Analysis of Recharge Source of Karst Spring Water Based on Stable Hydrogen and Oxygen Isotopes
-
摘要: 为了探明喀斯特泉水补给机理. 基于2017年4月~2020年12月监测的黄龙泉域氢氧稳定同位素数据,运用一元线性回归、多元线性回归、三角函数回归等模型,探讨泉域水体氢氧稳定同位素、水文、电导率变化特征及其耦合关系,揭示泉水补给来源过程. 结果表明:(1)泉水、河水的δD、δ18O值在丰水期大于枯水期,洞穴滴水、溪水的δD、δ18O值则与区域大气降水相似,枯水期大于丰水期.(2)泉域的氘过量值(dexcess)在丰水期大于枯水期,泉水水位、δD、δ18O、电导率对降水产生季节性耦合响应,泉水补给过程受喀斯特系统的“活塞效应”及降水的“稀释效应”影响.(3)洞穴滴水的δD、δ18O季节性特征呈现出洞穴内部大于靠近洞口;泉域各水体δD余弦函数拟合出现波谷的时间顺序为:溪水 > 洞穴滴水 > 河水 > 泉水,对大气降水响应的时间依次延迟.(4)泉水受大气降水入渗和流自非喀斯特地区的风化裂隙水的常年混合补给. 剖析喀斯特地区泉域氢氧同位素特征和水文动态、径流过程及补给机理,对喀斯特地区水资源的调控、管理、保护具有重要借鉴意义.Abstract: In order to explore the recharge mechanism of karst spring. Based on the data of hydrogen and oxygen stable isotopes monitored from April 2017 to December 2020 in Huanglong spring catchment monitored from April 2017 to December 2020, the models of unary linear regression, multiple linear regression, and trigonometric regression were used to explore the characteristics of hydrogen and oxygen stable isotopes, hydrology, and conductivity changes in the spring waters and their coupling relationships to reveal the process of spring recharge sources. The results show that: (1) The δD and δ18O values of spring water and river water were greater in the wet period than in the dry period, and the δD and δ18O values of cave drip water and stream water were similar to the stable isotope value of regional atmospheric precipitation, which were greater in the dry period than in the wet period. (2) The d-excess values of the spring catchment were greater in the wet period than in the dry period, and the water level, δD, δ18O and conductivity of the spring produced a seasonal coupling response to precipitation, and the recharge process of spring was influenced by the "piston effect" of the karst system and the "dilution effect" of the precipitation. (3) The seasonal characteristics of δD and δ18O of cave drips show that the drips inside the cave were larger than those near the cave entrance; the time sequence of troughs in the δD cosine function of the spring domain: stream water > cave drips > river water > spring water, and the response time to atmospheric precipitation was successively delayed. (4) The spring was recharged by the perennial mixture of infiltration of atmospheric precipitation and the weathering fissure water flowing from non-karst areas. The analyses of the characteristics of hydrogen and oxygen isotopes, hydrologic dynamics, runoff process and recharge mechanism in karst region have important reference significance for the control, management and protection of water resources in karst area.
