Petrogenesis of Hekanzi Alkaline Complex in Lingyuan, West Liaoning
-
摘要: 为了较全面地认识华北克拉通早中生代碱性岩浆活动的性质,对河坎子碱性杂岩体进行了锆石U-Pb测年、地球化学和Sr-Nd-Hf同位素特征研究.河坎子碱性杂岩体中花岗斑岩和辉石正长岩的锆石U-Pb测年结果分别为227.7±1.5 Ma、225.8±1.2 Ma,为晚三叠世.花岗斑岩为过铝质岩石,具有钾玄岩特征;辉石正长岩为准铝质岩石,具有钾玄岩-高钾钙碱性特征;这两类岩石均具有右倾的球粒陨石标准化配分曲线、均为正铕异常.花岗斑岩和辉石正长岩的εNd(t)值分别为-6.9~-5.5,-5.4~-4.7;εHf(t)值分别为-4.32~-1.65,-1.01~-0.01.河坎子碱性杂岩体是由受俯冲影响的富集地幔部分熔融形成,其源区残留金云母、角闪石和石榴子石;该岩体的形成与古亚洲洋的闭合有关,是岩石圈地幔发生对流减薄和软流圈物质上涌的结果.Abstract: The Hekanzi alkaline complex in Lingyuan, West Liaoning, is one important Early Mesozoic alkaline complex on the northern margin of the North China craton. In this paper, the Hekanzi alkaline complex was studied in detail by zircon U-Pb geochronology, major and trace elemental compositions and Sr-Nd-Hf isotopic compositions. The zircons from the granite porphyry and pyroxene syenite yielded U-Pb data of 227.7±1.5 Ma and 225.8±1.2 Ma, respectively. These results show that the rocks formed in the Late Triassic. Geochemical results show that the granite porphyries belong to perauminous rocks and shoshonite series. The pyroxene syenites belong to metaluminous rocks and high K shoshonite series. They both have similar right-leaning chondrite-normalized distribution curves and show obviously positive Eu anomalies. The Sr-Nd isotopic results show that εNd(t) values of the granite porphyries vary from -6.9 to -5.5, and εNd(t) values of the pyroxene syenites vary from -5.4 to -4.7. The zircon εHf(t) values of the granite porphyries range from -4.32 to -1.65. The zircon εHf(t) values of the pyroxene syenites are negative (εHf(t)=-1.01 to -0.01). These geochemical signatures, along with Sr-Nd-Hf isotopic compositions, reveal that the alkaline complex was derived from the partial melting of enriched lithospheric mantle which contained phlogopite, horblende and garnet. Combined with the previous research, it is suggested that the formation of the Hekanzi alkaline complex from Lingyuan, West Liaoning, is related to the closure of paleo-Asian Ocean, and the Early Mesozoic alkali-rich magmatism is the result of as the nospheric upwelling, following the thinning of mantle lithosphere.
-
Key words:
- alkaline complex /
- petrogenesis /
- Hekanzi /
- Lingyuan /
- North China carton /
- Early Mesozic /
- petrology /
- tectonics
-
图 1 华北克拉通地质简图(a)和辽西凌源河坎子碱性杂岩体地质简图(b)
图a底图据牛晓露等(2016)修改;图b据1:5万石岭子幅地质图修改
Fig. 1. Geological sketch of the North China carton (a) and geological sketch map of the Hekanzi alkaline complex from Lingyuan, West Liaoning (b)
图 5 辽西凌源河坎子杂岩体岩石化学分类图解
a. TAS图解(底图据Middlemost,1994);b. A.R.-SiO2图解(底图据Wright,1969);c. SiO2-K2O图解(底图据Peccerillo et al., 1976);d. A/CNK-A/NK图解(底图据Maniar et al., 1989). A.R.(碱度率)=[w(Al2O3)+w(CaO)+w(Na2O)+w(K2O)]/{w(Al2O3)+w(CaO)-[w(Na2O)+w(K2O)]}
Fig. 5. Chemical classification of the Hekanzi alkaline complex in Lingyuan, West Liaoning
图 6 辽西凌源河坎子碱性杂岩体球粒陨石标准化稀土元素配分曲线(a)与原始地幔标准化微量元素蛛网图(b)
球粒陨石与原始地幔标准化值据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns and primitive mantle-normalized spider diagram of the Hekanzi alkaline complex in Lingyuan, West Liaoning
图 7 辽西凌源河坎子碱性杂岩体锆石εHf(t)-t图解
底图据贾宏翔等(2020). DM.亏损地幔;CHUM.球粒陨石均一源储;CC.大陆地壳
Fig. 7. Zircon εHf(t)-t diagram of the Hekanzi alkaline complex in Lingyuan, West Liaoning
图 9 辽西凌源河坎子碱性杂岩体的Nb/Yb-Th/Yb(a)、(87Sr/86Sr)i-εNd(t)(b)、La-La/Sm(c)、La/Sm-Ba/Th(d)图解
图a底图据夏明哲等(2010);图b中,姚家各庄数据陈斌等(2013),光头山数据韩宝福等(2004),孙各庄、黄河少数据、凉城数据、东城数据、矾山数据阎国翰等(2000),包头数据牛晓露等(2016);图d底图据夏明哲等(2010).DM.亏损地幔;HIMU.高U/Pb比值地幔;PM.原始地幔;OIB.洋岛玄武岩
Fig. 9. Nb/Yb vs. Th/Yb (a), (87Sr/86Sr)i vs. εNd(t) (b), La vs. La/Sm (c) and La/Sm vs. Ba/Th (d) diagrams of the Hekanzi alkaline complex in Lingyuan, West Liaoning
