Thinkings and Prospects for the Research on Geothermics in the Big Data Era
-
摘要: 大数据时代带来产业、思想和科学的革命,数据的融合、归纳、科学发现等对地热学的发展带来了机遇和挑战.地热学作为一门多学科交叉融合学科,涉及到地球科学的方方面面,其在大数据时代下的发展也面临着诸多挑战.本文依据时间序列将地热学划分为当代地热学和历史地热学两部分,从中国乃至全球热流分布、水化学参数、地热潜力评价体系3个方面对当代地热学涉及的地球热结构及相关能源灾害问题,以及从深时地球热体制变化、构造演化、气候环境能源效应3个方面对历史地热学涉及的热时空变化、演变及资源形成分别阐述了大数据引入的前瞻性和可行性.未来地热学的发展一方面应注重地热学框架和要素的搭建及相关科学联系解译和科学发现工作,另一方面则应注重地热学知识图谱构建,多学科知识融合解译,继而重建深时地球热状态及其所反映的物理化学过程.Abstract: The era of big data drives the revolution of industry, thoughts, and science. The integration, induction, and scientific discovery of data bring opportunities and challenges to the development of geothermics. As a multi-disciplinary or interdisciplinary subject, geothermics involves all aspects of earth science, which poses challenges to the extremely complex and difficult development of geothermics in the era of big data. In this study, we divide geothermics into contemporary geothermics and historical geothermics based on time. First, we analyze the geothermal structure and related energy/disasters from three aspects of heat flow distribution in China and the world, hydrochemical parameters, and geothermal potential evaluation system. Second, we discuss the temporal and spatial changes of heat, the tectonic evolution, and the effect of climate, environment, and energy from three aspects of temporal and spatial variation, evolution, and resource formation of heat in historical geothermics. All these efforts aim to expound the foresight and feasibility of big data introduction, respectively. In the future, the development of geothermics should focus on the construction of the framework and elements of geothermics, the interpretation of related scientific links, and discovery. Meanwhile, it should focus on the construction of the knowledge graph of geothermics, the integration, interpretation, and discovery of multi-disciplinary knowledge, and the reconstruction of the deep-time geothermal state and physical and the chemical processes reflected.
-
Key words:
- big data /
- geothermics /
- scientific frontier /
- deep-time earth /
- discipline development /
- geothermal prospecting
-
图 1 全球热流测点分布(据Lucazeau, 2019)
Fig. 1. Distribution of global heat flow measuring points (from Lucazeau, 2019)
图 2 中国陆区热流测点分布
图中数据来源Jiang et al.(2019);底图改自中国标准地图GS(2019)1824号
Fig. 2. Distribution of heat flow measuring points in China
图 3 中国热水分布
图修改自陈墨香(1992)、Jiang et al.(2019);底图改自中国标准地图GS(2016)1603和GS(2016)1608
Fig. 3. Distribution of hot spring in China
图 4 哥斯达黎加(a)、印度尼西亚(b)、新西兰(c)、中国羊八井(d)典型的岩浆型高温地热系统水化学数据
图a数据量N=98,数据来源Giggenbach and Soto(1992)、Gherardi et al.(2002)、Marini et al.(2003)、Molina and Martí(2016);图b数据量N=8,数据来源Hochstein and Sudarman(1993);图c数据量N=69,数据来源Giggenbach et al.(1994)、Glover and Mroczek(2009);图d数据量N=33,数据来源Guo et al.(2008)、Zhang et al.(2015)
Fig. 4. Hydrochemical data of typical magmatic high temperature geothermal systems in Costa Rica (a), Indonesia (b), New Zealand (c) and Yangbajing of China (d)
图 5 美国黄石公园、日本东北部火山区、哥斯达黎加火山区、印度尼西亚爪哇火山区等178件水化学数据
数据来源Kiyosu(1985)、Lewis et al.(1997,1998)、Takahashi et al.(2000)、Delmelle et al.(2000)、Nanlohy et al.(2001)、Marini et al.(2003)、Nordstrom et al.(2009)、Deng et al.(2011);a. 地热水中氯离子浓度和硫酸根浓度分别与地热水pH关系,显示出Cl-和SO42‒离子与pH具有明显地负相关关系,pH值和lg(SO42‒)呈线性关系;b. 地热水中主要阴阳离子浓度关系,显示出氯离子和钠离子分别是地热水中阴阳离子的主要组成部分
Fig. 5. 178 hydrochemical data were collected from Yellowstone Park, northeastern Japan, Costa Rica and Java, Indonesia
图 6 全球变质岩变质T/P随时间变化图(改自Weller and St-Onge, 2017)
