• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于氢氧稳定同位素的喀斯特泉水补给来源分析

    毛龙富 付舒 刘宏 周恩民 岳兰 杨丽瑞 张净净

    毛龙富, 付舒, 刘宏, 周恩民, 岳兰, 杨丽瑞, 张净净, 2023. 基于氢氧稳定同位素的喀斯特泉水补给来源分析. 地球科学, 48(9): 3480-3493. doi: 10.3799/dqkx.2021.149
    引用本文: 毛龙富, 付舒, 刘宏, 周恩民, 岳兰, 杨丽瑞, 张净净, 2023. 基于氢氧稳定同位素的喀斯特泉水补给来源分析. 地球科学, 48(9): 3480-3493. doi: 10.3799/dqkx.2021.149
    Mao Longfu, Fu Shu, Liu Hong, Zhou Enmin, Yue Lan, Yang Lirui, Zhang Jingjing, 2023. Analysis of Recharge Source of Karst Spring Water Based on Stable Hydrogen and Oxygen Isotopes. Earth Science, 48(9): 3480-3493. doi: 10.3799/dqkx.2021.149
    Citation: Mao Longfu, Fu Shu, Liu Hong, Zhou Enmin, Yue Lan, Yang Lirui, Zhang Jingjing, 2023. Analysis of Recharge Source of Karst Spring Water Based on Stable Hydrogen and Oxygen Isotopes. Earth Science, 48(9): 3480-3493. doi: 10.3799/dqkx.2021.149

    基于氢氧稳定同位素的喀斯特泉水补给来源分析

    doi: 10.3799/dqkx.2021.149
    基金项目: 

    国家重点研发计划政府间国际科技创新合作重点专项 2021YFE0107100

    国家重点研发计划课题 2016YFC0502502

    国家自然科学基金项目 41371040

    国家自然科学基金项目 41571010

    国家自然科学基金项目 31970122

    云南省应用基础研究计划面上项目 202001BB050040

    自然资源部/广西岩溶动力学重点实验室开发课题 KDL & Guangxi202013

    详细信息
      作者简介:

      毛龙富(1993—),男,硕士研究生,主要从事水文与水环境研究.ORCID:0000-0002-8010-9852. E-mail:1056906500@qq.com

      通讯作者:

      刘宏, ORCID: 0000-0001-5450-7657. E-mail: hongliu@ynu.edu.cn

    • 中图分类号: P345

    Analysis of Recharge Source of Karst Spring Water Based on Stable Hydrogen and Oxygen Isotopes

    • 摘要: 为了探明喀斯特泉水补给机理. 基于2017年4月~2020年12月监测的黄龙泉域氢氧稳定同位素数据,运用一元线性回归、多元线性回归、三角函数回归等模型,探讨泉域水体氢氧稳定同位素、水文、电导率变化特征及其耦合关系,揭示泉水补给来源过程. 结果表明:(1)泉水、河水的δD、δ18O值在丰水期大于枯水期,洞穴滴水、溪水的δD、δ18O值则与区域大气降水相似,枯水期大于丰水期.(2)泉域的氘过量值(dexcess)在丰水期大于枯水期,泉水水位、δD、δ18O、电导率对降水产生季节性耦合响应,泉水补给过程受喀斯特系统的“活塞效应”及降水的“稀释效应”影响.(3)洞穴滴水的δD、δ18O季节性特征呈现出洞穴内部大于靠近洞口;泉域各水体δD余弦函数拟合出现波谷的时间顺序为:溪水 > 洞穴滴水 > 河水 > 泉水,对大气降水响应的时间依次延迟.(4)泉水受大气降水入渗和流自非喀斯特地区的风化裂隙水的常年混合补给. 剖析喀斯特地区泉域氢氧同位素特征和水文动态、径流过程及补给机理,对喀斯特地区水资源的调控、管理、保护具有重要借鉴意义.

