• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    深层油气相态多样性成因与次生地球化学作用强度评价:以塔里木盆地海相油气为例

    朱光有 李婧菲 张志遥

    朱光有, 李婧菲, 张志遥, 2025. 深层油气相态多样性成因与次生地球化学作用强度评价:以塔里木盆地海相油气为例. 地球科学, 50(6): 2163-2178. doi: 10.3799/dqkx.2021.177
    引用本文: 朱光有, 李婧菲, 张志遥, 2025. 深层油气相态多样性成因与次生地球化学作用强度评价:以塔里木盆地海相油气为例. 地球科学, 50(6): 2163-2178. doi: 10.3799/dqkx.2021.177
    Zhu Guangyou, Li Jingfei, Zhang Zhiyao, 2025. Origin of Deep Oil and Gas Phase State Diversity and Evaluation of Secondary Geochemical Intensity: A Case Study of Marine Oil and Gas in Tarim Basin. Earth Science, 50(6): 2163-2178. doi: 10.3799/dqkx.2021.177
    Citation: Zhu Guangyou, Li Jingfei, Zhang Zhiyao, 2025. Origin of Deep Oil and Gas Phase State Diversity and Evaluation of Secondary Geochemical Intensity: A Case Study of Marine Oil and Gas in Tarim Basin. Earth Science, 50(6): 2163-2178. doi: 10.3799/dqkx.2021.177

    深层油气相态多样性成因与次生地球化学作用强度评价:以塔里木盆地海相油气为例

    doi: 10.3799/dqkx.2021.177
    基金项目: 

    中国石油天然气股份有限公司科学研究与技术开发项目 2019B-04

    中国石油天然气股份有限公司科学研究与技术开发项目 2018A-0102

    详细信息
      作者简介:

      朱光有(1973-),男,教授,主要从事深层油气成藏与地球化学研究. ORCID:0000-0002-7282-6990. E-mail:zhuguangyou@yangtzeu.edu.cn

    • 中图分类号: P618

    Origin of Deep Oil and Gas Phase State Diversity and Evaluation of Secondary Geochemical Intensity: A Case Study of Marine Oil and Gas in Tarim Basin

    • 摘要: 塔里木盆地海相油气的地球化学性质与相态类型复杂多样,从一张油藏剖面上可以看到稠油、黑油、凝析油、天然气等共存.综合运用多种地球化学分析方法,获取了塔里木盆地深层海相油气的相态类型、次生作用过程等信息,通过对不同相态类型油气地球化学特征的对比研究,论证了海相油气遭受生物降解、气侵分馏、硫酸盐热化学还原反应(thermochemical sulfate reduction,TSR)、热裂解等次生地球化学作用的改造机制与过程;建立了基于硫代金刚烷、乙基降金刚烷等次生地球化学作用的产物对次生改造强度定量的评价参数公式,应用于油气性质与相态的定性预测,对于深层油气相态钻前预测具有一定的指导意义.

       

    • 图  1  塔里木盆地塔中-塔北油气藏剖面图与相态图

      图据Zhu et al.(2019a)

      Fig.  1.  Oil and gas reservoir profile and phase diagram of the Tazhong-Tabei area in the Tarim basin

      图  2  塔里木盆地哈拉哈塘及轮南地区原油物理性质

      Fig.  2.  Physical properties of oil in Halahatang and Lunnan areas of the Tarim basin

      图  3  哈拉哈塘北部及轮南低凸起西部地区原油样品的TIC、m/z191和m/z177质量色谱图

      Fig.  3.  Mass chromatograms of TIC, m/z191 and m/z177 of oil samples in the northern part of Halahatang and the western part of Lunnan Low Uplift

      图  4  哈拉哈塘地区生物降解程度评价图

      Fig.  4.  Evaluation of the degree of biodegradation in the Halahatang area

      图  5  轮古地区奥陶系原油正构烷烃分布特征

      Fig.  5.  Distribution of n-alkanes in Ordovician oil in the Lungu area

      图  6  轮古地区天然气碳同位素分异值与气侵强度参数的关系

      Fig.  6.  Relationship between gas carbon isotope differentiation and gas invasion intensity parameters in the Lungu area

      图  7  台盆区代表性凝析油、挥发油、黑油中金刚烷系列化合物类型与分布

      Fig.  7.  Types and distribution of diamondoids in representative condensate oil, volatile oil and black oil in the cratonic basin area

      图  8  古城-顺南地区天然气碳同位素之间的相关关系

      数据来自Zhou et al.(2019)

      Fig.  8.  Relationship between gas carbon isotopes in the Gucheng-Shunnan area

      图  9  GOR和金刚烷类化合物参数及原油裂解程度指数关系

      Fig.  9.  The relationship between GOR and diamondoids parameters and crude oil cracking degree index

      图  10  原油裂解门限的判别图

      Fig.  10.  Discriminant diagram of oil cracking threshold

      图  11  塔中地区原油中含硫化合物种类及特征

      Fig.  11.  Types and Characteristics of the Sulfur Compounds in the Oil samples in the Tazhong area

      图  12  塔中地区原油中含硫化合物种类与分布图

      Fig.  12.  Types and distribution of sulfur compounds in oil in Tazhong area

      表  1  次生地球化学作用发生条件、作用机理、产物及评价参数

      Table  1.   The onset conditions, mechanism, products, and evaluation parameters of secondary geochemical process