Fig. 6. Time-dependent change of T/P of global metamorphic rocks (modified by Weller and St-Onge, 2017)
图 7 全球变质岩变质高中低T/P随时间变化(改自Brown and Johnson, 2019)
Fig. 7. Time-dependent change of high, medium, low T/P of global metamorphic rocks (modified by Brown and Johnson, 2019)
图 8 “双峰式”变质作用随时间演化的规律(改自Holder et al., 2019)
Fig. 8. Time-dependent change of bimodal metamorphism (modified by Holder et al., 2019)
图 9 新生代印度‒欧亚大陆形成示意
a. 新生代变质岩岩石变质温压比,数据源于Brown and Johnson(2019);黑色实线为全球板块边界,数据源于Bird(2003);b. 70 Ma印度大陆北漂示意,改自van Hinsbergen et al.(2021)
Fig. 9. The formation of Cenozoic India-Eurasia continent
图 10 全球斑岩型铜矿分布
红点为斑岩型铜矿,数据源于Mutschler et al.(2000);黑色实线为全球板块边界,数据源于Bird(2003);大部分斑岩矿床分布在3个成矿域内,即环太平洋、特提斯和中亚成矿域
Fig. 10. Distribution of porphyry copper deposits in the world
-
Barbier, E., 2002. Geothermal Energy Technology and Current Status: An Overview. Renewable and Sustainable Energy Reviews, 6(1-2): 3-65. https://doi.org/10.1016/S1364-0321(02)00002-3 Birch, F., 1954. The Present State of Geothermal Investigations. SEPM Journal of Sedimentary Research, 19(4): 645-659. https://doi.org/10.1306/d42696c5-2b26-11d7-8648000102c1865d Bird, P., 2003. An Updated Digital Model of Plate Boundaries. Geochemistry, Geophysics, Geosystems, 4(3): 1027-1029. https://doi.org/10.1029/2001GC000252 Brown, M., Johnson, T., 2019. Metamorphism and the Evolution of Subduction on Earth. American Mineralogist, 104(8): 1065-1082. https://doi.org/10.2138/am-2019-6956 Cawood, P. A., 2020. Earth Matters: A Tempo to our Planet's Evolution. Geology, 48(5): 525-526. https://doi.org/10.1130/focus052020.1 Chen, M. X., 1992. A New Map of Hot Springs in China and Its Explanation. Chinese Journal of Geology, 27(S1): 322-332 (in Chinese with English abstract). Chen, M. X., Wang, J. Y., 1994. Review and Prospect on Geothermal Studies in China. Chinese Journal of Geophysics, 37(S1): 320-338 (in Chinese with English abstract). Chen, M. X., Wang, J. Y., Deng, X., 1995. Advance in Geothermics in China. Earth Science, 20(4): 367-372 (in Chinese with English abstract). Delmelle, P., Bernard, A., Kusakabe, M., et al., 2000. Geochemistry of the Magmatic-Hydrothermal System of Kawah Ijen Volcano, East Java, Indonesia. Journal of Volcanology and Geothermal Research, 97(1-4): 31-53. https://doi.org/10.1016/S0377-0273(99)00158-4 Deng, Y. M., Nordstrom, D. K., Blaine McCleskey, R., 2011. Fluoride Geochemistry of Thermal Waters in Yellowstone National Park: Ⅰ. Aqueous Fluoride Speciation. Geochimica et Cosmochimica Acta, 75(16): 4476-4489. https://doi.org/10.1016/j.gca.2011.05.028 Furlong, K. P., Chapman, D. S., 2013. Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annual Review of Earth and Planetary Sciences, 41: 385-410. https://doi.org/10.1146/annurev.earth.031208.100051 Ganino, C., Arndt, N. T., 2009. Climate Changes Caused by Degassing of Sediments during the Emplacement of Large Igneous Provinces. Geology, 37(4): 323-326. https://doi.org/10.1130/g25325a.1 Gherardi, F., Panichi, C., Yock, A., et al., 2002. Geochemistry of the Surface and Deep Fluids of the Miravalles Volcano Geothermal System (Costa Rica). Geothermics, 31(1): 91-128. https://doi.org/10.1016/S0375-6505(01)00030-X Giggenbach, W., Sheppard, D., Robinson, B., et al., 1994. Geochemical Structure and Position of the Waiotapu Geothermal Field, New Zealand. Geothermics, 23(5-6): 599-644. https://doi.org/10.1016/0375-6505(94)90022-1 Giggenbach, W. F., Soto, R. C., 1992. Isotopic and Chemical Composition of