       

    • 图  1  研究区概况图及采样点

      Fig.  1.  Overview of the study area and sampling point

      图  2  黄龙泉域含水层水文地质图

      Fig.  2.  Hydrogeological map of aquifer in Huanglong spring catchment

      图  3  老黄龙洞水文地质剖面

      Fig.  3.  Hydrogeological section of Lao Huanglong Cave

      图  4  各采样点δD、dexcess、气温、降水的年际变化趋势

      Fig.  4.  The interannual variation trend of δD, dexcess, temperature and precipitation at each sampling point

      图  5  黄龙泉域各采样点δD-δ18O关系

      Fig.  5.  δD-δ18O diagram of each sampling point in Huanglong spring catchment

      图  6  丰水期、枯水期泉水的δD-δ18O关系

      Fig.  6.  The δD-δ18O diagram of spring water in wet season and dry season

      图  7  各采样点δ18O箱线图

      Fig.  7.  δ18O boxplot of each sampling point

      图  8  各采样点δD箱线图

      Fig.  8.  δD boxplot of each sampling point

      图  9  各采样点dexcess箱线图

      Fig.  9.  dexcess boxplot of each sampling point

      图  10  黄龙泉水水位、电导率、δD耦合响应关系

      Fig.  10.  Coupling response relationship of water level, electrical conductivity and δD in Huanglong spring

      图  11  泉域δD时间序列及其余弦拟合曲线

      Fig.  11.  δD time series and cosine fitting curve of spring catchment

      表  1  各采样点δD、δ18O、dexcess变化范围

      Table  1.   Variation range of δD、δ18O and dexcess at each sampling point

      采样点 δ18O(‰) δD(‰) dexcess (‰)
      最大值 最小值 平均值 最大值 最小值 平均值 最大值 最小值 平均值
      W1 ‒10.81 ‒11.75 ‒11.26 ‒76.95 ‒83.13 ‒80.16 12.51 8.07 9.95
      W2 ‒10.15 ‒12.05 ‒10.97 ‒71.95 ‒86.55 ‒77.59 12.31 8.16 10.21
      J1 ‒10.23 ‒12.15 ‒11.83 ‒78.47 ‒85.49 ‒84.71 12.06 3.38 9.90
      J2 ‒11.66 ‒12.36 ‒12.04 ‒83.03 ‒87.84 ‒86.11 11.87 8.43 10.25
      溪水 ‒11.10 ‒12.48 ‒11.94 ‒76.78 ‒89.23 ‒84.44 13.01 7.37 11.06
      泉水 ‒12.03 ‒12.85 ‒12.53 ‒85.08 ‒91.42 ‒89.37 13.30 8.51 10.86
      河水 ‒11.64 ‒12.81 ‒12.45 ‒82.16 ‒91.49 ‒88.63 13.15 9.42 10.99
      下载: 导出CSV

      表  2  各采样点δD峰值波谷出现时间

      Table  2.   The time of δD peak trough at each sampling point

      采样点 日期
      波峰 波谷 波峰 波谷 波峰 波谷
      W1 2017‒06‒01 2017‒12‒01 2018‒06‒01 2018‒12‒01 2019‒06‒01 2019‒11‒31
      W2 / 2017‒09‒18 2018‒03‒19 2018‒09‒18 2019‒03‒19 2019‒08‒18
      J1 2017‒08‒04 2018‒02‒13 2018‒08‒14 2019‒02‒13 2019‒08‒14 /
      J2 2017‒06‒14 2017‒12‒13 2018‒06‒14 2018‒12‒13 2019‒06‒14 2019‒12‒13
      溪水 / 2017‒10‒27 2018‒04‒28 2018‒10‒27 2019‒04‒28 2019‒10‒27
      泉水 2017‒09‒10 2018‒03‒12 2018‒09‒10 2019‒03‒12 2019‒08‒10 /
      河水 2017‒07‒21 2018‒01‒20 2018‒07‒21 2019‒01‒20 2019‒07‒21 /
      下载: 导出CSV