-
Key words:
- karst /
- springs /
- hydrogen and oxygen stable isotopes /
- recharge mechanisms /
- Huanglong spring catchment /
- hydrogeology
-
表 1 各采样点δD、δ18O、dexcess变化范围
Table 1. Variation range of δD、δ18O and dexcess at each sampling point
采样点 δ18O(‰) δD(‰) dexcess (‰) 最大值 最小值 平均值 最大值 最小值 平均值 最大值 最小值 平均值 W1 ‒10.81 ‒11.75 ‒11.26 ‒76.95 ‒83.13 ‒80.16 12.51 8.07 9.95 W2 ‒10.15 ‒12.05 ‒10.97 ‒71.95 ‒86.55 ‒77.59 12.31 8.16 10.21 J1 ‒10.23 ‒12.15 ‒11.83 ‒78.47 ‒85.49 ‒84.71 12.06 3.38 9.90 J2 ‒11.66 ‒12.36 ‒12.04 ‒83.03 ‒87.84 ‒86.11 11.87 8.43 10.25 溪水 ‒11.10 ‒12.48 ‒11.94 ‒76.78 ‒89.23 ‒84.44 13.01 7.37 11.06 泉水 ‒12.03 ‒12.85 ‒12.53 ‒85.08 ‒91.42 ‒89.37 13.30 8.51 10.86 河水 ‒11.64 ‒12.81 ‒12.45 ‒82.16 ‒91.49 ‒88.63 13.15 9.42 10.99 表 2 各采样点δD峰值波谷出现时间
Table 2. The time of δD peak trough at each sampling point
采样点 日期 波峰 波谷 波峰 波谷 波峰 波谷 W1 2017‒06‒01 2017‒12‒01 2018‒06‒01 2018‒12‒01 2019‒06‒01 2019‒11‒31 W2 / 2017‒09‒18 2018‒03‒19 2018‒09‒18 2019‒03‒19 2019‒08‒18 J1 2017‒08‒04 2018‒02‒13 2018‒08‒14 2019‒02‒13 2019‒08‒14 / J2 2017‒06‒14 2017‒12‒13 2018‒06‒14 2018‒12‒13 2019‒06‒14 2019‒12‒13 溪水 / 2017‒10‒27 2018‒04‒28 2018‒10‒27 2019‒04‒28 2019‒10‒27 泉水 2017‒09‒10 2018‒03‒12 2018‒09‒10 2019‒03‒12 2019‒08‒10 / 河水 2017‒07‒21 2018‒01‒20 2018‒07‒21 2019‒01‒20 2019‒07‒21 / 表 3 各采样点的滞留时间
Table 3. Retention time of each sampling point
W1 W2 J1 J2 溪水 泉水 河水 滞留时间(d) 50 44 不明显 / 11 41 16 -
Al-Charideh, A., 2011. Environmental Isotope Study of Groundwater Discharge from the Large Karst Springs in West Syria: A Case Study of Figeh and Al-Sin Springs. Environmental Earth Sciences, 63(1): 1-10. https://doi.org/10.1007/s12665-010-0660-x Aquilina, L., Ladouche, B., Dörfliger, N., 2005. Recharge Processes in Karstic Systems Investigated through the Correlation of Chemical and Isotopic Composition of Rain and Spring-Waters. Applied Geochemistry, 20(12): 2189-2206. https://doi.org/10.1016/j.apgeochem.2005.07.011 Bhat, N. A., Jeelani, G. H., 2015. Delineation of the Recharge Areas and Distinguishing the Sources of Karst Springs in Bringi Watershed, Kashmir Himalayas Using Hydrochemistry and Environmental Isotopes. Journal of Earth System Science, 124(8): 1667-1676. https://doi.org/10.1007/s12040-015-0629-y Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702 Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x Felton, G. K., Currens, J. C., 1994. Peak Flow-Rate and Recession-Curve Characteristics of a Karst Spring in the Inner Bluegrass, Central Kentucky. Journal of Hydrology, 162(1-2): 99-118. https://doi.org/10.1016/0022-1694(94)90006-X Ford, D., Williams, P., 2007. Karst Hydrogeology and Geomorphology. John Wiley & Sons, Inc., New York. Gat, J. R., 1981. Paleoclimate Conditions in the Levant as Revealed by the Isotopic Composition of Paleowaters. Israel Meteorological Research Papers, 3: 13-28. He, Z. H., Chen, X. X., Liang, H., et al., 2015. Studies on the Mechanism of Watershed Hydrologic Droughts Based on the Combined Structure of Typical Karst Lithologys: Taking Guizhou Province as a Case. Chinese Journal of Geology, 50(1): 340-353 (in Chinese with English abstract). Larocque, M., Mangin, A., Razack, M., et al., 1998. Contribution