Water and Steam Discharges from Volcanic-Magmatic-Hydrothermal Systems of the Guanacaste Geothermal Province, Costa Rica. Applied Geochemistry, 7(4): 309-332. https://doi.org/10.1016/0883-2927(92)90022-U Gizaw, B., 1996. The Origin of High Bicarbonate and Fluoride Concentrations in Waters of the Main Ethiopian Rift Valley, East African Rift System. Journal of African Earth Sciences, 22(4): 391-402. https://doi.org/10.1016/0899-5362(96)00029-2 Glover, R. B., Mroczek, E. K., 2009. Chemical Changes in Natural Features and Well Discharges in Response to Production at Wairakei, New Zealand. Geothermics, 38(1): 117-133. https://doi.org/10.1016/j.geothermics.2008.12.008 Gunawardana, P. M., Morra, G., Chowdhury, P., et al., 2020. Calibrating the Yield Strength of Archean Lithosphere Based on the Volume of Tonalite-Trondhjemite-Granodiorite Crust. Frontiers in Earth Science, 8: 548724. https://doi.org/10.3389/feart.2020.548724 Guo, Q. H., Wang, Y. X., Liu, W., 2008. B, As, and F Contamination of River Water Due to Wastewater Discharge of the Yangbajing Geothermal Power Plant, Tibet, China. Environmental Geology, 56(1): 197-205. https://doi.org/10.1007/s00254-007-1155-2 Herzberg, C., Condie, K., Korenaga, J., 2010. Thermal History of the Earth and Its Petrological Expression. Earth and Planetary Science Letters, 292(1-2): 79-88. https://doi.org/10.1016/j.epsl.2010.01.022 Hey, T., Tansley, S., Tolle, K., 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, Redmond. van Hinsbergen, D. J. J., Steinberger, B., Guilmette, C., et al., 2021. A Record of Plume-Induced Plate Rotation Triggering Subduction Initiation. Nature Geoscience, 14(8): 626-630. https://doi.org/10.1038/s41561-021-00780-7 Hochstein, M. P., Sudarman, S., 1993. Geothermal Resources of Sumatra. Geothermics, 22(3): 181-200. https://doi.org/10.1016/0375-6505(93)90042-L Holder, R. M., Viete, D. R., Brown, M., et al., 2019. Metamorphism and the Evolution of Plate Tectonics. Nature, 572(7769): 378-381. https://doi.org/10.1038/s41586-019-1462-2 Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract). Jiang, G. Z., Hu, S. B., Shi, Y. Z., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36-48. https://doi.org/10.1016/j.tecto.2019.01.006 Jiang, S., Wang, S., Qi, S. H., et al., 2020. Recent Advances in the Data-Driven Play Fairway Analysis for Geothermal Exploration. Geological Journal of China Universities, 26(1): 111-120 (in Chinese with English abstract). Johnston, F. K. B., Turchyn, A. V., Edmonds, M., 2011. Decarbonation Efficiency in Subduction Zones: Implications for Warm Cretaceous Climates. Earth and Planetary Science Letters, 303(1-2): 143-152. https://doi.org/10.1016/j.epsl.2010.12.049 Kiyosu, Y., 1985. Isotopic Composition of Acid Sulfate-Chloride Waters and Volcanic Steam from some Volcanoes in Northeastern Japan. Journal of Volcanology and Geothermal Research, 26(1-2): 25-36. https://doi.org/10.1016/0377-0273(85)90045-9 Korenaga, J., 2008. Urey Ratio and the Structure and Evolution of Earth's Mantle. Reviews of Geophysics, 46(2): RG2007. https://doi.org/10.1029/2007RG000241 Korenaga, J., 2013. Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations. Annual Review of Earth and Planetary Sciences, 41: 117-151. https://doi.org/10.1146/annurev-earth-050212-124208 Kuang, J., Qi, S. H., Wang, S., et al., 2020. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466-1480 (in Chinese with English abstract). Kuang, J., Wang, S., Qi, S. H., et al., 2020. Cenozoic Tectonic Evolution of South China: A Brief Review, and New Insights from the Huangshadong-Shiba Area, South-East China. Geological Journal, 55(12): 7716-7737. https://doi.org/10.1002/gj.3870 Lewis, A. J., Palmer, M. R., Sturchio, N. C., et al., 1997. The Rare Earth Element Geochemistry of Acid-Sulphate and Acid-Sulphate-Chloride Geothermal Systems from Yellowstone National Park, Wyoming, USA. Geochimica et Cosmochimica Acta, 61(4): 695-706. https://doi.org/10.1016/S0016-7037(96)00384-5 Lewis, A. J., Komninou, A., Yardley, B. W. D., et al., 1998. Rare Earth Element Speciation in Geothermal Fluids from Yellowstone National Park, Wyoming, USA. Geochimica et Cosmochimica Acta, 62(4): 657-663. https://doi.org/10.1016/S0016-7037(97)00367-0 Li, C. F., Zhou, D., Li, G., et al., 2021. Geodynamic Problems in the Western Pacific and Future Scientific Drill Targets. Earth Science, 46(3): 759-769 (in Chinese with English abstract). Lucazeau, F., 2019. Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set. Geochemistry, Geophysics, Geosystems, 20(8): 4001-4024. https://doi.org/10.1029/2019GC008389 Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2008. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.005 Marini, L., Fung, A. Y., Sanchez, E., 2003. Use of Reaction Path Modeling to Identify the Processes Governing the Generation of Neutral Na-Cl and Acidic Na-Cl-SO4 Deep Geothermal Liquids at Miravalles Geothermal System, Costa Rica. Journal of Volcanology and Geothermal Research, 128(4): 363-387. https://doi.org/10.1016/S0377-0273(03)00226-9 Merdith, A. S., Williams, S. E., Collins, A. S., et al., 2021. Extending Full-Plate Tectonic Models into Deep Time: Linking the Neoproterozoic and the Phanerozoic. Earth-Science Reviews, 214: 103477. https://doi.org/10.1016/j.earscirev.2020.103477 Molina, F., Martí, J., 2016. The Borinquen Geothermal System (Cañas Dulces Caldera, Costa Rica). Geothermics, 64: 410-425. https://doi.org/10.1016/j.geothermics.2016.07.001 Moore, W. B., Webb, A. A. G., 2013. Heat-Pipe Earth. Nature, 501(7468): 501-505. https://doi.org/10.1038/nature12473 Mutschler, F. E., Ludington, S., Bookstrom, A. A., 2000. Giant Porphyry-Related Metal Camps of the World-A Database. U.S. Geological Survey Open-File Report 99-556, U.S. Geological Survey, Reston. Nanlohy, F., Kusnadi, D., Sulaeman, B., 2001. Geology and Geochemistry of Mataloko Geothermal Field, Central Flores, East Nusa Tenggara. Proceeding of the 5th Inaga Annual Scientific Conference & Exhibitions, Yogyakarta. Nordstrom, D. K., McCleskey, R. B., Ball, J. W., 2009. Sulfur Geochemistry of Hydrothermal Waters in Yellowstone National Park: Ⅳ Acid-Sulfate Waters. Applied Geochemistry, 24(2): 191-207. https://doi.org/10.1016/j.apgeochem.2008.11.019 Ren, Z. L., Qi, K., Liu, R. C., et al., 2020. Dynamic Background of Early Cretaceous Tectonic Thermal Events and Its Control on Various Mineral Accumulations such as Oil and Gas in the Ordos Basin. Acta Petrologica Sinica, 36(4): 1213-1234 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.04.15 Rolf, T., Coltice, N., Tackley, P. J., 2012. Linking Continental Drift, Plate Tectonics and the Thermal State of the Earth's Mantle. Earth and Planetary Science Letters, 351-352: 134-146. https://doi.org/10.1016/j.epsl.2012.07.011 Sun, Z. J., Xue, L., Xu, Y. M., et al., 2012. Overview of Deep Learning. Application Research of Computers, 29(8): 2806-2810 (in Chinese with English abstract). Takahashi, M., Urai, M., Yasukawa, K., et al., 