      表  3  各采样点的滞留时间

      Table  3.   Retention time of each sampling point

      W1 W2 J1 J2 溪水 泉水 河水
      滞留时间(d) 50 44 不明显 / 11 41 16
      下载: 导出CSV
    • Al-Charideh, A., 2011. Environmental Isotope Study of Groundwater Discharge from the Large Karst Springs in West Syria: A Case Study of Figeh and Al-Sin Springs. Environmental Earth Sciences, 63(1): 1-10. https://doi.org/10.1007/s12665-010-0660-x
      Aquilina, L., Ladouche, B., Dörfliger, N., 2005. Recharge Processes in Karstic Systems Investigated through the Correlation of Chemical and Isotopic Composition of Rain and Spring-Waters. Applied Geochemistry, 20(12): 2189-2206. https://doi.org/10.1016/j.apgeochem.2005.07.011
      Bhat, N. A., Jeelani, G. H., 2015. Delineation of the Recharge Areas and Distinguishing the Sources of Karst Springs in Bringi Watershed, Kashmir Himalayas Using Hydrochemistry and Environmental Isotopes. Journal of Earth System Science, 124(8): 1667-1676. https://doi.org/10.1007/s12040-015-0629-y
      Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
      Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
      Felton, G. K., Currens, J. C., 1994. Peak Flow-Rate and Recession-Curve Characteristics of a Karst Spring in the Inner Bluegrass, Central Kentucky. Journal of Hydrology, 162(1-2): 99-118. https://doi.org/10.1016/0022-1694(94)90006-X
      Ford, D., Williams, P., 2007. Karst Hydrogeology and Geomorphology. John Wiley & Sons, Inc., New York.
      Gat, J. R., 1981. Paleoclimate Conditions in the Levant as Revealed by the Isotopic Composition of Paleowaters. Israel Meteorological Research Papers, 3: 13-28.
      He, Z. H., Chen, X. X., Liang, H., et al., 2015. Studies on the Mechanism of Watershed Hydrologic Droughts Based on the Combined Structure of Typical Karst Lithologys: Taking Guizhou Province as a Case. Chinese Journal of Geology, 50(1): 340-353 (in Chinese with English abstract).
      Larocque, M., Mangin, A., Razack, M., et al., 1998. Contribution of Correlation and Spectral Analyses to the Regional Study of a Large Karst Aquifer (Charente, France). Journal of Hydrology, 205(3-4): 217-231. https://doi.org/10.1016/S0022-1694(97)00155-8
      Li, G., Zhang, X. P., Zhang, X. Z., et al., 2013. Stable Hydrogen and Oxygen Isotopes Characteristics of Atmospheric Precipitation from Tengchong, Yunnan. Resources and Environment in the Yangtze Basin, 22(11): 1458-1465 (in Chinese with English abstract).
      Li, W. J., Wang, J. L., Wang, J. L., 2018. Characteristics of the Stable Isotopes in Precipitation and the Source of Water Vapor in Different Terrain in the Southwest Region. Resources and Environment in the Yangtze Basin, 27(5): 1132-1142 (in Chinese with English abstract).
      Li, Y., Wang, J. L., Jin, M. G., et al., 2021. Hydrodynamic Characteristics of Jinan Karst Spring System Identified by Hydrologic Time-Series Data. Earth Science, 46(7): 2583-2593 (in Chinese with English abstract).
      Li, Y. B., Hou, J. J., Xie, D. T., 2002. The Recent Development of Research on Karst Ecology in Southwest China. Scientia Geographica Sinica, 22(3): 365-370 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0690.2002.03.019
      Liang, L. E., Li, C. Y., Shi, X. H., et al., 2017. Characteristics of Hydrogen and Oxygen Isotopes of Surface and Ground Water and the Analysis of Source of Lake Water in Hulun Lake Basin, Inner Mongolia. Wetland Science, 15(3): 385-390 (in Chinese with English abstract).
      Lin, Y., Cao, F. L., Wu, Y. Z., et al., 2020. Hydrogeochemical Characteristics of Groundwater in Typical Karst Spring Areas of North China‒A Case Study in the Xujiagou Spring Area, Hebi. Earth and Environment, 48(3): 294-306 (in Chinese with English abstract).
      Liu, W., Wang, S. J., Luo, W. J., 2011. The Response of Epikarst Spring to Precipitation and Its Implications in Karst Peak-Cluster Region of Libo County, Guizhou Province, China. Geochimica, 40(5): 487-496 (in Chinese with English abstract).