图 10 辽西凌源河坎子碱性杂岩体的SiO2-(87Sr/86Sr)i(a)和(La/Nb)PM-(Th/Ta)PM(b)图解(底图据夏明哲等,2010)
Fig. 10. SiO2 vs. (87Sr/86Sr)i (a) and (La/Nb)PM vs. (Th/Ta)PM (b) diagrams of the Hekanzi alkaline complex in Lingyuan, West Liaoning (after Xia et al., 2010)
表 1 辽西凌源河坎子碱性杂岩体岩石锆石U-Pb同位素年龄结果
Table 1. Zircon U-Pb dating results of the Hekanzi alkaline complex in Lingyuan, West Liaoning
点号 Pb Th U Th/U 同位素比值 年龄(Ma) (10-6) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ B32-1 3 108 396.9 596.1 0.67 0.050 8 0.000 6 0.251 5 0.005 4 0.035 9 0.000 7 227.8 4.5 227.5 4.1 6 61 222.1 352.0 0.63 0.050 8 0.000 7 0.252 3 0.005 0 0.036 0 0.000 5 228.5 4.1 228.0 3.2 7 68 246.8 368.2 0.67 0.050 8 0.000 8 0.251 6 0.004 6 0.035 9 0.000 4 227.8 3.8 227.3 2.7 8 57.5 207.8 320.8 0.65 0.050 9 0.000 8 0.252 0 0.005 0 0.035 9 0.000 5 228.2 4.1 227.3 2.9 9 89 320.6 486.7 0.66 0.050 8 0.000 7 0.252 0 0.005 3 0.035 9 0.000 5 228.2 4.4 227.6 3.4 10 79 281.4 397.8 0.71 0.050 8 0.000 9 0.251 8 0.005 5 0.036 0 0.000 5 228.0 4.5 227.8 3.2 11 290 1 110.4 917.3 1.21 0.051 8 0.000 7 0.256 5 0.004 9 0.035 9 0.000 5 231.9 4.1 227.3 2.9 12 176 659.6 807.8 0.82 0.050 6 0.000 7 0.249 4 0.004 5 0.035 7 0.000 4 226.1 3.7 226.4 2.7 14 125 462.1 565.4 0.82 0.050 6 0.000 7 0.251 0 0.006 3 0.035 9 0.000 8 227.4 5.2 227.7 4.8 15 90 320.6 461.3 0.70 0.051 0 0.000 8 0.253 6 0.006 0 0.036 0 0.000 7 229.5 4.9 228.3 4.4 17 143 555.0 547.5 1.01 0.050 7 0.000 7 0.250 5 0.005 4 0.035 8 0.000 7 227.0 4.5 226.9 4.5 19 98 362.5 513.2 0.71 0.050 6 0.000 7 0.250 7 0.004 5 0.035 9 0.000 4 227.1 3.7 227.5 2.8 20 101 362.7 455.0 0.80 0.050 6 0.000 8 0.252 3 0.005 6 0.036 1 0.000 6 228.4 4.6 228.8 3.9 21 115 411.8 470.7 0.87 0.051 9 0.001 0 0.258 6 0.005 2 0.036 1 0.000 3 233.5 4.3 228.7 2.2 22 41.1 157.8 177.0 0.89 0.052 3 0.001 2 0.259 0 0.006 0 0.035 9 0.000 6 233.8 4.9 227.4 3.6 23 56.1 202.7 307.9 0.66 0.050 8 0.000 8 0.251 7 0.005 5 0.035 9 0.000 5 228.0 4.6 227.5 3.4 25 161 575.4 694.9 0.83 0.050 9 0.000 7 0.252 9 0.005 1 0.036 0 0.000 6 228.9 4.2 228.2 3.6 27 164 591.9 684.3 0.87 0.050 9 0.000 6 0.252 3 0.008 4 0.035 9 0.001 1 228.4 6.8 227.4 6.8 29 128 465.3 481.4 0.97 0.051 0 0.000 7 0.253 6 0.006 0 0.036 0 0.000 7 229.5 4.9 228.2 4.3 30 188 671.1 760.8 0.88 0.051 9 0.001 1 0.256 0 0.010 4 0.035 8 0.001 0 231.4 8.5 226.4 6.2 B32-2 1 82 310.7 178.7 1.74 0.050 9 0.001 1 0.252 2 0.007 3 0.035 9 0.000 8 228.3 6.0 227.3 4.9 2 62 230.0 244.2 0.94 0.050 6 0.000 8 0.250 0 0.005 0 0.035 8 0.000 4 226.6 4.1 226.8 2.7 3 74 288.5 160.5 1.80 0.050 7 0.001 1 0.249 3 0.005 9 0.035 7 0.000 4 226.0 4.8 225.8 2.7 4 85 329.8 197.3 1.67 0.050 7 0.000 9 0.248 3 0.005 1 0.035 5 0.000 4 225.2 4.2 224.9 2.9 5 72 277.9 170.6 1.63 0.050 4 0.001 1 0.248 0 0.005 5 0.035 7 0.000 4 224.9 4.6 225.9 2.8 6 48.5 185.7 164.1 1.13 0.050 7 0.001 0 0.248 2 0.005 4 0.035 5 0.000 6 225.1 4.5 225.0 3.6 7 32.4 125.8 88.1 1.43 0.051 1 0.001 6 0.251 1 0.007 7 0.035 6 0.000 6 227.4 6.3 225.8 3.7 8 32.4 121.9 107.8 1.13 0.051 7 0.001 5 0.253 0 0.007 6 0.035 5 0.000 7 229.0 6.2 224.8 4.2 9 55 209.1 151.9 1.38 0.051 3 0.001 4 0.251 3 0.007 3 0.035 6 0.000 5 227.6 5.9 225.2 3.4 10 35.3 133.0 128.6 1.03 0.050 7 0.001 3 0.248 8 0.007 7 0.035 6 0.000 6 225.6 6.3 225.3 3.5 11 59 224.5 128.2 1.75 0.051 5 0.001 2 0.253 1 0.007 3 0.035 6 0.000 7 229.1 6.0 225.6 4.6 12 90 344.0 204.0 1.69 0.050 9 0.000 9 0.249 4 0.006 0 0.035 6 0.000 6 226.1 5.0 225.2 3.8 13 31.9 119.9 103.3 1.16 0.050 8 0.001 3 0.248 9 0.007 2 0.035 5 0.000 5 225.7 5.9 225.0 3.2 14 48.3 185.3 121.0 1.53 0.051 7 0.001 2 0.252 8 0.005 8 0.035 4 0.000 6 228.8 4.8 224.5 3.9 15 69 269.3 167.7 1.61 0.051 1 0.001 0 0.250 3 0.006 1 0.035 5 0.000 5 226.8 5.0 224.8 3.1 16 58 220.0 229.0 0.96 0.050 