2000. Geochemistry of Hot Spring Waters at Bajawa Area, Central Flores, Nusa Tenggara Timur, Indonesia. Proceedings World Geothermal Congress, Kyushu-Tohoku. Tang, M., Chen, K., Rudnick, R. L., 2016. Archean Upper Crust Transition from Mafic to Felsic Marks the Onset of Plate Tectonics. Science, 351(6271): 372-375. https://doi.org/10.1126/science.aad5513 Tian, J., Pang, Z. H., Guo, Q., et al., 2018. Geochemistry of Geothermal Fluids with Implications on the Sources of Water and Heat Recharge to the Rekeng High-Temperature Geothermal System in the Eastern Himalayan Syntax. Geothermics, 74: 92-105. https://doi.org/10.1016/j.geothermics.2018.02.006 Tian, J., Pang, Z. H., Wang, Y. C., et al., 2019. Fluid Geochemistry of the Cuopu High Temperature Geothermal System in the Eastern Himalayan Syntaxis with Implication on Its Genesis. Applied Geochemistry, 110: 104422. https://doi.org/10.1016/j.apgeochem.2019.104422 Wang, X. W., Wang, T. H., Gao, N. A., et al., 2022. Formation Mechanism and Development Potential of Geothermal Resources along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011 (in Chinese with English abstract). Weller, O. M., St-Onge, M. R., 2017. Record of Modern-Style Plate Tectonics in the Palaeoproterozoic Trans-Hudson Orogen. Nature Geoscience, 10(4): 305-311. https://doi.org/10.1038/ngeo2904 Wessel, P., Luis, J. F., Uieda, L., et al., 2019. The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564. https://doi.org/10.1029/2019GC008515 Zhang, L. C., Zhai, M. G., Wan, Y. S., et al., 2012. Study of the Precambrian BIF-Iron Deposits in the North China Craton: Progresses and Questions. Acta Petrologica Sinica, 28(11): 3431-3445 (in Chinese with English abstract). Zhang, W. J., Tan, H. B., Zhang, Y. F., et al., 2015. Boron Geochemistry from Some Typical Tibetan Hydrothermal Systems: Origin and Isotopic Fractionation. Applied Geochemistry, 63: 436-445. https://doi.org/10.1016/j.apgeochem.2015.10.006 Zhong, S. J., Zhang, N., Li, Z. X., et al., 2007. Supercontinent Cycles, True Polar Wander, and very Long-Wavelength Mantle Convection. Earth and Planetary Science Letters, 261(3-4): 551-564. https://doi.org/10.1016/j.epsl.2007.07.049 陈墨香, 1992. 新编中国温泉图及其说明. 地质科学, 27(S1): 322-332. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX1992S1031.htm 陈墨香, 汪集旸, 1994. 中国地热研究的回顾和展望. 地球物理学报, 37(S1)320-338. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX4S1.029.htm 陈墨香, 汪集旸, 邓孝, 1995. 中国地热学研究之进展. 地球科学, 20(4): 367-372. http://www.earth-science.net/article/id/229 姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm 蒋恕, 王帅, 祁士华, 等, 2020. 基于大数据分析的地热勘探潜力区预测方法的新进展. 高校地质学报, 26(1): 111-120. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202001010.htm 旷健, 祁士华, 王帅, 等, 2020. 广东惠州花岗岩体及其地热意义. 地球科学, 45(4): 1466-1480. doi: 10.3799/dqkx.2019.128 李春峰, 周多, 李刚, 等, 2021. 西太平洋地球动力学问题与未来大洋钻探目标. 地球科学, 46(3): 759-769. doi: 10.3799/dqkx.2020.356 毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804007.htm 任战利, 祁凯, 刘润川, 等, 2020. 鄂尔多斯盆地早白垩世构造热事件形成动力学背景及其对油气等多种矿产成藏(矿)期的控制作用. 岩石学报, 36(4): 1213-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202004015.htm 孙志军, 薛磊, 许阳明, 等, 2012. 深度学习研究综述. 计算机应用研究, 29(8): 2806-2810. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201208003.htm 汪新伟, 王婷灏, 高楠安, 等. 2022. 川藏铁路沿线地热资源形成机理与开发潜力. 地球科学, 47(3): 995-1011. doi: 10.3799/dqkx.2022.059 张连昌, 翟明国, 万渝生, 等, 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题. 岩石学报, 28(11): 3431-3445. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211002.htm