      Liu, W. J., Yuan, X. M., Zhang, Y., et al., 2018. Hydrogeochemical Characteristics and Evolution of Karst Groundwater in Guiyang City. Geological Science and Technology Information, 37(6): 245-251 (in Chinese with English abstract).
      Lucon, T. N., Costa, A. T., Galvão, P., et al., 2020. Recharge Sources and Hydraulic Communication of Karst Aquifer, São Miguel Watershed, MG, Brazil. Journal of South American Earth Sciences, 100: 102591. https://doi.org/10.1016/j.jsames.2020.102591
      Murad, A. A., Garamoon, H., Hussein, S., et al., 2011. Hydrogeochemical Characterization and Isotope Investigations of a Carbonate Aquifer of the Northern Part of the United Arab Emirates. Journal of Asian Earth Sciences, 40(1): 213-225. https://doi.org/10.1016/j.jseaes.2010.07.013
      Ouyang, Z. W., Song, T. Q., Peng, W. X., et al., 2011. Study on Status of Waterlogging and Comprehensive Countermeasures in Karst Peak-Cluster Depression Region, Guangxi. Research of Agricultural Modernization, 32(1): 107-110 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0275.2011.01.024
      Plummer, L. N., Busenberg, E., McConnell, J. B., et al., 1998. Flow of River Water into a Karstic Limestone Aquifer. 1. Tracing the Young Fraction in Groundwater Mixtures in the Upper Floridan Aquifer near Valdosta, Georgia. Applied Geochemistry, 13(8): 995-1015. https://doi.org/10.1016/S0883-2927(98)00031-6
      Pu, J. B., 2013. Hydrogen and Oxygen Isotope Geochemistry of Karst Groundwater in Chongqing. Acta Geoscientica Sinica, 34(6): 713-722 (in Chinese with English abstract).
      Sun, Y. X., Li, L. L., Wei, S. Q., 2012. Storm-Scale Hydrochemical Variation in Typical Rock Pendant of Chongqing. Journal of Mountain Science, 30(5): 513-520 (in Chinese with English abstract).
      Wang, B., Wang, Y., Zhang, G., et al., 2021. A Study of Quality and Pollution Factors of Karst Groundwater in Lujiang River Basin in Southeast Yunnan. Acta Geoscientica Sinica, 42(3): 352-362 (in Chinese with English abstract).
      Wang, S. F., 2014. Progress in Study on Precipitation Infiltration Recharge of Karstic Groundwater System. Journal of China Hydrology, 34(6): 1-8 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0852.2014.06.001
      Wang, Y., Luo, Z. H., Wu, Y., et al., 2019. Urbanization Factors of Groundwater Vulnerability Assessment in Karst Area: A Case Study of Shuicheng Basin. Earth Science, 44(9): 2909-2919 (in Chinese with English abstract).
      Wang, Z. J., Zhou, H., Qi, L. X., et al., 2020. Method for Characterizing Structure and Hydrological Response in Karst Water Systems: A Case Study in Y-M System in Three Gorges Area. Earth Science, 45(12): 4512-4523 (in Chinese with English abstract).
      Yin, G., Ni, S. J., Zhang, Q. C., 2001. Deuterium Excess Parmeter and Geohydrology Significance—Taking the Geohydrology Researches in Jiuzaigou and Yele, Sichuan for Example. Journal of Chengdu University of Technology, 28(3): 251-254 (in Chinese with English abstract).
      Yuan, J. F., Xu, F., Liu, H. Z., et al., 2019. Application of Hydrochemical and Isotopic Analysis to Research a Typical Karst Groundwater System: A Case Study at Xinrendong, Xichang City. Science Technology and Engineering, 19(17): 76-83 (in Chinese with English abstract).
      Zhang, X. P., Liu, J. M., Masayoshi, N., et al., 2009. Vapor Origins Revealed by Deuterium Excess in Precipitation in Southwest China. Journal of Glaciology and Geocryology, 31(4): 613-619 (in Chinese with English abstract).
      Zhang, X. P., Sun, W. Z., Liu, J. M., 2005. Stable Isotopes in Precipitation in the Vapor Transport Path in Kunming of Southwest China. Resources and Environment in the Yangtze Basin, 14(5): 665-669 (in Chinese with English abstract).
      Zhao, C. H., Liang, Y. P., Lu, H. P., et al., 2018. Hydrogen and Oxygen Isotopic Characteristics and Influencing Factors of Karst Water in the Niangziguan Spring Area. Geological Science and Technology Information, 37(5): 200-205 (in Chinese with English abstract).
