• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    一种基于地层相关结构约束的地质模型修正方法

    梁栋 花卫华 赵亚博 刘志鹏 刘修国

    梁栋, 花卫华, 赵亚博, 刘志鹏, 刘修国, 2023. 一种基于地层相关结构约束的地质模型修正方法. 地球科学, 48(8): 3179-3192. doi: 10.3799/dqkx.2021.139
    引用本文: 梁栋, 花卫华, 赵亚博, 刘志鹏, 刘修国, 2023. 一种基于地层相关结构约束的地质模型修正方法. 地球科学, 48(8): 3179-3192. doi: 10.3799/dqkx.2021.139
    Liang Dong, Hua Weihua, Zhao Yabo, Liu Zhipeng, Liu Xiuguo, 2023. Error Correction in Geological Model Based on Stratigraphic Interdependency. Earth Science, 48(8): 3179-3192. doi: 10.3799/dqkx.2021.139
    Citation: Liang Dong, Hua Weihua, Zhao Yabo, Liu Zhipeng, Liu Xiuguo, 2023. Error Correction in Geological Model Based on Stratigraphic Interdependency. Earth Science, 48(8): 3179-3192. doi: 10.3799/dqkx.2021.139

    一种基于地层相关结构约束的地质模型修正方法

    doi: 10.3799/dqkx.2021.139
    基金项目: 

    国家重点研发计划课题“城市地下全要素信息集成与智能建模技术” 2019YFC0605102

    详细信息
      作者简介:

      梁栋(1988-), 博士, 主要从事地统计学、不确定性分析等方面研究.ORCID: 0000-0002-3761-4490.E-mail: bomer2000@sina.com

      通讯作者:

      刘修国, ORCID: 0000-0002-0045-9642.E-mail: liuxg318@163.com

    • 中图分类号: P628

    Error Correction in Geological Model Based on Stratigraphic Interdependency

    • 摘要: 在地质勘探中,多数钻孔存在深部地层底板未采样的情况,不完整的采样信息限制了地质模型的准确性.为了提高模型准确性,提出了一种基于地层相关结构约束的地层面模型修正方法.由于地层的形成机制及后期构造运动,相邻地层的形态具有相似性.基于此,利用Copula函数对相邻地层面的相关结构进行建模,构建相邻地层面的联合分布模型和待更新地层面的似然函数.在贝叶斯框架中,利用似然函数对待修正的模型进行贝叶斯更新,得到地层面的后验分布,计算地层面的条件期望作为模型修正值.利用该方法,对北海海岸带地区的钻孔数据和地层面模型进行了实验.实验结果表明,模型修正后,地层面模型的误差降低,所提方法可以提高地质模型准确性.

       

    • 图  1  钻孔存在深部地层底板未采样的情况

      Fig.  1.  The lacking samples of deep strata in boreholes.

      图  2  沉积地层面的自相关与互相关

      Fig.  2.  Correlation in the sedimentary strata

      图  3  待修正地层面数据的两种情况

      Fig.  3.  Two different cases of interface B recorded in No. 2 borehole.

      图  4  不等式约束下的截尾分布

      Fig.  4.  Truncated distribution under inequality constraints.

      图  5  基于双地层Copula的模型修正流程图

      Fig.  5.  Model correction flowchart based on Copula of two adjacent strata

      图  6  北海市三维地质建模效果图

      Fig.  6.  3D geological model of Beihai city.

      图  7  ⑤-2和⑥-1地层面高程值的分布图

      Fig.  7.  Scatter diagrams of the elevation of interface ⑤-2 and ⑥-1

      图  8  ⑤-2和⑥-1地层面高程统计直方图和边际概率分布

      Fig.  8.  Histogram and marginal probability distribution of elevation of interface ⑤-2 and ⑥-1

      图  9  ⑤-2和⑥-1地层面高程Copula密度图

      Fig.  9.  Copula densities of interface ⑤-2 (u1) and interface ⑥-1 (u2) in 3D and contour map

      图  10  #8钻孔位置上的⑥-1地层面贝叶斯更新

      Fig.  10.  Bayesian updating of probability distributions of interface ⑥-1 at borehole #8

      图  11  #8钻孔位置上的⑥-1地层面高程似然函数$ f\left({z}_{1}={V}_{1}|{z}_{2}\right) $

      Fig.  11.  Likelihood function $ f\left({z}_{1}={V}_{1}|{z}_{2}\right) $ of interface ⑥-1 at borehole #8

      表  1  验证位置上修正前后的模型值与样本值的比较(m)

      Table  1.   Model values (unit: m) before and after correction comparing with observed values in validation boreholes

