• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    绿松石低温生长过程中Cu同位素特征及其对产地溯源的意义

    雷天婷 汪在聪 李妍

    雷天婷, 汪在聪, 李妍, 2022. 绿松石低温生长过程中Cu同位素特征及其对产地溯源的意义. 地球科学, 47(4): 1371-1382. doi: 10.3799/dqkx.2021.138
    引用本文: 雷天婷, 汪在聪, 李妍, 2022. 绿松石低温生长过程中Cu同位素特征及其对产地溯源的意义. 地球科学, 47(4): 1371-1382. doi: 10.3799/dqkx.2021.138
    Lei Tianting, Wang Zaicong, Li Yan, 2022. Copper Isotopic Variation of Turquoise in Low-Temperature Growth Process and Its Significance for Origin Traceability. Earth Science, 47(4): 1371-1382. doi: 10.3799/dqkx.2021.138
    Citation: Lei Tianting, Wang Zaicong, Li Yan, 2022. Copper Isotopic Variation of Turquoise in Low-Temperature Growth Process and Its Significance for Origin Traceability. Earth Science, 47(4): 1371-1382. doi: 10.3799/dqkx.2021.138

    绿松石低温生长过程中Cu同位素特征及其对产地溯源的意义

    doi: 10.3799/dqkx.2021.138
    基金项目: 

    国家重点研发计划资助 2018YFF0215400

    江西海昏侯墓出土琥珀的产源研究项目 CIGTXM-03-202104

    详细信息
      作者简介:

      雷天婷(1997-),学士,主要从事宝石学和地球化学方向研究.ORCID:0000-0001-8016-9874.E-mail:2929682430@qq.com

      通讯作者:

      汪在聪,ORCID:0000-0002-3584-1673,E-mail:zaicongwang@cug.edu.cn

      李妍,ORCID:0000-0001-8141-9732,E-mail:yanli@cug.edu.cn

    • 中图分类号: P597

    Copper Isotopic Variation of Turquoise in Low-Temperature Growth Process and Its Significance for Origin Traceability

    • 摘要: 绿松石(CuAl6(PO44(OH)8·4(H2O))是重要的表生宝石矿物,已有研究采用绿松石主量元素Cu的同位素进行产地溯源,但是溯源机理不明确.此外,绿松石生长过程复杂,该过程是否造成Cu同位素组成的显著变化还不甚清楚,这限制了其产地溯源的应用.湖北省竹山县是全球最大的宝石级绿松石产出地,采用MC-ICP-MS对竹山县条带状绿松石的生长条带进行高精度Cu同位素测试.结果表明:绿松石δ65Cu值较高,然而不同条带没有明显变化(δ65Cu=10.99‰~11.54‰).绿松石含矿热液沉淀过程分馏有限(< 1‰),这指示绿松石Cu同位素显著变化主要发生在含矿热液的形成过程.原生硫化物的δ65Cu=0±1‰,显著低于绿松石样品测定值,推测引起含矿热液Cu同位素显著分馏的主要原因是原生硫化物发生氧化作用.全球典型绿松石矿区的数据整体与该结果一致,表明绿松石Cu同位素组成主要受源区环境的控制;同一矿区中形成的绿松石,即使经历周期生长产生条带状结构,其Cu同位素组成基本一致.该研究深入探究了Cu同位素示踪绿松石矿区的机理,同时也加深了对低温过程Cu同位素分馏的认识.