6 0.000 9 0.248 7 0.005 0 0.035 7 0.000 5 225.5 4.2 225.9 3.0 17 60 220.9 221.4 1.00 0.051 6 0.001 1 0.253 9 0.005 7 0.035 7 0.000 5 229.7 4.7 225.9 3.0 18 65 231.2 200.5 1.15 0.051 5 0.001 1 0.257 4 0.005 2 0.036 3 0.000 4 232.6 4.3 229.5 2.6 19 89 328.5 349.0 0.94 0.050 8 0.000 8 0.249 0 0.004 5 0.035 5 0.000 4 225.8 3.8 225.2 2.5 21 107 392.1 401.8 0.98 0.051 1 0.000 7 0.251 1 0.005 9 0.035 6 0.000 8 227.5 4.8 225.8 5.2 22 55.1 206.0 158.1 1.30 0.051 4 0.001 0 0.251 9 0.007 9 0.035 5 0.000 8 228.1 6.5 225.0 5.2 23 60 220.8 205.2 1.08 0.051 2 0.001 1 0.251 4 0.006 3 0.035 6 0.000 6 227.7 5.2 225.3 3.6 24 159 589.6 322.8 1.83 0.052 0 0.000 8 0.257 0 0.005 9 0.035 9 0.000 6 232.2 4.9 227.1 3.7 25 105 388.8 247.3 1.57 0.051 1 0.001 0 0.252 2 0.007 1 0.035 8 0.000 8 228.4 5.8 226.6 4.8 26 106 403.3 264.9 1.52 0.050 8 0.000 9 0.249 4 0.005 5 0.035 6 0.000 5 226.1 4.5 225.5 3.5 28 92 356.8 242.2 1.47 0.050 8 0.000 8 0.248 7 0.004 4 0.035 5 0.000 4 225.5 3.6 224.9 2.3 29 100 380.7 238.1 1.60 0.051 5 0.001 1 0.253 3 0.005 7 0.035 7 0.000 7 229.2 4.7 226.0 4.4 30 186 702.6 548.0 1.28 0.050 9 0.000 7 0.250 1 0.005 2 0.035 7 0.000 7 226.6 4.3 225.9 4.1 表 2 辽西凌源河坎子碱性杂岩体岩石主量(%)、微量和稀土元素(10-6)含量
Table 2. Major elements (%), trace elements and REE (10-6) of the Hekanzi alkaline complex in Lingyuan, West Liaoning
样品号 B32-1 B32-2 B33-1 B33-2 B34 B35 B36 B37 B38-1 B38-2 B39-1 B39-2 B310-1 B310-2 SiO2 70.66 50.99 70.15 56.54 54.32 53.90 70.87 70.34 71.70 57.22 70.41 57.82 66.83 54.00 Al2O3 15.04 14.51 15.09 16.24 18.45 18.31 14.50 15.14 14.69 16.55 15.36 19.40 15.79 16.97 Fe2O3 1.98 6.85 1.43 3.65 2.48 3.29 2.14 1.99 2.02 3.69 1.34 2.12 2.30 3.89 FeO 0.47 3.49 0.92 3.15 3.38 2.89 0.37 0.24 0.31 2.50 0.12 2.48 1.08 3.22 CaO 0.75 6.30 0.72 4.77 4.30 4.60 1.16 0.94 0.67 4.18 0.78 2.69 1.35 5.05 MgO 0.20 5.42 0.57 3.20 2.15 2.37 0.37 0.18 0.33 2.78 0.18 1.15 0.95 3.62 K2O 4.60 4.41 4.88 4.77 7.26 7.65 4.70 5.20 4.68 5.47 5.37 7.64 4.54 5.63 Na2O 4.71 3.54 4.87 4.73 4.52 3.80 4.15 3.82 3.95 4.72 5.10 4.30 5.32 4.13 P2O5 0.15 0.98 0.15 0.71 0.58 0.62 0.12 0.14 0.14 0.61 0.15 0.36 0.25 0.73 TiO2 0.31 1.30 0.33 0.99 0.75 0.79 0.31 0.30 0.30 0.92 0.35 0.51 0.52 0.94 MnO 0.016 0.15 0.018 0.11 0.12 0.12 0.012 0.025 0.029 0.11 0.027 0.10 0.033 0.12 LOI 0.80 1.66 0.74 0.75 1.22 1.35 0.82 1.01 1.09 0.69 0.49 1.21 0.85 1.06 ∑ 99.68 99.58 99.88 99.62 99.51 99.68 99.52 99.32 99.91 99.44 99.69 99.78 99.82 99.37 K2O+ Na2O 9.31 7.95 9.76 9.51 11.77 11.45 8.85 9.03 8.62 10.19 10.47 11.95 9.86 9.76 K2O /Na2O 0.98 1.25 1.00 1.01 1.61 2.01 1.13 1.36 1.18 1.16 1.05 1.78 0.85 1.36 A/CNK 1.07 0.66 1.03 0.75 0.80 0.80 1.03 1.11 1.15 0.78 0.98 0.96 0.98 0.77 A/NK 1.18 1.37 1.13 1.25 1.21 1.26 1.22 1.27 1.27 1.21 1.08 1.26 1.15 1.31 A.R. 3.87 2.24 4.22 2.65 3.15 3.00 3.60 3.56 3.56 2.93 4.69 3.36 3.71 2.59 Li 6.30 18.9 7.71 15.3 19.1 15.6 4.94 6.73 11.5 8.56 4.49 40.2 8.31 13.2 Be 2.79 2.55 2.67 4.30 5.96 3.81 2.93 1.96 1.98 4.04 3.14 5.28 2.77 2.41 Rb 108 115 99.9 125 199 212 99.9 121 117 148 139 190 125 111 Sr 773 1 900 838 2 100 2 300 2 800 933 729 683 2 000 401 2 000 949 2 700 Ba 1 500 2 000 1 500 1 800 2 000 2 100 3 000 1 800 1 600 1 800 1 400 1 500 1 500 2 400 Zr 151 233 142 444 346 281 110 119 112 504 193 336 189 36.4 Hf 4.35 5.25 5.35 13.1 9.09 8.26 5.54 3.70 4.38 11.9 6.14 23.4 5.96 3.70 Nb 20.9 14.3 20.7 23.3 21.1 16.2 19.1 12.5 13.6 26.6 28.2 22.7 22.1 8.76 Ta 1.95 0.89 3.18 2.08 1.77 1.39 2.12 1.13 1.04 1.75 3.12 1.53 2.20 0.64 Th 11.2 5.44 10.5 13.1 14.0 9.62 21.1 7.47 5.18 8.03 14.3 13.1 15.0 5.89 U 2.18 1.34 2.10 3.11 4.35 2.85 3.99 1.08 1.45 1.69 10.1 3.04 3.45 0.81 La 37.5 62.5 44.3 82.6 68.2 67.8 37.4 28.9 30.2 78.9 47.9 63.9 52.5 65.3 