• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    绿松石低温生长过程中Cu同位素特征及其对产地溯源的意义

    雷天婷 汪在聪 李妍

    雷天婷, 汪在聪, 李妍, 2022. 绿松石低温生长过程中Cu同位素特征及其对产地溯源的意义. 地球科学, 47(4): 1371-1382. doi: 10.3799/dqkx.2021.138
    引用本文: 雷天婷, 汪在聪, 李妍, 2022. 绿松石低温生长过程中Cu同位素特征及其对产地溯源的意义. 地球科学, 47(4): 1371-1382. doi: 10.3799/dqkx.2021.138
    Lei Tianting, Wang Zaicong, Li Yan, 2022. Copper Isotopic Variation of Turquoise in Low-Temperature Growth Process and Its Significance for Origin Traceability. Earth Science, 47(4): 1371-1382. doi: 10.3799/dqkx.2021.138
    Citation: Lei Tianting, Wang Zaicong, Li Yan, 2022. Copper Isotopic Variation of Turquoise in Low-Temperature Growth Process and Its Significance for Origin Traceability. Earth Science, 47(4): 1371-1382. doi: 10.3799/dqkx.2021.138

    绿松石低温生长过程中Cu同位素特征及其对产地溯源的意义

    doi: 10.3799/dqkx.2021.138
    基金项目: 

    国家重点研发计划资助 2018YFF0215400

    江西海昏侯墓出土琥珀的产源研究项目 CIGTXM-03-202104

    详细信息
      作者简介:

      雷天婷(1997-),学士,主要从事宝石学和地球化学方向研究.ORCID:0000-0001-8016-9874.E-mail:2929682430@qq.com

      通讯作者:

      汪在聪,ORCID:0000-0002-3584-1673,E-mail:zaicongwang@cug.edu.cn

      李妍,ORCID:0000-0001-8141-9732,E-mail:yanli@cug.edu.cn

    • 中图分类号: P597

    Copper Isotopic Variation of Turquoise in Low-Temperature Growth Process and Its Significance for Origin Traceability

    • 摘要: 绿松石(CuAl6(PO44(OH)8·4(H2O))是重要的表生宝石矿物,已有研究采用绿松石主量元素Cu的同位素进行产地溯源,但是溯源机理不明确.此外,绿松石生长过程复杂,该过程是否造成Cu同位素组成的显著变化还不甚清楚,这限制了其产地溯源的应用.湖北省竹山县是全球最大的宝石级绿松石产出地,采用MC-ICP-MS对竹山县条带状绿松石的生长条带进行高精度Cu同位素测试.结果表明:绿松石δ65Cu值较高,然而不同条带没有明显变化(δ65Cu=10.99‰~11.54‰).绿松石含矿热液沉淀过程分馏有限(< 1‰),这指示绿松石Cu同位素显著变化主要发生在含矿热液的形成过程.原生硫化物的δ65Cu=0±1‰,显著低于绿松石样品测定值,推测引起含矿热液Cu同位素显著分馏的主要原因是原生硫化物发生氧化作用.全球典型绿松石矿区的数据整体与该结果一致,表明绿松石Cu同位素组成主要受源区环境的控制;同一矿区中形成的绿松石,即使经历周期生长产生条带状结构,其Cu同位素组成基本一致.该研究深入探究了Cu同位素示踪绿松石矿区的机理,同时也加深了对低温过程Cu同位素分馏的认识.

       

    • 图  1  典型的条带状绿松石

      Fig.  1.  Typical turquoises with growth bands

      图  2  湖北竹山县区域地质图(据岳素伟和邓小华,2019

      Fig.  2.  Geological map of Zhushan County, Hubei Province(modified from Yue and Deng (2019))

      图  3  绿松石手标本的生长条带剖面取样及其对应的δ65Cu值

      Fig.  3.  Sampling of growth band profile of turquoise and corresponding δ65Cu values

      图  4  温度与lnβ的函数

      液态Cu2+和Cu2+磷酸盐的lnβ值表现为T2-的线性函数Fujii et al.(2013, 2014)