of Correlation and Spectral Analyses to the Regional Study of a Large Karst Aquifer (Charente, France). Journal of Hydrology, 205(3-4): 217-231. https://doi.org/10.1016/S0022-1694(97)00155-8 Li, G., Zhang, X. P., Zhang, X. Z., et al., 2013. Stable Hydrogen and Oxygen Isotopes Characteristics of Atmospheric Precipitation from Tengchong, Yunnan. Resources and Environment in the Yangtze Basin, 22(11): 1458-1465 (in Chinese with English abstract). Li, W. J., Wang, J. L., Wang, J. L., 2018. Characteristics of the Stable Isotopes in Precipitation and the Source of Water Vapor in Different Terrain in the Southwest Region. Resources and Environment in the Yangtze Basin, 27(5): 1132-1142 (in Chinese with English abstract). Li, Y., Wang, J. L., Jin, M. G., et al., 2021. Hydrodynamic Characteristics of Jinan Karst Spring System Identified by Hydrologic Time-Series Data. Earth Science, 46(7): 2583-2593 (in Chinese with English abstract). Li, Y. B., Hou, J. J., Xie, D. T., 2002. The Recent Development of Research on Karst Ecology in Southwest China. Scientia Geographica Sinica, 22(3): 365-370 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0690.2002.03.019 Liang, L. E., Li, C. Y., Shi, X. H., et al., 2017. Characteristics of Hydrogen and Oxygen Isotopes of Surface and Ground Water and the Analysis of Source of Lake Water in Hulun Lake Basin, Inner Mongolia. Wetland Science, 15(3): 385-390 (in Chinese with English abstract). Lin, Y., Cao, F. L., Wu, Y. Z., et al., 2020. Hydrogeochemical Characteristics of Groundwater in Typical Karst Spring Areas of North China‒A Case Study in the Xujiagou Spring Area, Hebi. Earth and Environment, 48(3): 294-306 (in Chinese with English abstract). Liu, W., Wang, S. J., Luo, W. J., 2011. The Response of Epikarst Spring to Precipitation and Its Implications in Karst Peak-Cluster Region of Libo County, Guizhou Province, China. Geochimica, 40(5): 487-496 (in Chinese with English abstract). Liu, W. J., Yuan, X. M., Zhang, Y., et al., 2018. Hydrogeochemical Characteristics and Evolution of Karst Groundwater in Guiyang City. Geological Science and Technology Information, 37(6): 245-251 (in Chinese with English abstract). Lucon, T. N., Costa, A. T., Galvão, P., et al., 2020. Recharge Sources and Hydraulic Communication of Karst Aquifer, São Miguel Watershed, MG, Brazil. Journal of South American Earth Sciences, 100: 102591. https://doi.org/10.1016/j.jsames.2020.102591 Murad, A. A., Garamoon, H., Hussein, S., et al., 2011. Hydrogeochemical Characterization and Isotope Investigations of a Carbonate Aquifer of the Northern Part of the United Arab Emirates. Journal of Asian Earth Sciences, 40(1): 213-225. https://doi.org/10.1016/j.jseaes.2010.07.013 Ouyang, Z. W., Song, T. Q., Peng, W. X., et al., 2011. Study on Status of Waterlogging and Comprehensive Countermeasures in Karst Peak-Cluster Depression Region, Guangxi. Research of Agricultural Modernization, 32(1): 107-110 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0275.2011.01.024 Plummer, L. N., Busenberg, E., McConnell, J. B., et al., 1998. Flow of River Water into a Karstic Limestone Aquifer. 