       

    • 图  1  典型的条带状绿松石

      Fig.  1.  Typical turquoises with growth bands

      图  2  湖北竹山县区域地质图(据岳素伟和邓小华,2019

      Fig.  2.  Geological map of Zhushan County, Hubei Province(modified from Yue and Deng (2019))

      图  3  绿松石手标本的生长条带剖面取样及其对应的δ65Cu值

      Fig.  3.  Sampling of growth band profile of turquoise and corresponding δ65Cu values

      图  4  温度与lnβ的函数

      液态Cu2+和Cu2+磷酸盐的lnβ值表现为T2-的线性函数Fujii et al.(2013, 2014)

      Fig.  4.  Temperature dependence of lnβ

      图  5  绿松石δ65Cu值

      来自本研究中的竹山矿区内1个手标本样品、美国Sleeping Beauty矿区内5个矿点的绿松石样品和新墨西哥Castiian矿区内3个矿点的绿松石样品(Hull et al., 2008

      Fig.  5.  δ65Cu values of turquoises

      图  6  绿松石形成过程Cu同位素变化示意图

      Fig.  6.  Schematic diagram of Cu isotopic variation during the formation of turquoise

      图  7  不同矿区绿松石的δ65Cu值对比

      其他数据来自Hull et al.(2008)

      Fig.  7.  Comparison of δ65Cu values of turquoises obtained from different mining areas

      表  1  绿松石不同生长条带的δ65Cu值(‰)

      Table  1.   δ65Cu values of different growth bands of turquoise (‰)