Ce 56.5 118 63.9 145 118 120 58.3 47.8 47.1 142 82.6 105 85.3 118 Pr 6.24 15.0 6.79 17.4 14.0 14.7 6.18 5.47 5.81 16.6 8.84 11.9 9.53 14.6 Nd 20.5 57.3 22.5 63.4 52.2 54.3 20.3 19.4 20.1 60.0 29.4 41.0 32.4 55.5 Sm 2.91 9.54 3.28 9.40 8.43 8.82 3.02 2.76 3.02 9.26 4.19 6.35 4.61 9.08 Eu 1.47 3.21 1.53 3.56 3.20 3.62 2.33 1.69 1.60 3.15 1.72 2.41 1.93 3.88 Gd 2.07 6.74 2.45 7.27 6.13 6.43 2.01 1.78 1.97 7.07 3.09 4.76 3.55 6.64 Tb 0.32 0.97 0.34 0.98 0.90 0.93 0.31 0.29 0.29 0.93 0.45 0.69 0.47 0.91 Dy 1.24 4.19 1.39 4.18 4.13 4.13 1.20 1.05 1.14 3.96 1.95 2.96 1.96 3.80 Ho 0.26 0.74 0.28 0.78 0.77 0.78 0.25 0.20 0.22 0.67 0.37 0.55 0.36 0.65 Er 0.68 1.94 0.80 2.07 2.01 2.03 0.69 0.49 0.59 1.84 1.02 1.49 0.98 1.69 Tm 0.15 0.30 0.15 0.30 0.31 0.30 0.14 0.11 0.13 0.27 0.19 0.23 0.19 0.24 Yb 0.78 1.74 0.86 1.96 2.06 2.03 0.81 0.54 0.59 1.69 1.10 1.53 0.98 1.37 Lu 0.12 0.24 0.15 0.26 0.28 0.28 0.12 0.083 0.097 0.24 0.17 0.22 0.15 0.19 Y 5.76 17.8 7.91 19.4 19.1 19.4 8.39 4.38 4.83 16.7 8.91 14.6 9.50 17.5 Ni 3.89 75.3 5.13 30.7 14.5 11.6 5.30 6.43 7.76 39.4 2.56 5.07 16.8 39.6 Co 7.02 31.6 8.91 21.6 16.6 12.8 4.99 5.07 5.69 19.0 4.19 8.90 6.54 21.5 V 22.4 122 25.4 82.6 68.4 74.9 25.4 23.7 27.9 72.1 26.5 40.7 39.6 84.3 Sc 2.95 19.4 3.10 11.8 8.74 6.73 2.79 3.28 3.30 9.97 2.97 4.89 4.80 11.5 Cr 13.9 105 13.6 35.9 18.5 23.0 12.8 17.8 16.1 36.5 10.0 7.23 24.8 41.4 Ga 15.4 19.4 15.2 19.5 18.8 18.6 15.7 16.2 15.6 19.9 16.9 18.8 18.1 16.9 ∑REE 130.73 282.51 148.65 339.29 280.95 285.85 133.00 110.45 112.92 326.59 183.06 243.02 194.78 281.54 LREE 125.11 265.65 142.24 321.50 264.36 268.96 127.47 105.91 107.90 309.92 174.71 230.59 186.15 266.05 HREE 5.62 16.85 6.41 17.79 16.58 16.89 5.53 4.54 5.02 16.67 8.35 12.43 8.64 15.50 LREE/HREE 22.26 15.76 22.19 18.07 15.94 15.92 23.06 23.31 21.51 18.59 20.93 18.56 21.55 17.17 (La/Yb)N 34.46 25.73 37.10 30.21 23.76 23.95 33.24 38.65 36.49 33.57 31.20 30.07 38.37 34.20 δEu 1.74 1.16 1.58 1.27 1.30 1.40 2.72 2.18 1.89 1.15 1.40 1.29 1.40 1.46 Nb/La 0.56 0.23 0.47 0.28 0.31 0.24 0.51 0.43 0.45 0.34 0.59 0.36 0.42 0.13 Rb/Sr 0.14 0.06 0.12 0.06 0.09 0.08 0.11 0.17 0.17 0.07 0.35 0.09 0.13 0.04 Ba/Rb 13.88 17.43 15.02 14.40 10.03 9.92 30.02 14.89 13.69 12.13 10.09 7.90 11.98 21.65 Dy/Yb 1.59 2.41 1.62 2.13 2.00 2.03 1.49 1.97 1.91 2.35 1.77 1.94 2.00 2.77 表 3 辽西凌源河坎子碱性杂岩体Sr-Nd同位素组成
Table 3. Sr-Nd isotope compositions of the Hekanzi alkaline complex in Lingyuan, West Liaoning
样品号 B32-1 B32-2 B33-2 B34 B36 B38-2 B39-1 B310-1 Rb(10-6) 108 115 125 199 99.9 148 139 125 Sr(10-6) 773 1 900 2 100 2 300 933 2 000 401 949 87Rb/86Sr 0.395 077 0.170 617 0.168 168 0.244 900 0.302 374 0.209 652 0.976 521 0.372 638 87Sr/86Sr 0.705 717 0.705 184 0.705 135 0.705 600 0.705 313 0.705 081 0.707 933 0.705 704 2σ 0.000 015 0.000 018 0.000 023 0.000 014 0.000 020 0.000 016 0.000 016 0.000 011 (87Sr/86Sr)i 0.703 86 0.704 38 0.704 34 0.704 45 0.703 89 0.704 09 0.703 34 0.703 95 Sm(10-6) 2.91 9.54 9.40 8.43 3.02 9.26 4.19 4.61 Nd(10-6) 20.5 57.3 63.4 52.2 20.3 60.0 29.4 32.4 147Sm/144Nd 0.089 145 0.104 566 0.093 184 0.101 450 0.093 595 0.096 939 0.089 353 0.089 633 143Nd /144Nd 0.512 126 0.512 160 0.512 171 0.512 173 0.512 059 0.512 171 0.512 117 0.512 081 2σ 0.000 082 0.000 015 0.000 009 0.000 008 0.000 010 0.000 008 0.000 007 0.000 009 εNd(t) -5.5 -5.4 -4.7 -5.1 -6.9 -4.9 -5.6 -6.4 fSm/Nd -0.55 -0.47 -0.53 -0.48 -0.52 -0.51 -0.55 -0.54 tDM (Ma) 1 254 1 383 1 239 1 327 1 385 1 279 1 267 1 314 表 4 辽西凌源河坎子碱性杂岩体锆石Hf同位素结果
Table 4. Results of zircon Hf isotope of the Hekanzi alkaline complex in Lingyuan, West Liaoning