      钻孔位置 样本值 不准确样本值 IDW模型值 未截尾修正值 截尾修正值
      #V1 -51.50 -40.15 -24.85 -36.05 -42.61
      #V2 -68.60 -64.60 -21.18 -40.78 -65.59
      #V3 -27.56 -19.91 -17.97 -28.35 -30.21
      #V4 -19.82 -13.23 -20.74 -19.79 -19.81
      #V5 -26.99 -17.76 -19.24 -19.95 -24.92
      #V6 -21.48 -15.73 -16.82 -21.98 -24.64
      #V7 -50.20 -48.65 -23.93 -38.64 -52.34
      #V8 -34.60 -29.60 -15.08 -22.61 -31.41
      #V9 -69.40 -66.80 -23.34 -38.48 -69.00
      #V10 -18.50 -12.45 -20.76 -12.53 -19.62
      #V11 -13.72 -10.12 -25.91 -20.88 -21.54
      #V12 -5.60 -3.15 -6.81 -5.92 -6.08
      #V13 -6.50 -4.10 -6.17 -5.09 -6.09
      #V14 -5.60 -3.45 -9.15 -8.43 -8.44
      #V15 -12.50 -10.6 -5.78 -5.96 -11.35
      #V16 -10.80 -8.05 -13.68 -12.61 -12.97
      #V17 -13.10 -11.10 -12.00 -12.87 -14.08
      #V18 -13.50 -11.90 -13.92 -16.24 -17.32
      #V19 -13.00 -9.85 -15.42 -15.31 -15.31
      #V20 -26.50 -15.85 -20.22 -19.72 -19.73
      下载: 导出CSV

      表  2  修正前后模型误差统计(m)

      Table  2.   Cross-validation errors (unit: m)

      地层面模型 MAE ME RMSE
      IDW 8.18 2.25 12.60
      未截尾修正值 6.77 0.74 9.59
      截尾修正值 4.77 -2.34 6.59
      下载: 导出CSV

      表  3  未钻透位置上不准确测量值与修正后模型值的比较(m)

      Table  3.   Model values before and after correction comparing with biased observed values in inaccurate boreholes(m)