      样品点号 T1-1 T1-2 T1-3 T1-4 T1-5 T1-6 T1-7 T1-8 T2-1 T2-2 T2-3
      δ65Cu 11.28 11.28 11.30 11.29 11.25 11.50 11.54 11.24 11.05 10.99 11.15
      2SD 0.03 0.06 0.01 0.14 0.06 0.02 0.06 0.03 0.04 0.19 0.01
      下载: 导出CSV
    • Chávez, W.X., 2000. Supergene Oxidation of Copper Deposits: Zoning and Distribution of Copper Oxide Minerals. SEG Discovery, (41): 1-21. https://doi.org/10.5382/segnews.2000-41.fea
      Chen, D.D., Song, S.M., Ryan, M., et al., 2016. Copper Isotopic Characteristics of the Water System in the Dexing Copper Deposit, Jiangxi Province, and Their Geological Significance. Geological Bulletin of China, 35(1): 188-195(in Chinese with English abstract).
      Chen, Q.L., Yuan, X.Q., Chen, J.Z., et al., 2010. Structural Characteristics of Turquoise Filled with Aluminum Phosphate Adhesive. Earth Science, 35(6): 1023-1028(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201006013.htm
      Ehrlich, S., Butler, I., Halicz, L., et al., 2004. Experimental Study of the Copper Isotope Fractionation between Aqueous Cu(Ⅱ) and Covellite, CuS. Chemical Geology, 209(3/4): 259-269. https://doi.org/10.1016/j.chemgeo.2004.06.010
      Evans, M.J., Fayek, M., Riciputi, L., et al., 2004. LA-MC-ICPMS Determination of Copper Isotope Ratios in Turquoise from the Southwestern United States. In: EOS, Transactions, American Geophysical Union. American Geophysical Union, Fall Meeting, abstract, V51A-0514.
      Foord, E.E., Taggart, J.E. Jr, 1998. A Reexamination of the Turquoise Group: The Mineral Aheylite, Planerite (Redefined), Turquoise and Coeruleolactite. Mineralogical Magazine, 62(1): 93-111. https://doi.org/10.1180/002646198547495
      Fu, B.G., Hou, Q.Y., 2017. Mineralogical Characteristics and Metallogenic Geological Conditions of Turquoise. Huabei Land and Resources, (5): 33-34(in Chinese with English abstract).
      Fujii, T., Moynier, F., Abe, M., et al., 2013. Copper Isotope Fractionation between Aqueous Compounds Relevant to Low Temperature Geochemistry and Biology. Geochimica et Cosmochimica Acta, 110: 29-44. https://doi.org/10.1016/j.gca.2013.02.007
      Fujii, T., Moynier, F., Blichert-Toft, J., et al., 2014. Density Functional Theory Estimation of Isotope Fractionation of Fe, Ni, Cu, and Zn among Species Relevant to Geochemical and Biological Environments. Geochimica et Cosmochimica Acta, 140: 553-576. https://doi.org/10.1016/j.gca.2014.05.051
      Greenwood, N.N., Whitfield, H.J., 1968. Mössbauer Effect Studies on Cubanite (CuFe2S3) and Related Iron Sulphides. J. Chem. Soc. A, 1697-1699. https://doi.org/10.1039/j19680001697
      Hu, W.F., Zhang, Y.K., Liu, J.H., et al., 2019. The Isotopic Compositions of Copper and Molybdenum from Porphyry Cu-Mo Deposit in the Gangdese, Tibet, and Their Significance. Earth Science, 44(6): 1923-1934(in Chinese with English abstract). https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201902294463229551
      Hull, S., Fayek, M., Mathien, F.J., et al., 2008. A New Approach to Determining the Geological Provenance of Turquoise Artifacts Using Hydrogen and Copper Stable Isotopes. Journal of Archaeological Science, 35(5): 1355-1369. https://doi.org/10.1016/j.jas.2007.10.001
      Hull, S., Fayek, M., Mathien, F.J., et al., 2014. Turquoise Trade of the Ancestral Puebloan: Chaco and Beyond. Journal of Archaeological Science, 45: 187-195. https://doi.org/10.1016/j.jas.2014.02.016
      Ji, J., Zhao, H.X., 2017. Mechanism and Factors Influencing Copper Isotopic Fractionation: A Review. Advances in Geosciences, 7(3): 336-348 (in Chinese with English abstract). doi: 10.12677/AG.2017.73037
      Jiang, Z.C., Chen, D.M., Wang, F.Y., et al., 1983. Thermal Properties of Turquoise and Its Intergrowing Minerals in a Certain District of China. Acta Mineralogica Sinica, 3(3): 198-206, 247(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB198303006.htm