样品点号 年龄(Ma) 176Yb/177Hf 2σ 176Lu/177Hf 2 σ 176Hf /177Hf 2 σ εHf(t) TDM1(Ma) TDM2(Ma) fLu/Hf B32-1-1 227.70 0.030 795 0.000 463 0.001 150 0.000 019 0.282 558 0.000 015 -2.60 980 1 273 -0.97 B32-1-2 227.70 0.026 966 0.000 287 0.000 996 0.000 008 0.282 537 0.000 017 -3.35 1007 1 314 -0.97 B32-1-3 227.70 0.026 909 0.000 855 0.000 898 0.000 025 0.282 538 0.000 014 -3.30 1003 1 312 -0.97 B32-1-4 227.70 0.023 510 0.000 246 0.000 981 0.000 019 0.282 533 0.000 017 -3.46 1011 1 321 -0.97 B32-1-5 227.70 0.028 924 0.000 723 0.001 036 0.000 024 0.282 543 0.000 016 -3.12 998 1 302 -0.97 B32-1-6 227.70 0.026 910 0.000 227 0.001 038 0.000 007 0.282 514 0.000 014 -4.15 1039 1 359 -0.97 B32-1-7 227.70 0.033 159 0.000 641 0.001 267 0.000 017 0.282 511 0.000 014 -4.32 1051 1 368 -0.96 B32-1-8 227.70 0.028 283 0.000 731 0.000 948 0.000 022 0.282 542 0.000 016 -3.15 998 1 304 -0.97 B32-1-9 227.70 0.037 332 0.000 489 0.001 304 0.000 015 0.282 514 0.000 016 -4.19 1047 1 361 -0.96 B32-1-10 227.70 0.026 941 0.000 509 0.001 075 0.000 024 0.282 585 0.000 013 -1.65 941 1 221 -0.97 B32-2-1 225.80 0.024 719 0.000 145 0.000 811 0.000 000 0.282 621 0.000 017 -0.36 883 1 147 -0.98 B32-2-2 225.80 0.012 170 0.000 030 0.000 436 0.000 002 0.282 632 0.000 014 0.07 860 1 123 -0.99 B32-2-3 225.80 0.020 823 0.000 050 0.000 672 0.000 002 0.282 611 0.000 017 -0.72 895 1 167 -0.98 B32-2-4 225.80 0.013 125 0.000 024 0.000 451 0.000 002 0.282 627 0.000 014 -0.13 868 1 135 -0.99 B32-2-5 225.80 0.015 035 0.000 139 0.000 491 0.000 002 0.282 615 0.000 013 -0.54 885 1 157 -0.99 B32-2-6 225.80 0.012 622 0.000 025 0.000 441 0.000 001 0.282 626 0.000 016 -0.14 868 1 135 -0.99 B32-2-7 225.80 0.020 312 0.000 203 0.000 647 0.000 004 0.282 603 0.000 012 -1.01 906 1 183 -0.98 B32-2-8 225.80 0.019 758 0.000 109 0.000 635 0.000 000 0.282 627 0.000 015 -0.16 872 1 136 -0.98 B32-2-9 225.80 0.021 723 0.000 039 0.000 691 0.000 002 0.282 638 0.000 016 0.25 857 1 114 -0.98 B32-2-10 225.80 0.014 440 0.000 064 0.000 483 0.000 000 0.282 630 0.000 015 -0.01 864 1 128 -0.99 -
Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1/2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010 Cai, J. H., Yan, G. H., Mu, B. L., et al., 2011. Geochronology and Geochemistry of Sungezhuang Alkaline Complex in Jixian County, Tianjin. Journal of Jilin University (Earth Science Edition), 41(6): 1901-1913 (in Chinese with English abstract). Chen, B., Niu, X. L., Wang, Z. Q., et al., 2013. Zircon U-Pb Geochronology, Petrology and Geochemistry of Yaojiazhuang Potash Ultramafic-Syenite Complex in the Northern Margin of North China Craton. Scientia Sinica (Terrae), 43(7): 1073-1087 (in Chinese). doi: 10.1360/zd-2013-43-7-1073 Chen, Y. J., Zhang, C., Wang, P., et al., 2016. The Mo Deposits of Northeast China: A Powerful Indicator of Tectonic Settings and Associated Evolutionary Trends. Ore Geology Reviews, 81(2): 602-640. https://doi.org/10.1016/j.oregeorev.2016.04.017 Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1): 237-262. Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9 Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237-269. Han, B. F., Kagami, H., Li, H. M., 2004. Age and Nd-Sr Isotopic Geochemistry of the Guangtoushan Alkaline Granite, Hebei Province, China: Implications for Early Mesozoic Crust-Mantle Interaction in North China Block. Acta Petrologica Sinica, 20(6): 1375-1388(in Chinese with English abstract). Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chem. Gelo. , 157: 119-146. doi: 10.1016/S0009-2541(98)00197-1 Jia, H. X., Chen, R. Y., Pang, Z. S., et al., 2020. Petrogenesis of Lamprophyres from the Baiyun Gold Deposit in Qingchengzi Ore Concentration Area, Eastern Liaoning Province: Constraints from Geochronology, Geochemistry and Pb, Hf Isotopes. Geology in China, 1-26 (in Chinese with English abstract). https://kns.cnki.net/kcms/detail/11.1167.P.20201011.1211.002.html https://kns.cnki.net/kcms/detail/11.1167.P.20201011.1211.002.html Li, Z. T., Yu, C. T., Cheng, D. L., et al., 1986. Geological Characteristics of the Hekanzi Alkaline Complex in Lingyuan County of Liaoning Province. Bull. Shenyang Inst. Geol. Min. Res., Chinese Acad. Geol. Sci. , 14: 43-62 (in Chinese with English abstract). Liu, Y., Nie, F. J., Fang, J. Q., 2012. Isotopic Age Dating of the Alkaline Intrusive Complex and Its Related Molybdenum Polymetallic Deposit at Hekanzi, Western Liaoning Province. Mineral Deposits, 31(6): 1326-1336 (in Chinese with English abstract). Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013 Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 Mou, B. L., Shao, J. A., Chu, Z. Y., et al., 2001. Sm-Nd Age and Sr, Nd Isotopic Characteristics of the Fanshan Potassic Alkaline Ultramafite-Syenite Complex in Hebei Province, China. Acta Petrologica Sinica, 17(3): 358-365 (in Chinese with English abstract). Niu, X. L., Yang, J. S., Liu, F., et al., 2016. Origin of Baotoudong Syenites in North China Craton: Petrological, Mineralogical and Geochemical Evidence. Scientia Sinica (Terrae), 46(3): 374-391, 1 (in Chinese). doi: 10.1360/N072014-00571 Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745 Petford, N., Cruden, A. R., McCaffrey, K. J., et al., 2000. Granite Magma Formation, Transport and Emplacement in the Earth's Crust. Nature, 408(6813): 669-673. https://doi.org/10.1038/35047000 Ren, K. X., Yan, G. H., Mou, B. L., et al., 2004. Geochemical Characteristics and Geological Implications of the Hekanzi Alkaline Complex in Lingyuan County, Western Liaoning Province. Acta Petrologica et Mineralogica, 23(3): 193-202 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2004.03.001 Ren, R., Mu, B. L., Han, B. F., et al., 2009. Zircon SHRIMP U-Pb Dating of the Fanshan Potassic Alkaline Ultramafite-Syenite Complex in Hebei Province, China. Acta Petrologica Sinica, 25(3): 588-594 (in Chinese with English abstract). Rudnick, R., Gao, S., 2013. Composition of the Continental Crust. Treatise on Geochemistry, 4: 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6 Scherer, E. E., Munker, C., Mezger, K., 2001. Calibration of the Lu-Hf Clock. Science, 293: 683-687. doi: 10.1126/science.1061372 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society Special Publication, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 Tang, Y. J., Zhang, H. F., Ying, J. F., 2014. Genetic Significance of Triassic Alkali-Rich Intrusive Rocks in the Yinshan and Neighboring Areas. Acta Petrologica Sinica, 30(7): 2031-2040 (in Chinese with English abstract). Thompson, A. B., Connolly, J. A. D., 1995. Melting of the Continental Crust: Some Thermal and Petrological Constraints on Anatexis in Continental Collision Zones and Other Tectonic Settings. Journal of Geophysical Research, 100(B8): 15565-15579. doi: 10.1029/95JB00191 Vervoort, J. D., Patchett, P. J., Gehrels, G. E., et al., 1996. Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes. Nature, 379(6566): 624-627. doi: 10.1038/379624a0 Wang, Y., Qian, C., Pang, X. J., et al, 2021. Early Cretaceous Extension of Great Xing'an Range: Constraints from Geochemistry and Zircon U-Pb Ages of Orbicular Rocks in Uragai Area, Inner Mongolia, China. Earth Science, 46(4): 1447-1466 (in Chinese with English abstract). Wang, Y. X., Gu, L. X., Zhang, Z. Z., et al., 2007. Sr-Nd-Pb Isotope Geochemistry of Rhyolite of the Late Carboniferous Dashitou Group in Eastern Tianshan. Acta Petrologica Sinica, 23(7): 1749-1755 (in Chinese with English