      钻孔位置 不准确样本值 IDW模型值 截尾修正值
      #U1 -20.00 -18.24 -20.63
      #U2 -20.00 -19.92 -21.25
      #U3 -5.60 -20.77 -20.35
      #U4 -15.00 -21.08 -20.55
      #U5 -20.00 -20.95 -21.41
      #U6 -50.50 -26.83 -54.81
      #U7 -50.20 -41.62 -53.20
      下载: 导出CSV
    • [1] Abrahamsen, P., Omre, H., 1994. Random Functions and Geological Subsurfaces. Ecmor Ⅳ-European Conference on the Mathematics of Oil Recovery, Røros, Norway, 21. https://doi.org/10.3997/2214-4609.201411142
      [2] Autin, J., Scheck-Wenderoth, M., Götze, H. J., et al., 2016. Deep Structure of the Argentine Margin Inferred from 3D Gravity and Temperature Modelling, Colorado Basin. Tectonophysics, 676(47): 198-210. https://doi.org/10.1016/j.tecto.2015.11.023
      [3] Bárdossy, A., 2006. Copula-Based Geostatistical Models for Groundwater Quality Parameters. Water Resources Research, 42(11). https://doi.org/10.1029/2005wr004754
      [4] Bárdossy, A., Li, J., 2008. Geostatistical Interpolation Using Copulas. Water Resources Research, 44(7). https://doi.org/10.1029/2007wr006115
      [5] Calcagno, P., Chiles, J. P., Courrioux, G., at al., 2008. Geological Modelling from Field Data and Geological Knowledge: Part Ⅰ. Modelling Method Coupling 3D Potential-Field Interpolation and Geological Rules. Physics of the Earth and Planetary Interiors, 171 (1-4): 147-157. https://doi.org/10.1016/j.pepi.2008.06.013
      [6] Caumon, G., Journel, A. G., 2004. Early Uncertainty Assessment: Application to A Hydrocarbon Reservoir Appraisal. Geostatistics Banff 2004, Springer, Dordrecht, 551-557. https://doi.org/10.1007/978-1-4020-3610-1_56
      [7] Daly, C., 2006. Guidelines for Assessing the Suitability of Spatial Climate Data Sets. International Journal of Climatology, 26(6): 707-721. https://doi.org/10.1002/joc.1322
      [8] de Kemp, E. A., Sprague, K. B., 2003. Interpretive Tools for 3-D Structural Geological Modeling Part Ⅰ: Bxezier-Based Curves, Ribbons and Grip Frames. Geoinformatica, 7 (1): 55-71. https://doi.org/10.1023/a:1022822227691
      [9] De la Varga, M., Schaaf, A., Wellmann J. F., 2018. GemPy 1.0: Open-Source Stochastic Geological Modeling and Inversion. Geoscientific Model Development Discussions, 1-50. https://doi.org/10.5194/gmd-12-1-2019
      [10] De Paor, D. G., 1996. Bxezier Curves and Geological Design. In: De Paor, D. G., ed., Computer Methods in the Geosciences. Pergamon, 389-417. https://doi.org/10.1016/s1874-561x(96)80031-9
      [11] Fremming, N. P., 2002. 3D Geological Model Construction Using a 3D Grid. ECMOR Ⅷ-8th European Conference on the Mathematics of Oil Recovery. https://doi.org/10.3997/2214-4609.201405917
      [12] Gradmann, S., Ebbing, J., Fullea, J., 2013. Integrated Geophysical Modelling of a Lateral Transition Zone in the Lithospheric Mantle under Norway and Sweden. Geophysical Journal International, 194 (3): 1358-1373. https://doi.org/10.1093/gji/ggt213
      [13] Haase, C., Ebbing, J., Funck, T., 2017. A 3D Regional Crustal Model of the NE Atlantic Based on Seismic and Gravity Data. Geological Society, London, Special Publications, 447 (1): 233-247. https://doi.org/10.1144/sp447.8
      [14] Hou, Z., Wang, T. Y., Yu, C. C., et al., 2018. Study of 3d Geological Modeling Based on Aeromagnetic Data. Advances in Earth Science, 33(3): 257-269 (in Chinese with English abstract).
      [15] Kessler, H., Mathers, S., Sobisch, H. G., 2009. The Capture and Dissemination of Integrated 3D Geospatial Knowledge at the British Geological Survey Using GSI3D Software and Methodology. Computers & Geosciences, 35 (6): 1311-1321. https://doi.org/10.1016/j.cageo.2008.04.005
      [16] Lemon, A. M., Jones, N. L., 2003. Building Solid Models from Boreholes and User-Defined Cross-Sections. Computers & Geosciences, 29(5): 547-555. https://doi.org/10.1016/s0098-3004(03)00051-7
      [17] Liu, Z. F., Wei, Z. H., Huang, X. J., et al., 2012. Research on Dynamic Update Method of 3d Geological Model: A Case Study of Water Resources and Hydropower Projects. China Rural Water and Hydropower, 11: 93-96 (in Chinese with English abstract).
      [18] Lyu, Y. H., Du, Y., Zou, C. Y., 2007. Improved Numerical Simulation Method of Complex Fault Block Oil Reservoir. Fault-Block Oil & Gas Field, 14(6): 21-22, 94 (in Chinese with English abstract).
      [19] Ming, J., Pan, M., Qu, H. G., et al., 2010. GSIS: A 3D Geological Multi-Body Modeling System from Netty Cross-Sections with Topology. Computers & Geosciences, 36(6): 756-767. https://doi.org/10.1016/j.cageo.2009.11.003
      [20] Nelsen, R. B., 2007. An Introduction to Copulas. Springer, New York.
      [21] Perrin, M., Rainaud, J. F., 2013. Shared Earth Modeling: Knowledge Driven Solutions for Building and Managing Subsurface 3D Geological Models, Editions Technip.