      Kim, J., Simon, A.W., Ripoche, V., et al., 2003. Proton-Induced X-Ray Emission Analysis of Turquoise Artefacts from Salado Platform Mound Sites in the Tonto Basin of Central Arizona. Measurement Science and Technology, 14(9): 1579-1589. https://doi.org/10.1088/0957-0233/14/9/309
      Ku, Y.L., Yang, M.X., 2021. Study on Spectral Characteristics of Turquoise with Blue"Water Ripple" from Shiyan, Hubei Province. Spectroscopy and Spectral Analysis, 41(2): 636-642(in Chinese with English abstract).
      Ku, Y.L., Yang, M.X., Li, Y., 2020. Spectroscopic Study of Green-Yellow and Green Turquoise Associated Minerals from Zhushan, Hubei Province. Spectroscopy and Spectral Analysis, 40(6): 1815-1820(in Chinese with English abstract). https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202002280973030150
      Larson, P.B., Maher, K., Ramos, F.C., et al., 2003. Copper Isotope Ratios in Magmatic and Hydrothermal Ore-Forming Environments. Chemical Geology, 201(3-4): 337-350. https://doi.org/10.1016/j.chemgeo.2003.08.006
      Li, J.Z., 1994. Jade and Resource Development. Mineral Resources and Geology, 8(3): 213-217(in Chinese with English abstract). doi: 10.1007/0-387-26350-0_5
      Li, Y.X., Xian, Y.H., 2015. Provenance Studies of Ancient Turquoise in America. Sciences of Conservation and Archaeology, 27(2): 102-109(in Chinese with English abstract). https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/127/11-12/1617/126096/Isotopic-evidence-for-the-provenance-of-turquoise
      Lin, C.Q., Hu, M., He, H.T., 2006. Ore-Control Condition and Ore-Searching Direction of Ag-Au Polymetal Deposits in Wudang Area, Hubei Province. Contributions to Geology and Mineral Resources Research, 21(2): 104-108(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DZZK200602007.htm
      Liu, S.G., Li, D.D., Li, S.G., et al., 2014. High-Precision Copper and Iron Isotope Analysis of Igneous Rock Standards by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(1): 122-133. https://doi.org/10.1039/C3JA50232E
      Maher, K.C., Jackson, S., Mountain, B., 2011. Experimental Evaluation of the Fluid-Mineral Fractionation of Cu Isotopes at 250 ℃ and 300 ℃. Chemical Geology, 286(3-4): 229-239. https://doi.org/10.1016/j.chemgeo.2011.05.008
      Maréchal, C.N., Télouk, P., Albarède, F., 1999. Precise Analysis of Copper and Zinc Isotopic Compositions by Plasma-Source Mass Spectrometry. Chemical Geology, 156(1-4): 251-273. https://doi.org/10.1016/S0009-2541(98)00191-0
      Mathur, R., Titley, S., Barra, F., et al., 2009. Exploration Potential of Cu Isotope Fractionation in Porphyry Copper Deposits. Journal of Geochemical Exploration, 102(1): 1-6. https://doi.org/10.1016/j.gexplo.2008.09.004
      Othmane, G., Hull, S., Fayek, M., et al., 2015. Hydrogen and Copper Isotope Analysis of Turquoise by SIMS: Calibration and Matrix Effects. Chemical Geology, 395: 41-49. https://doi.org/10.1016/j.chemgeo.2014.11.024
      Paige, S., 1912. The Origin of Turquoise in the Burro Mountains, New Mexico. Economic Geology, 7(4): 382-392. https://doi.org/10.2113/gsecongeo.7.4.382
      Shi, Z.R., Cai, K.Q., 2011. A Study of the Origin of Turquoise Deposite in Zhushan County, Hubei Province. Acta Petrologica et Mineralogica, 30(S1): 187-194 (in Chinese with English abstract).
      Thibodeau, A.M., López Luján, L., Killick, D.J., et al., 2018. Was Aztec and Mixtec Turquoise Mined in the American Southwest? Science Advances, 4(6): eaas9370. https://doi.org/10.1126/sciadv.aas9370
      Thibodeau, A.M., Killick, D.J., Hedquist, S.L., et al., 2015. Isotopic Evidence for the Provenance of Turquoise in the Southwestern United States. Geological Society of America Bulletin, 127(11/12): 1617-1631. https://doi.org/10.1130/b31135.1
      Tu, H.K., 1996. Geological Characteristics of Turquoise Ore in the Areas Adjacent to Shaanxi and Hubei Provinces. Geology of Shaanxi, 14(2): 59-64(in Chinese with English abstract). https://www.sciencedirect.com/science/article/abs/pii/S1875510016300695