abstract). Wedepohl, K. H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59: 1217-1239. doi: 10.1016/0016-7037(95)00038-2 Wilson, M., Downes, H., Cebriá, J. M., 1995. Contrasting Fractionation Trends in Coexisting Continental Alkaline Magma Series; Cantal, Massif Central, France. Journal of Petrology, 36(6): 1729-1753. https://doi.org/10.1093/oxfordjournals.petrology.a037272 Wright, J. B., 1969. A Simple Alkalinity Ratio and Its Application to Questions of Non-Orogenic Granite Genesis. Geological Magazine, 106(4): 370-384. doi: 10.1017/S0016756800058222 Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 Wu, F. Y., Xu, Y. G., Gao, S., et al., 2008. Lithospheric Thinning and Destruction of the North China Craton. Acta Petrologica Sinica, 24(6): 1145-1174 (in Chinese with English abstract). Wu, F. Y., Yang, J. H., Liu, X. M., 2005. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 11(3): 305-317 (in Chinese with English abstract). Xia, M. Z., Jiang, C. Y., Qian, Z. Z., et al., 2010. Geochemistry and Petrogenesis of Huangshandong Intrusion, East Tianshan, Xinjiang. Acta Petrologica Sinica, 26(8): 2413-2430 (in Chinese with English abstract). Xu, Q. W., Wang, P., Wang, Z. Q., et al., 2020. Petrogenisis of the Plagiogranite Porphyry in Changlingzi, Keshiketeng, Inner Mongolia and the Closure Time of the Paleo-Asian Ocean: Evidence from Zircon U-Pb Chronology and Hf Isotope. Geology in China (in Chinese with English abstract). https://kns.cnki.net/kcms/detail/11.1167.P.20200709.1623.004.html https://kns.cnki.net/kcms/detail/11.1167.P.20200709.1623.004.html Yan, G. H., Mu, B. L., Xu, B. L., et al., 2000. Chronology and Sr, Nd and Pb Isotopic Characteristics of Triassic Alkaline Intrusive Rocks in Yanliao-Yinshan and Their Significance. Scientia Sinica (Terrae), 30(4): 383-387(in Chinese). Yang, F., Pang, X. J., Wu, M., et al., 2019. Geochronology, Geochemistry and Hf Isotopic Compositions of Granitoids in Jinchanggouliang Area, Chifeng, Inner Mongolia. Earth Science, 44(10): 3209-3222 (in Chinese with English abstract). Yang, J. H., Sun, J. F., Zhang, M., et al., 2012. Petrogenesis of Silica-Saturated and Silica-Undersaturated Syenites in the Northern North China Craton Related to Post-Collisional and Intraplate Extension. Chemical Geology, 328: 149-167. https://doi.org/10.1016/j.chemgeo.2011.09.011 Zhang, G. S., Fang, W. X., Peng, R., et al., 2019. Zircon U-Pb Chronology, Origin and Tectonic Significance of the Triassic High Potassic Volcanic Rock from Gejiu, Yunnan, Southwestern China. Geotectonica et Metallogenia, 43(6): 1219-1235 (in Chinese with English abstract). Zhang, Q., Zhou, J. L., Li, Y. H., et al., 2020. The Nature of Early-Cretaceous Lithosphere Mantle in the Central North China Craton: Constraints from Chronological and Isotopic Data of Ketou Potassic Syenite in Huyanshan. Acta Geologica Sinica, 94(3): 739-756 (in Chinese with English abstract). Zhang, S. H., Zhao, Y., Liu, J. M., et al., 2010. Geochronology, Geochemistry and Tectonic Setting of the Late Paleozoic-Early Mesozoic Magmatism in the Northern Margin of the North China Block: A Preliminary Review. Acta Petrologica et Mineralogica, 29(6): 824-842 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2010.06.017 Zhang, W. Y., Nie, F. J., Gao, Y. G., et al., 2012. Geochemical Characteristics and Genesis of Triassic Chagan Obo Alkaline Quartz Diorites in Inner Mongolia. Acta Petrologica Sinica, 28(2): 525-534 (in Chinese with English abstract). Zhong, J., Fan, H. H., Chen, J. Y., et al., 2020. Geochemistry Characteristics and 40Ar-39Ar Age of Biotite from the Saima Aegirine-Nepheline Syenite and Its Geological Significance. Earth Science, 45(1): 131-144 (in Chinese with English abstract). 