      [22] Sadegh, M., Ragno, E., Aghakouchak, A., 2017. Multivariate Copula Analysis Toolbox (MvCAT): Describing Dependence and Underlying Uncertainty Using a Bayesian Framework. Water Resources Research, 53. https://doi.org/10.1002/2016WR020242.
      [23] Sklar, A, 1959. Fonctions de Repartition An Dimensions et Leurs Marges. Publications de l'Insitut de Statistique de Paris, 229-231
      [24] Sprague, K. B., de Kemp, E. A., 2005. Interpretive Tools for 3-D Structural Geological Modelling Part Ⅱ: Surface Design from Sparse Spatial Data. GeoInformatica, 9(1): 5-32. https://doi.org/10.1007/s10707-004-5620-8
      [25] Tacher, L., Pomian-Srzednicki, I., Parriaux, A., 2006. Geological Uncertainties Associated with 3-D Subsurface Models. Computers & Geosciences, 32(2): 212-221. https://doi.org/10.1016/j.cageo.2005.06.010
      [26] Tan, F., Wang, J., Jiao, Y.Y., et al., 2021. Current Situation and Development of Urban Underground Space Suitability Evaluation. Earth Science, 46(5): 1896-1908 (in Chinese with English abstract).
      [27] Tearpock, D. J., Bischke, R. E., 1991. Applied Subsurface Geological Mapping. Prentice Hall.
      [28] Tobler, W. R., 1970. A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46: 234. https://doi.org/10.2307/143141
      [29] Wellmann, J. F., de la Varga, M., Murdie, R. E., et al., 2017. Uncertainty Estimation for a Geological Model of the Sandstone Greenstone Belt, Western Australia: Insights from Integrated Geological and Geophysical Inversion in a Bayesian Inference Framework. Geological Society, London, Special Publications, 453(1): 41-56. https://doi.org/10.1144/sp453.12
      [30] Wellmann, J. F., Caumon, G., 2018. 3-D Structural Geological Models: Concepts, Methods, and Uncertainties, Advances in Geophysics, 59: 1-121. https://doi.org/10.1016/bs.agph.2018.09.001
      [31] Winter, J. G., 1968. The Prodromus of Nicolaus Steno's Dissertation Concerning A Solid Body Enclosed by Process of Nature within A Solid, Hafner.
      [32] Wolff, B, S. F., 1981. On Nonparametric Measures of Dependence for Random Variables. Annals of Statistics, 9(4): 879-885. https://doi.org/10.1214/aos/1176345528
      [33] Xie, J. R., Qiao, S. F., Qian, H., et al., 2014. The Application of Virtual Drilling Technology in the Three-Dimensional Geological Modeling of Water Resources and Hydropower. Journal of Railway Science and Engineering, (3): 123-128 (in Chinese with English abstract).
      [34] Xiu, C. H., Che, D. F., Jia, G. B., 2015. A 3D Dynamic Modeling Method for Coal Seams with Complex Geological Structures. Mine Surveying, 6: 52-55 (in Chinese with English abstract).
      [35] Zhang, X.L., Wu, C.L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644 (in Chinese with English abstract).
      [36] Zhu, L. F., Wu, X. C., Pan, X., 2006. Mechan6ism and Implementation of Error Correction for 3D Strata Model. Rock and Soil Mechanics, 27(2): 268-271 (in Chinese with English abstract).
      [37] Zhu, L. F., Wu, X. C., Pan, X., 2009. Theory of Accuracy Assessment and Methods for Error Correction in 3D Geological Structure Models. Earth Science Frontiers, 16(4): 363-371 (in Chinese with English abstract).
      [38] Zhu, L. F., Zhang, C. J., Li, M. J., et al., 2012. Building 3D Solid Models of Sedimentary Stratigraphic Systems from Borehole Data: An Automatic Method and Case Studies. Engineering Geology, 127(8): 1-13. https://doi.org/10.1016/j.enggeo.2011.12.001
      [39] 侯征, 王天意, 于长春, 等, 2018. 基于航磁数据的三维地质建模研究. 地球科学进展, 33(3): 257-269. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201803007.htm
      [40] 刘志锋, 魏振华, 黄笑鹃, 等, 2012. 三维地质模型动态更新方法研究——以水利水电工程为例. 中国农村水利水电, 11: 93-96. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201211027.htm
      [41] 吕迎红, 杜燕, 邹存友, 等, 2007. 复杂断块油藏地质模型修正技术探讨. 断块油气田, 14(6): 21-22, 94. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT200706006.htm
      [42] 谭飞, 汪君, 焦玉勇, 等, 2021. 城市地下空间适宜性评价研究国内外现状及趋势. 地球科学, 46(5): 1896-1908. doi: 10.3799/dqkx.2020.155
      [43] 谢济仁, 乔世范, 钱骅, 等, 2014. 虚拟钻孔技术在水利水电三维地质建模中的应用. 铁道科学与工程学报, 3: 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201403022.htm
      [44] 修春华, 车德福, 贾国兵, 2015. 含复杂地质构造的三维煤层动态建模方法. 矿山测量, 6: 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KSCL201506016.htm
      [45] 张夏林, 吴冲龙, 周琦, 等, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
      [46] 朱良峰, 吴信才, 潘信, 2006. 三维地层模型误差修正机制及其实现技术. 岩土力学, 27(2): 268-271. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200602020.htm
      [47] 朱良峰, 吴信才, 潘信, 2009. 三维地质结构模型精度评估理论与误差修正方法研究. 地学前缘, 16(4): 363-371. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200904042.htm
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  86
    • HTML全文浏览量:  30
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-12-26
    • 刊出日期:  2023-08-25

    目录

      /

      返回文章
      返回