1. Tracing the Young Fraction in Groundwater Mixtures in the Upper Floridan Aquifer near Valdosta, Georgia. Applied Geochemistry, 13(8): 995-1015. https://doi.org/10.1016/S0883-2927(98)00031-6 Pu, J. B., 2013. Hydrogen and Oxygen Isotope Geochemistry of Karst Groundwater in Chongqing. Acta Geoscientica Sinica, 34(6): 713-722 (in Chinese with English abstract). Sun, Y. X., Li, L. L., Wei, S. Q., 2012. Storm-Scale Hydrochemical Variation in Typical Rock Pendant of Chongqing. Journal of Mountain Science, 30(5): 513-520 (in Chinese with English abstract). Wang, B., Wang, Y., Zhang, G., et al., 2021. A Study of Quality and Pollution Factors of Karst Groundwater in Lujiang River Basin in Southeast Yunnan. Acta Geoscientica Sinica, 42(3): 352-362 (in Chinese with English abstract). Wang, S. F., 2014. Progress in Study on Precipitation Infiltration Recharge of Karstic Groundwater System. Journal of China Hydrology, 34(6): 1-8 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0852.2014.06.001 Wang, Y., Luo, Z. H., Wu, Y., et al., 2019. Urbanization Factors of Groundwater Vulnerability Assessment in Karst Area: A Case Study of Shuicheng Basin. Earth Science, 44(9): 2909-2919 (in Chinese with English abstract). Wang, Z. J., Zhou, H., Qi, L. X., et al., 2020. Method for Characterizing Structure and Hydrological Response in Karst Water Systems: A Case Study in Y-M System in Three Gorges Area. Earth Science, 45(12): 4512-4523 (in Chinese with English abstract). Yin, G., Ni, S. J., Zhang, Q. C., 2001. Deuterium Excess Parmeter and Geohydrology Significance—Taking the Geohydrology Researches in Jiuzaigou and Yele, Sichuan for Example. Journal of Chengdu University of Technology, 28(3): 251-254 (in Chinese with English abstract). Yuan, J. F., Xu, F., Liu, H. Z., et al., 2019. Application of Hydrochemical and Isotopic Analysis to Research a Typical Karst Groundwater System: A Case Study at Xinrendong, Xichang City. Science Technology and Engineering, 19(17): 76-83 (in Chinese with English abstract). Zhang, X. P., Liu, J. M., Masayoshi, N., et al., 2009. Vapor Origins Revealed by Deuterium Excess in Precipitation in Southwest China. Journal of Glaciology and Geocryology, 31(4): 613-619 (in Chinese with English abstract). Zhang, X. P., Sun, W. Z., Liu, J. M., 2005. Stable Isotopes in Precipitation in the Vapor Transport Path in Kunming of Southwest China. Resources and Environment in the Yangtze Basin, 14(5): 665-669 (in Chinese with English abstract). Zhao, C. H., Liang, Y. P., Lu, H. P., et al., 2018. Hydrogen and Oxygen Isotopic Characteristics and Influencing Factors of Karst Water in the Niangziguan Spring Area. Geological Science and Technology Information, 37(5): 200-205 (in Chinese with English abstract). Zhao, M., Hu, Y., Zeng, C., et al., 2018. Effects of land cover on variations in stable hydrogen and oxygen isotopes in karst groundwater: A comparative study of three karst catchments in Guizhou Province, Southwest China. Journal of Hydrology, 565: 374-385. https://doi.org/10.1016/j.jhydrol.2018.08.037 Zheng, S. H., Hou, F. G., Ni, B. L., 1983. Study on Stable Isotopes of Hydrogen and Oxygen in Precipitation in China. Chinese Science Bulletin, 28(13): 801-806 (in Chinese). doi: 10.1360/csb1983-28-13-801 Zhu, X. Q., Fan, T., Guan, W., 2013. The Analysis of Stable Isotopes of Precipitation in Kunming. Yunnan Geographic Environment Research, 25(5): 90-95 (in Chinese with English abstract). 