1671-2552.2016.07.009
      [47] 王存智, 杨坤光, 徐扬, 等, 2009. 北大巴基性岩墙群地球化学特征、LA-ICP-MS锆石U-Pb定年及其大地构造意义. 地质科技情报, 28(3): 19-26. doi: 10.3969/j.issn.1000-7849.2009.03.004
      [48] 王汝成, 谢磊, 陈骏, 等, 2011. 南岭中段花岗岩中榍石对锡成矿能力的指示意义. 高校地质学报, 17(3): 368-380. doi: 10.3969/j.issn.1006-7493.2011.03.002
      [49] 吴元保, 2019. 秦岭造山带古生代岩浆作用及地球动力学意义. 地球科学, 44(12): 4173-4177. doi: 10.3799/dqkx.2019.266
      [50] 夏林圻, 夏祖春, 李向民, 等, 2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因. 西北地质, (3): 1-29. doi: 10.3969/j.issn.1009-6248.2008.03.001
      [51] 杨成, 刘成新, 刘万亮, 等, 2017. 南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿. 岩石矿物学杂志, 36(5): 605-618. doi: 10.3969/j.issn.1000-6524.2017.05.002
      [52] 姚书振, 丁振举, 周宗桂, 等, 2002. 秦岭造山带金属成矿系统. 地球科学, 27(5): 599-604. doi: 10.3321/j.issn:1000-2383.2002.05.020
      [53] 张成立, 高山, 袁洪林, 等, 2007. 南秦岭早古生代地幔性质: 来自超镁铁质、镁铁质岩脉及火山岩的Sr-Nd-Pb同位素证据. 中国科学(D辑), (7): 857-865. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200707000.htm
      [54] 张国伟, 董云鹏, 姚安平, 1997. 秦岭造山带基本组成与结构及其构造演化. 陕西地质, 15(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY199702000.htm
      [55] 张国伟, 孟庆任, 赖绍聪, 1995. 秦岭造山带的结构构造. 中国科学(B辑), 25(9): 994-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199509014.htm
      [56] 朱江, 程昌红, 王连训, 等, 2017. 南秦岭竹山地区早古生代碱性岩浆活动及其相关铌稀土成矿的若干认识. 岩石矿物学杂志, 36(5): 681-690. doi: 10.3969/j.issn.1000-6524.2017.05.008
      [57] 邹先武, 段其发, 汤朝阳, 等, 2011. 北大巴山镇坪地区辉绿岩锆石SHRIMP U-Pb定年和岩石地球化学特征. 中国地质, 38(2): 282-291. doi: 10.3969/j.issn.1000-3657.2011.02.005
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  122
    • HTML全文浏览量:  37
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-02-05
    • 网络出版日期:  2022-04-29
    • 刊出日期:  2022-04-25

    目录

      /

      返回文章
      返回