蔡剑辉, 阎国翰, 牟保磊, 等, 2011. 天津蓟县孙各庄碱性杂岩体年代学和岩石地球化学特征. 吉林大学学报(地球科学版), 41(6): 1901-1913. doi: 10.13278/j.cnki.jjuese.2011.06.023 陈斌, 牛晓露, 王志强, 等, 2013. 华北克拉通北缘姚家庄过钾质超镁铁岩-正长岩杂岩体的锆石U-Pb年代学、岩石学和地球化学特征. 中国科学: 地球科学, 43(7): 1073-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201307001.htm 韩宝福, 加加美宽雄, 李惠民, 2004. 河北平泉光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义. 岩石学报, 20(6): 1375-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406006.htm 侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm 贾宏翔, 陈仁义, 庞振山, 等, 2020. 辽东青城子矿集区白云金矿床煌斑岩的岩石成因: 年代学、地球化学与Pb、Hf同位素约束. 中国地质. https://kns.cnki.net/kcms/detail/11.1167.P.20201011.1211.002.html. https://kns.cnki.net/kcms/detail/11.1167.P.20201011.1211.002.html 李之彤, 余昌涛, 程德琳, 等, 1986. 辽宁省凌源县河坎子碱性杂岩体地质特征. 中国地质科学院沈阳地质矿产研究所所刊, 14: 43-62. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198600014005.htm 刘勇, 聂凤军, 方俊钦, 2012. 辽西河坎子碱性侵入杂岩体及钼多金属矿床同位素年代学研究. 矿床地质, 31(6): 1326-1336. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201206017.htm 牟保磊, 邵济安, 储著银, 等, 2001. 河北矾山钾质碱性超镁铁岩-正长岩杂岩体Sm-Nd年龄和Sr、Nd同位素特征. 岩石学报, 17(3): 358-365. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103002.htm 牛晓露, 杨经绥, 刘飞, 等, 2016. 华北克拉通北缘包头东正长岩的成因: 来自岩石矿物学和地球化学的证据. 中国科学: 地球科学, 46(3): 374-391, 1. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201603008.htm 任康绪, 阎国翰, 牟保磊, 等, 2004. 辽西凌源河坎子碱性杂岩体地球化学特征及地质意义. 岩石矿物学杂志, 23(3): 193-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200403000.htm 任荣, 牟保磊, 韩宝福, 等, 2009. 河北矾山钾质碱性超镁铁岩-正长岩杂岩体的锆石SHRIMP U-Pb年龄. 岩石学报, 25(3): 588-594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202310010.htm 汤艳杰, 张宏福, 英基丰, 2014. 阴山及邻区三叠纪富碱侵入岩的成因意义. 岩石学报, 30(7): 2031-2040. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407016.htm 汪岩, 钱程, 庞雪娇, 等, 2021. 大兴安岭早白垩世伸展作用: 内蒙古乌拉盖球状岩地球化学及锆石U-Pb定年的限制. 地球科学, 46(4): 1447-1466. doi: 10.3799/dqkx.2020.165 王银喜, 顾连兴, 张遵忠, 等, 2007. 东天山晚石炭世大石头群流纹岩Sr-Nd-Pb同位素地球化学研究. 岩石学报, 23(7): 1749-1755. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707019.htm 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm 吴福元, 徐义刚, 高山, 等, 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6): 1145-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806001.htm 吴福元, 杨进辉, 柳小明, 2005. 辽东半岛中生代花岗质岩浆作用的年代学格架. 高校地质学报, 11(3): 305-317. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503003.htm 夏明哲, 姜常义, 钱壮志, 等, 2010. 新疆东天山黄山东岩体岩石地球化学特征与岩石成因. 岩石学报, 26(8): 2413-2430. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008016.htm 许强伟, 王玭, 王志强, 等, 2020. 内蒙古克什克腾旗长岭子斜长花岗斑岩成因与古亚洲洋闭合时间的确定: 来自锆石U-Pb年代学与Hf同位素的证据. 中国地质. https://kns.cnki.net/kcms/detail/11.1167.P.20200709.1623.004.html. https://kns.cnki.net/kcms/detail/11.1167.P.20200709.1623.004.html 阎国翰, 牟保磊, 许保良, 等, 2000. 燕辽-阴山三叠纪碱性侵入岩年代学和Sr, Nd, Pb同位素特征及意义. 中国科学(D辑: 地球科学), 30(4): 383-387. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDDY202302020.htm 杨帆, 庞雪娇, 吴猛, 等, 2019. 内蒙古赤峰金厂沟梁地区花岗岩类年代学、地球化学与Hf同位素特征. 地球科学, 44(10): 3209-3222. doi: 10.3799/dqkx.2019.204 张贵山, 方维萱, 彭仁, 等, 2019. 云南个旧三叠纪高钾质火山岩锆石U-Pb年代学、岩石成因及构造意义. 大地构造与成矿学, 43(6): 1219-1235. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201906012.htm 张乔, 周俊林, 李玉宏, 等, 2020. 华北克拉通中部早白垩世岩石圈地幔性质: 来自狐偃山科头钾质正长岩年代学、同位素的限制. 地质学报, 94(3): 739-756. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202003006.htm 张拴宏, 赵越, 刘建民, 等, 2010. 华北地块北缘晚古生代: 早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824-842. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006017.htm 张万益, 聂凤军, 高延光, 等, 2012. 内蒙古查干敖包三叠纪碱性石英闪长岩的地球化学特征及成因. 岩石学报, 28(2): 525-534. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202015.htm 钟军, 范洪海, 陈金勇, 等, 2020. 辽宁赛马霓霞正长岩黑云母地球化学特征、40Ar-39Ar年龄及其地质意义. 地球科学, 45(1): 131-144. doi: 10.3799/dqkx.2018.298 -