      Fig.  4.  Temperature dependence of lnβ

      图  5  绿松石δ65Cu值

      来自本研究中的竹山矿区内1个手标本样品、美国Sleeping Beauty矿区内5个矿点的绿松石样品和新墨西哥Castiian矿区内3个矿点的绿松石样品(Hull et al., 2008

      Fig.  5.  δ65Cu values of turquoises

      图  6  绿松石形成过程Cu同位素变化示意图

      Fig.  6.  Schematic diagram of Cu isotopic variation during the formation of turquoise

      图  7  不同矿区绿松石的δ65Cu值对比

      其他数据来自Hull et al.(2008)

      Fig.  7.  Comparison of δ65Cu values of turquoises obtained from different mining areas

      表  1  绿松石不同生长条带的δ65Cu值(‰)

      Table  1.   δ65Cu values of different growth bands of turquoise (‰)

      样品点号 T1-1 T1-2 T1-3 T1-4 T1-5 T1-6 T1-7 T1-8 T2-1 T2-2 T2-3
      δ65Cu 11.28 11.28 11.30 11.29 11.25 11.50 11.54 11.24 11.05 10.99 11.15
      2SD 0.03 0.06 0.01 0.14 0.06 0.02 0.06 0.03 0.04 0.19 0.01
      下载: 导出CSV
    • [1] Chávez, W.X., 2000. Supergene Oxidation of Copper Deposits: Zoning and Distribution of Copper Oxide Minerals. SEG Discovery, (41): 1-21. https://doi.org/10.5382/segnews.2000-41.fea
      [2] Chen, D.D., Song, S.M., Ryan, M., et al., 2016. Copper Isotopic Characteristics of the Water System in the Dexing Copper Deposit, Jiangxi Province, and Their Geological Significance. Geological Bulletin of China, 35(1): 188-195(in Chinese with English abstract).
      [3] Chen, Q.L., Yuan, X.Q., Chen, J.Z., et al., 2010. Structural Characteristics of Turquoise Filled with Aluminum Phosphate Adhesive. Earth Science, 35(6): 1023-1028(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201006013.htm
      [4] Ehrlich, S., Butler, I., Halicz, L., et al., 2004. Experimental Study of the Copper Isotope Fractionation between Aqueous Cu(Ⅱ) and Covellite, CuS. Chemical Geology, 209(3/4): 259-269. https://doi.org/10.1016/j.chemgeo.2004.06.010
      [5] Evans, M.J., Fayek, M., Riciputi, L., et al., 2004. LA-MC-ICPMS Determination of Copper Isotope Ratios in Turquoise from the Southwestern United States. In: EOS, Transactions, American Geophysical Union. American Geophysical Union, Fall Meeting, abstract, V51A-0514.
      [6] Foord, E.E., Taggart, J.E. Jr, 1998. A Reexamination of the Turquoise Group: The Mineral Aheylite, Planerite (Redefined), Turquoise and Coeruleolactite. Mineralogical Magazine, 62(1): 93-111. https://doi.org/10.1180/002646198547495
      [7] Fu, B.G., Hou, Q.Y., 2017. Mineralogical Characteristics and Metallogenic Geological Conditions of Turquoise. Huabei Land and Resources, (5): 33-34(in Chinese with English abstract).
      [8] Fujii, T., Moynier, F., Abe, M., et al., 2013. Copper Isotope Fractionation between Aqueous Compounds Relevant to Low Temperature Geochemistry and Biology. Geochimica et Cosmochimica Acta, 110: 29-44. https://doi.org/10.1016/j.gca.2013.02.007
      [9] Fujii, T., Moynier, F., Blichert-Toft, J., et al., 2014. Density Functional Theory Estimation of Isotope Fractionation of Fe, Ni, Cu, and Zn among Species Relevant to Geochemical and Biological Environments. Geochimica et Cosmochimica Acta, 140: 553-576. https://doi.org/10.1016/j.gca.2014.05.051