      Venendaal, J.F., 2007. Trace Element Geochemistry and Carbonate Alteration as Indicators for Gold Mineralization at the Cortez Hills Deposit, Lander County, Nevada(Dissertation). Colorado School of Mines, Colorado.
      Wall, A.J., Mathur, R., Post, J.E., et al., 2011. Cu Isotope Fractionation during Bornite Dissolution: An In Situ X-Ray Diffraction Analysis. Ore Geology Reviews, 42(1): 62-70. https://doi.org/10.1016/j.oregeorev.2011.01.001
      Wang, Z.C., Park, J.W., Wang, X., et al., 2019. Evolution of Copper Isotopes in Arc Systems: Insights from Lavas and Molten Sulfur in Niuatahi Volcano, Tonga Rear Arc. Geochimica et Cosmochimica Acta, 250: 18-33. https://doi.org/10.1016/j.gca.2019.01.040
      Weber, R.H., ol Mines, N.M.B., 1979. Turquoise in New Mexico. New Mexico Geology, 1: 39-40.
      Xu, F., 2017. Study on Turquoise in Shiyan City, Hubei Province. Shanghai Art & Crafts, (3): 30-32(in Chinese with English abstract).
      Yue, S.W., Deng, X.H., 2019. Geological and Ore-Forming Characteristics of Ag-Au and Polymetallic Deposits in Northwestern Hubei, China. Earth Science Frontiers, 26(5): 106-128(in Chinese with English abstract).
      Zhu, X.K., Guo, Y., Williams, R.J.P., etal., 2002. Mass Fractionation Processes of Transition Metal Isotopes. Earth and Planetary Science Letters, 200(1/2): 47-62. https://doi.org/10.1016/S0012-821X(02)00615-5
      Zhu, X.K., Wang, Y., Yan, B., et al., 2013. Developments of Non-Traditional Stable Isotope Geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651-688(in Chinese with English abstract). https://www.researchgate.net/publication/273766379_Developments_of_Non-Traditional_Stable_Isotope_Geochemistry
      陈丹丹, 宋世明, Mathur Ryan, 等, 2016. 江西德兴铜矿区水系的Cu同位素地球化学特征及其地质意义. 地质通报, 35(1): 188-195. doi: 10.3969/j.issn.1671-2552.2016.01.018
      陈全莉, 袁心强, 陈敬中, 等, 2010. 磷酸铝结合剂改性绿松石的结构特征. 地球科学, 35(6): 1023-1028. doi: 10.3799/dqkx.2010.115
      付宝国, 侯青亚, 2017. 绿松石的矿物学特征及成矿地质条件. 华北国土资源, (5): 33-34. doi: 10.3969/j.issn.1672-7487.2017.05.016
      胡文峰, 张烨恺, 刘金华, 等, 2019. 西藏冈底斯斑岩型铜钼矿床的Cu、Mo同位素组成及其意义. 地球科学, 44(6): 1923-1934. doi: 10.3799/dqkx.2019.077
      嵇静, 赵海香, 2017. 铜同位素分馏机理及影响因素研究综述. 地球科学前沿, 7(3): 336-348. doi: 10.12677/AG.2017.73037
      姜泽春, 陈大梅, 王辅亚, 等, 1983. 湖北、陕西一带绿松石的热性能及其共生矿物. 矿物学报, 3(3): 198-206, 247. doi: 10.3321/j.issn:1000-4734.1983.03.006
      库雅伦, 杨明星, 2021. 湖北十堰蓝色"水波纹"绿松石的谱学特征. 光谱学与光谱分析, 41(2): 636-642. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202102057.htm
      库雅伦, 杨明星, 李妍, 2020. 湖北竹山黄绿色-绿色绿松石伴生矿的谱学研究. 光谱学与光谱分析, 40(6): 1815-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202006032.htm
      李家珍, 1994. 玉石及其资源开发(4). 矿产与地质, 8(3): 213-217. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD403.010.htm
      李延祥, 先怡衡, 2015. 美国古代绿松石示踪研究. 文物保护与考古科学, 27(2): 102-109. doi: 10.3969/j.issn.1005-1538.2015.02.016
      林长谦, 胡明, 何洪涛, 2006. 湖北武当地区银金多金属矿控矿条件及找矿方向. 地质找矿论丛, 21(2): 104-108. doi: 10.3969/j.issn.1001-1412.2006.02.007
      石振荣, 蔡克勤, 2011. 湖北省竹山县绿松石矿床成因研究. 岩石矿物学杂志, 30(S1): 187-194.
      涂怀奎, 1996. 陕鄂相邻地区绿松石矿地质特征. 陕西地质, 14(2): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY199602006.htm
      徐飞, 2017. 湖北十堰绿松石探究. 上海工艺美术, (3): 30-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SGYM201703011.htm
      岳素伟, 邓小华, 2019. 鄂西北地区银金多金属矿床地质特征与成矿规律. 地学前缘, 26(5): 106-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201905011.htm
      朱祥坤, 王跃, 闫斌, 等, 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651-688. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201306002.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  1074
    • HTML全文浏览量:  566
    • PDF下载量:  78
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-05-26
    • 网络出版日期:  2022-04-29
    • 刊出日期:  2022-04-25

    目录

      /

      返回文章
      返回