贺中华, 陈晓翔, 梁虹, 等, 2015. 典型喀斯特岩性组合结构的流域水文干旱机制研究——以贵州省为例. 地质科学, 50(1): 340-353. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201501023.htm 李广, 章新平, 张新主, 等, 2013. 云南腾冲地区大气降水中氢氧稳定同位素特征. 长江流域资源与环境, 22(11): 1458-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201311012.htm 李维杰, 王建力, 王家录, 2018. 西南地区不同地形降水稳定同位素特征及其水汽来源. 长江流域资源与环境, 27(5): 1132-1142. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201805020.htm 李严, 王家乐, 靳孟贵, 等, 2021. 运用水文时间序列分析识别济南泉域岩溶发育特征. 地球科学, 46(7): 2583-2593. doi: 10.3799/dqkx.2020.236 李阳兵, 侯建筠, 谢德体, 2002. 中国西南岩溶生态研究进展. 地理科学, 22(3): 365-370. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200203018.htm 梁丽娥, 李畅游, 史小红, 等, 2017. 内蒙古呼伦湖流域地表水与地下水氢氧同位素特征及湖水来源分析. 湿地科学, 15(3): 385-390. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201703010.htm 林云, 曹飞龙, 武亚遵, 等, 2020. 北方典型岩溶泉域地下水水文地球化学特征分析——以鹤壁许家沟泉域为例. 地球与环境, 48(3): 294-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202003002.htm 刘伟, 王世杰, 罗维均, 2011. 贵州荔波岩溶峰丛区表层岩溶泉对大气降雨的响应及其指示意义. 地球化学, 40(5): 487-496. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201105009.htm 刘伟江, 袁祥美, 张雅, 等, 2018. 贵阳市岩溶地下水水化学特征及演化过程分析. 地质科技情报, 37(6): 245-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htm 欧阳资文, 宋同清, 彭晚霞, 等, 2011. 广西岩溶峰丛洼地内涝现状分析与综合治理对策研究. 农业现代化研究, 32(1): 107-110. https://www.cnki.com.cn/Article/CJFDTOTAL-NXDH201101029.htm 蒲俊兵, 2013. 重庆岩溶地下水氢氧稳定同位素地球化学特征. 地球学报, 34(6): 713-722. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201306009.htm 孙钰霞, 李林立, 魏世强, 2012. 喀斯特槽谷区表层喀斯特水化学的暴雨动态特征. 山地学报, 30(5): 513-520. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201205001.htm 王波, 王宇, 张贵, 等, 2021. 滇东南泸江流域岩溶地下水质量及污染影响因素研究. 地球学报, 42(3): 352-362. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202103006.htm 王树芳, 2014. 岩溶含水系统降水入渗补给研究进展. 水文, 34(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201406001.htm 汪莹, 罗朝晖, 吴亚, 等, 2019. 岩溶地下水脆弱性评价的城镇化因子: 以水城盆地为例. 地球科学, 44(9): 2909-2919. doi: 10.3799/dqkx.2019.135 王泽君, 周宏, 齐凌轩, 等, 2020. 岩溶水系统结构和水文响应机制的定量识别方法: 以三峡鱼迷岩溶水系统为例. 地球科学, 45(12): 4512-4523. doi: 10.3799/dqkx.2020.261 尹观, 倪师军, 2001. 氘过量参数及其水文地质学意义: 以四川九寨沟和冶勒水文地质研究为例. 成都理工学院学报, 28(3): 251-254. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200103006.htm 袁建飞, 徐芬, 刘慧中, 等, 2019. 基于水化学和同位素的典型岩溶水系统溶质演化过程——以西昌市仙人洞为例. 科学技术与工程, 19(17): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201917010.htm 章新平, 刘晶淼, 中尾正义, 等, 2009. 我国西南地区降水中过量氘指示水汽来源. 冰川冻土, 31(4): 613-619. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200904003.htm 章新平, 孙维贞, 刘晶淼, 2005. 西南水汽通道上昆明站降水中的稳定同位素. 长江流域资源与环境, 14(5): 665-669. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY200505024.htm 赵春红, 梁永平, 卢海平, 等, 2018. 娘子关泉域岩溶水氢氧同位素特征及影响因素浅析. 地质科技情报, 37(5): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm 郑淑蕙, 侯发高, 倪葆龄, 1983. 我国大气降水的氢氧稳定同位素研究. 科学通报, 28(13): 801-806. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198313010.htm 朱秀勤, 范弢, 官威, 2013. 昆明大气降水稳定同位素分析. 云南地理环境研究, 25(5): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDL201305015.htm