      [10] Greenwood, N.N., Whitfield, H.J., 1968. Mössbauer Effect Studies on Cubanite (CuFe2S3) and Related Iron Sulphides. J. Chem. Soc. A, 1697-1699. https://doi.org/10.1039/j19680001697
      [11] Hu, W.F., Zhang, Y.K., Liu, J.H., et al., 2019. The Isotopic Compositions of Copper and Molybdenum from Porphyry Cu-Mo Deposit in the Gangdese, Tibet, and Their Significance. Earth Science, 44(6): 1923-1934(in Chinese with English abstract). https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201902294463229551
      [12] Hull, S., Fayek, M., Mathien, F.J., et al., 2008. A New Approach to Determining the Geological Provenance of Turquoise Artifacts Using Hydrogen and Copper Stable Isotopes. Journal of Archaeological Science, 35(5): 1355-1369. https://doi.org/10.1016/j.jas.2007.10.001
      [13] Hull, S., Fayek, M., Mathien, F.J., et al., 2014. Turquoise Trade of the Ancestral Puebloan: Chaco and Beyond. Journal of Archaeological Science, 45: 187-195. https://doi.org/10.1016/j.jas.2014.02.016
      [14] Ji, J., Zhao, H.X., 2017. Mechanism and Factors Influencing Copper Isotopic Fractionation: A Review. Advances in Geosciences, 7(3): 336-348 (in Chinese with English abstract). doi: 10.12677/AG.2017.73037
      [15] Jiang, Z.C., Chen, D.M., Wang, F.Y., et al., 1983. Thermal Properties of Turquoise and Its Intergrowing Minerals in a Certain District of China. Acta Mineralogica Sinica, 3(3): 198-206, 247(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB198303006.htm
      [16] Kim, J., Simon, A.W., Ripoche, V., et al., 2003. Proton-Induced X-Ray Emission Analysis of Turquoise Artefacts from Salado Platform Mound Sites in the Tonto Basin of Central Arizona. Measurement Science and Technology, 14(9): 1579-1589. https://doi.org/10.1088/0957-0233/14/9/309
      [17] Ku, Y.L., Yang, M.X., 2021. Study on Spectral Characteristics of Turquoise with Blue"Water Ripple" from Shiyan, Hubei Province. Spectroscopy and Spectral Analysis, 41(2): 636-642(in Chinese with English abstract).
      [18] Ku, Y.L., Yang, M.X., Li, Y., 2020. Spectroscopic Study of Green-Yellow and Green Turquoise Associated Minerals from Zhushan, Hubei Province. Spectroscopy and Spectral Analysis, 40(6): 1815-1820(in Chinese with English abstract). https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202002280973030150
      [19] Larson, P.B., Maher, K., Ramos, F.C., et al., 2003. Copper Isotope Ratios in Magmatic and Hydrothermal Ore-Forming Environments. Chemical Geology, 201(3-4): 337-350. https://doi.org/10.1016/j.chemgeo.2003.08.006
      [20] Li, J.Z., 1994. Jade and Resource Development. Mineral Resources and Geology, 8(3): 213-217(in Chinese with English abstract). doi: 10.1007/0-387-26350-0_5
      [21] Li, Y.X., Xian, Y.H., 2015. Provenance Studies of Ancient Turquoise in America. Sciences of Conservation and Archaeology, 27(2): 102-109(in Chinese with English abstract). https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/127/11-12/1617/126096/Isotopic-evidence-for-the-provenance-of-turquoise
      [22] Lin, C.Q., Hu, M., He, H.T., 2006. Ore-Control Condition and Ore-Searching Direction of Ag-Au Polymetal Deposits in Wudang Area, Hubei Province. Contributions to Geology and Mineral Resources Research, 21(2): 104-108(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DZZK200602007.htm