      Zhao, M., Hu, Y., Zeng, C., et al., 2018. Effects of land cover on variations in stable hydrogen and oxygen isotopes in karst groundwater: A comparative study of three karst catchments in Guizhou Province, Southwest China. Journal of Hydrology, 565: 374-385. https://doi.org/10.1016/j.jhydrol.2018.08.037
      Zheng, S. H., Hou, F. G., Ni, B. L., 1983. Study on Stable Isotopes of Hydrogen and Oxygen in Precipitation in China. Chinese Science Bulletin, 28(13): 801-806 (in Chinese). doi: 10.1360/csb1983-28-13-801
      Zhu, X. Q., Fan, T., Guan, W., 2013. The Analysis of Stable Isotopes of Precipitation in Kunming. Yunnan Geographic Environment Research, 25(5): 90-95 (in Chinese with English abstract).
      贺中华, 陈晓翔, 梁虹, 等, 2015. 典型喀斯特岩性组合结构的流域水文干旱机制研究——以贵州省为例. 地质科学, 50(1): 340-353. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201501023.htm
      李广, 章新平, 张新主, 等, 2013. 云南腾冲地区大气降水中氢氧稳定同位素特征. 长江流域资源与环境, 22(11): 1458-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201311012.htm
      李维杰, 王建力, 王家录, 2018. 西南地区不同地形降水稳定同位素特征及其水汽来源. 长江流域资源与环境, 27(5): 1132-1142. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201805020.htm
      李严, 王家乐, 靳孟贵, 等, 2021. 运用水文时间序列分析识别济南泉域岩溶发育特征. 地球科学, 46(7): 2583-2593. doi: 10.3799/dqkx.2020.236
      李阳兵, 侯建筠, 谢德体, 2002. 中国西南岩溶生态研究进展. 地理科学, 22(3): 365-370. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200203018.htm
      梁丽娥, 李畅游, 史小红, 等, 2017. 内蒙古呼伦湖流域地表水与地下水氢氧同位素特征及湖水来源分析. 湿地科学, 15(3): 385-390. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201703010.htm
      林云, 曹飞龙, 武亚遵, 等, 2020. 北方典型岩溶泉域地下水水文地球化学特征分析——以鹤壁许家沟泉域为例. 地球与环境, 48(3): 294-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202003002.htm
      刘伟, 王世杰, 罗维均, 2011. 贵州荔波岩溶峰丛区表层岩溶泉对大气降雨的响应及其指示意义. 地球化学, 40(5): 487-496. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201105009.htm
      刘伟江, 袁祥美, 张雅, 等, 2018. 贵阳市岩溶地下水水化学特征及演化过程分析. 地质科技情报, 37(6): 245-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htm
      欧阳资文, 宋同清, 彭晚霞, 等, 2011. 广西岩溶峰丛洼地内涝现状分析与综合治理对策研究. 农业现代化研究, 32(1): 107-110. https://www.cnki.com.cn/Article/CJFDTOTAL-NXDH201101029.htm
      蒲俊兵, 2013. 重庆岩溶地下水氢氧稳定同位素地球化学特征. 地球学报, 34(6): 713-722. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201306009.htm
      孙钰霞, 李林立, 魏世强, 2012. 喀斯特槽谷区表层喀斯特水化学的暴雨动态特征. 山地学报, 30(5): 513-520. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201205001.htm
      王波, 王宇, 张贵, 等, 2021. 滇东南泸江流域岩溶地下水质量及污染影响因素研究. 地球学报, 42(3): 352-362. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202103006.htm
      王树芳, 2014. 岩溶含水系统降水入渗补给研究进展. 水文, 34(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201406001.htm
      汪莹, 罗朝晖, 吴亚, 等, 2019. 岩溶地下水脆弱性评价的城镇化因子: 以水城盆地为例. 地球科学, 44(9): 2909-2919. doi: 10.3799/dqkx.2019.135
      王泽君, 周宏, 齐凌轩, 等, 2020. 岩溶水系统结构和水文响应机制的定量识别方法: 以三峡鱼迷岩溶水系统为例. 地球科学, 45(12): 4512-4523. doi: 10.3799/dqkx.2020.261
      尹观, 倪师军, 2001. 氘过量参数及其水文地质学意义: 以四川九寨沟和冶勒水文地质研究为例. 成都理工学院学报, 28(3): 251-254. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200103006.htm
      袁建飞, 徐芬, 刘慧中, 等, 2019. 基于水化学和同位素的典型岩溶水系统溶质演化过程——以西昌市仙人洞为例. 科学技术与工程, 19(17): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201917010.htm
      章新平, 刘晶淼, 中尾正义, 等, 2009. 我国西南地区降水中过量氘指示水汽来源. 冰川冻土, 31(4): 613-619. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200904003.htm
      章新平, 孙维贞, 刘晶淼, 2005. 西南水汽通道上昆明站降水中的稳定同位素. 长江流域资源与环境, 14(5): 665-669. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY200505024.htm
      赵春红, 梁永平, 卢海平, 等, 2018. 娘子关泉域岩溶水氢氧同位素特征及影响因素浅析. 地质科技情报, 37(5): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm
      郑淑蕙, 侯发高, 倪葆龄, 1983. 我国大气降水的氢氧稳定同位素研究. 科学通报, 28(13): 801-806. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198313010.htm
      朱秀勤, 范弢, 官威, 2013. 昆明大气降水稳定同位素分析. 云南地理环境研究, 25(5): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDL201305015.htm
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  517
    • HTML全文浏览量:  693
    • PDF下载量:  61
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-07-02
    • 网络出版日期:  2023-10-07
    • 刊出日期:  2023-09-25

    目录

      /

      返回文章
      返回