      [23] Liu, S.G., Li, D.D., Li, S.G., et al., 2014. High-Precision Copper and Iron Isotope Analysis of Igneous Rock Standards by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(1): 122-133. https://doi.org/10.1039/C3JA50232E
      [24] Maher, K.C., Jackson, S., Mountain, B., 2011. Experimental Evaluation of the Fluid-Mineral Fractionation of Cu Isotopes at 250 ℃ and 300 ℃. Chemical Geology, 286(3-4): 229-239. https://doi.org/10.1016/j.chemgeo.2011.05.008
      [25] Maréchal, C.N., Télouk, P., Albarède, F., 1999. Precise Analysis of Copper and Zinc Isotopic Compositions by Plasma-Source Mass Spectrometry. Chemical Geology, 156(1-4): 251-273. https://doi.org/10.1016/S0009-2541(98)00191-0
      [26] Mathur, R., Titley, S., Barra, F., et al., 2009. Exploration Potential of Cu Isotope Fractionation in Porphyry Copper Deposits. Journal of Geochemical Exploration, 102(1): 1-6. https://doi.org/10.1016/j.gexplo.2008.09.004
      [27] Othmane, G., Hull, S., Fayek, M., et al., 2015. Hydrogen and Copper Isotope Analysis of Turquoise by SIMS: Calibration and Matrix Effects. Chemical Geology, 395: 41-49. https://doi.org/10.1016/j.chemgeo.2014.11.024
      [28] Paige, S., 1912. The Origin of Turquoise in the Burro Mountains, New Mexico. Economic Geology, 7(4): 382-392. https://doi.org/10.2113/gsecongeo.7.4.382
      [29] Shi, Z.R., Cai, K.Q., 2011. A Study of the Origin of Turquoise Deposite in Zhushan County, Hubei Province. Acta Petrologica et Mineralogica, 30(S1): 187-194 (in Chinese with English abstract).
      [30] Thibodeau, A.M., López Luján, L., Killick, D.J., et al., 2018. Was Aztec and Mixtec Turquoise Mined in the American Southwest? Science Advances, 4(6): eaas9370. https://doi.org/10.1126/sciadv.aas9370
      [31] Thibodeau, A.M., Killick, D.J., Hedquist, S.L., et al., 2015. Isotopic Evidence for the Provenance of Turquoise in the Southwestern United States. Geological Society of America Bulletin, 127(11/12): 1617-1631. https://doi.org/10.1130/b31135.1
      [32] Tu, H.K., 1996. Geological Characteristics of Turquoise Ore in the Areas Adjacent to Shaanxi and Hubei Provinces. Geology of Shaanxi, 14(2): 59-64(in Chinese with English abstract). https://www.sciencedirect.com/science/article/abs/pii/S1875510016300695
      [33] Venendaal, J.F., 2007. Trace Element Geochemistry and Carbonate Alteration as Indicators for Gold Mineralization at the Cortez Hills Deposit, Lander County, Nevada(Dissertation). Colorado School of Mines, Colorado.
      [34] Wall, A.J., Mathur, R., Post, J.E., et al., 2011. Cu Isotope Fractionation during Bornite Dissolution: An In Situ X-Ray Diffraction Analysis. Ore Geology Reviews, 42(1): 62-70. https://doi.org/10.1016/j.oregeorev.2011.01.001
      [35] Wang, Z.C., Park, J.W., Wang, X., et al., 2019. Evolution of Copper Isotopes in Arc Systems: Insights from Lavas and Molten Sulfur in Niuatahi Volcano, Tonga Rear Arc. Geochimica et Cosmochimica Acta, 250: 18-33. https://doi.org/10.1016/j.gca.2019.01.040
      [36] Weber, R.H., ol Mines, N.M.B., 1979. Turquoise in New Mexico. New Mexico Geology, 1: 39-40.
      [37] Xu, F., 2017. Study on Turquoise in Shiyan City, Hubei Province. Shanghai Art & Crafts, (3): 30-32(in Chinese with English abstract).
      [38] Yue, S.W., Deng, X.H., 2019. Geological and Ore-Forming Characteristics of Ag-Au and Polymetallic Deposits in Northwestern Hubei, China. Earth Science Frontiers, 26(5): 106-128(in Chinese with English abstract).
      [39] Zhu, X.K., Guo, Y., Williams, R.J.P., etal., 2002. Mass Fractionation Processes of Transition Metal Isotopes. Earth and Planetary Science Letters, 200(1/2): 47-62. https://doi.org/10.1016/S0012-821X(02)00615-5
      [40] Zhu, X.K., Wang, Y., Yan, B., et al., 2013. Developments of Non-Traditional Stable Isotope Geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651-688(in Chinese with English abstract). https://www.researchgate.net/publication/273766379_Developments_of_Non-Traditional_Stable_Isotope_Geochemistry
      [41] 陈丹丹, 宋世明, Mathur Ryan, 等, 2016. 江西德兴铜矿区水系的Cu同位素地球化学特征及其地质意义. 地质通报, 35(1): 188-195. doi: 10.3969/j.issn.1671-2552.2016.01.018
      [42] 陈全莉, 袁心强, 陈敬中, 等, 2010. 磷酸铝结合剂改性绿松石的结构特征. 地球科学, 35(6): 1023-1028. doi: 10.3799/dqkx.2010.115
      [43] 付宝国, 侯青亚, 2017. 绿松石的矿物学特征及成矿地质条件. 华北国土资源, (5): 33-34. doi: 10.3969/j.issn.1672-7487.2017.05.016
      [44] 胡文峰, 张烨恺, 刘金华, 等, 2019. 西藏冈底斯斑岩型铜钼矿床的Cu、Mo同位素组成及其意义. 地球科学, 44(6): 1923-1934. doi: 10.3799/dqkx.2019.077
      [45] 嵇静, 赵海香, 2017. 铜同位素分馏机理及影响因素研究综述. 地球科学前沿, 7(3): 336-348. doi: 10.12677/AG.2017.73037
      [46] 姜泽春, 陈大梅, 王辅亚, 等, 1983. 湖北、陕西一带绿松石的热性能及其共生矿物. 矿物学报, 3(3): 198-206, 247. doi: 10.3321/j.issn:1000-4734.1983.03.006
      [47] 库雅伦, 杨明星, 2021. 湖北十堰蓝色"水波纹"绿松石的谱学特征. 光谱学与光谱分析, 41(2): 636-642. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202102057.htm
      [48] 库雅伦, 杨明星, 李妍, 2020. 湖北竹山黄绿色-绿色绿松石伴生矿的谱学研究. 光谱学与光谱分析, 40(6): 1815-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202006032.htm
      [49] 李家珍, 1994. 玉石及其资源开发(4). 矿产与地质, 8(3): 213-217. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD403.010.htm
      [50] 李延祥, 先怡衡, 2015. 美国古代绿松石示踪研究. 文物保护与考古科学, 27(2): 102-109. doi: 10.3969/j.issn.1005-1538.2015.02.016
      [51] 林长谦, 胡明, 何洪涛, 2006. 湖北武当地区银金多金属矿控矿条件及找矿方向. 地质找矿论丛, 21(2): 104-108. doi: 10.3969/j.issn.1001-1412.2006.02.007
      [52] 石振荣, 蔡克勤, 2011. 湖北省竹山县绿松石矿床成因研究. 岩石矿物学杂志, 30(S1): 187-194.
      [53] 涂怀奎, 1996. 陕鄂相邻地区绿松石矿地质特征. 陕西地质, 14(2): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY199602006.htm
      [54] 徐飞, 2017. 湖北十堰绿松石探究. 上海工艺美术, (3): 30-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SGYM201703011.htm
      [55] 岳素伟, 邓小华, 2019. 鄂西北地区银金多金属矿床地质特征与成矿规律. 地学前缘, 26(5): 106-128. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201905011.htm
      [56] 朱祥坤, 王跃, 闫斌, 等, 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651-688. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201306002.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  107
    • HTML全文浏览量:  40
    • PDF下载量:  29
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-05-26
    • 网络出版日期:  2022-04-29
    • 刊出日期:  2022-04-25

    目录

      /

      返回文章
      返回