      次生作用类型 发生条件 作用机理 特征产物 最终产物 评价参数
      生物降解作用 浅层、温度 < 80 ℃ 细菌等生物对原油的降解改造 沥青质 稠油、沥青质 25-降藿烷、MA/A > 6
      气侵作用 多期充注地区、大量天然气生成 外来天然气侵入古油藏后导致油气性质和油藏相态发生变化 金刚烷、乙基降金刚烷 天然气、轻质油 Q > 40%、δ13Cc2-c1 < 0
      热裂解作用 深层高温 油藏受热力作用发生裂解,导致原油的重组分裂解成轻组分 甲烷、干沥青 干气、干沥青、焦沥青-气田 $\begin{gathered} \text { 4-+ 3-甲基双金刚烷含量 } C_1(\%) \\ =\frac{G O R}{G O R+0.98 \times 10^3} \times 100 \% \\ C_2(\%)=\left(1-C_0 / C_{\mathrm{D}}\right) \times 100 \% \end{gathered} $
      硫酸盐热化学还原反应 含碳酸岩、温度 > 140 ℃ 烃类与地层中硫酸盐在温度大于140 ℃时发生的复杂反应 硫代金刚烷、含硫化合物 硫化氢、二氧化碳等酸性气体 高浓度的硫化氢、硫代金刚烷
      > 30×10-6
      下载: 导出CSV
    • Brooks, J., Welte, D., 1984. Advances in Petroleum Geochemistry: Vol. 1. Academic Press, London.
      Claypool, G., Mancini, E., 1989. Geochemical Relationships of Petroleum in Mesozoic Reservoirs to Carbonate Source Rocks of Jurassic Smackover Formation, South West Alabama. American Association of Petroleum Geologists Bulletin, 73: 904-924.
      Connan, J. 1984. Biodegradation of Crude Oils in Reservoirs. In: Brooks, J., Welte, D. H., eds., Advances in Petroleum Geochemistry. Academic Press, London, 298-335.
      Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399: 54-57. https://doi.org/10.1038/19953
      Dzou, L. I. P., Hughes, W. B., 1993. Geochemistry of Oils and Condensates, K Field, Offshore Taiwan: A Case Study in Migration Fractionation. Organic Geochemistry, 20(4): 437-462. https://doi.org/10.1016/0146-6380(93)90092-p
      Grice, K., Alexander, R., Kagi, R. I., 2000. Diamondoid Hydrocarbon Ratios as Indicators of Biodegradation in Australian Crude Oils. Organic Geochemistry, 31(1): 67-73. https://doi.org/10.1016/S0146-6380(99)00137-0
      Hanin, S., Adam, P., Kowalewski, I., et al., 2002. Bridgehead Alkylated 2-Thia-Adamantanes: Novel Markers for Sulfurisation Processes Occurring under High Thermal Stress in Deep Petroleum Reservoirs. Chemical Communications, (16): 1750-1751. https://doi.org/10.1039/b203551k
      Hill, R. J., Tang, Y. C., Kaplan, I. R., 2003. Insights into Oil Cracking Based on Laboratory Experiments. Organic Geochemistry, 34(12): 1651-1672. https://doi.org/10.1016/S0146-6380(03)00173-6
      Huang, H. P., Zhang, S. C., Su, A. G., 2001. Geochemical Processes in Petroleum Migration and Accumulation. Experimental Petroleum Geology, 23(3): 278-284(in Chinese with English abstract).
      Jones, D. M., Head, I. M., Gray, N. D., et al., 2007. Crude-Oil Biodegradation via Methanogenesis in Subsurface Petroleum Reservoirs. Nature, 451: 176-180. https://doi.org/10.1038/nature06484
      Kissin, Y. V., 1987. Catagenesis and Composition of Petroleum: Origin of n-Alkanes and Isoalkanes in Petroleum Crudes. Geochimica et Cosmochimica Acta, 51(9): 2445-2457. https://doi.org/10.1016/0016-7037(87)90296-1
      Larter, S., Wilhelms, A., Head, I., et al., 2003. The Controls on the Composition of Biodegraded Oils in the Deep Subsurface: Part 1: biodegradation Rates in Petroleum Reservoirs. Organic Geochemistry, 34(4): 601-613. https://doi.org/10.1016/s0146-6380(02)00240-1
      Li, S. M., Shi, Q., Pang, X. Q., et al., 2012. Origin of the Unusually High Dibenzothiophene Oils in Tazhong-4 Oilfield of Tarim Basin and Its Implication in Deep Petroleum Exploration. Organic Geochemistry, 48: 56-80. https://doi.org/10.1016/j.orggeochem.2012.04.008
      Li, X., Zhu, G. Y., Zhang, Z. Y., 2024. Genesis of Ultra-Deep Dolostone and Controlling Factors of Large-Scale Reservoir: A Case Study of the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin. Science China: Earth Sciences, 67(7): 2352-2382. https://doi.org/10.1007/s11430-023-1301-x
      Lin, L. H., Michael, G. E., Kovachev, G., et al., 1989. Biodegradation of TarSand Bitumens from the Ardmore and Anadarko Basins, Carter County, Oklahoma. Organic Geochemistry, 14(5): 511-523. https://doi.org/10.1016/0146-6380(89)90031-4
      Losh, S., Cathles, L., Meulbroek, P., 2002. Gas Washing of Oil along a Regional Transect, Offshore Louisiana. Organic Geochemistry, 33(6): 655-663. https://doi.org/10.1016/S0146-6380(02)00025-6
      Ma, A. L., Jin, Z. J., Li, H. L., et al., 2020. Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin, NW China. Earth Science, 45(5): 1737-1753(in Chinese with English abstract).
      Miao, Q. Y., Xu, C. G., Hao, F., et al., 2024. Hydrocarbon Charging and Accumulation Process of the Large Bozhong19-6 Condensate Gas Reservoirs in the Southwestern Bozhong Sub-Basin, Bohai Bay Basin, China. Journal of Earth Science, 35(2): 613-630. https://doi.org/10.1007/s12583-021-1457-4
      Seifert, W. K., Moldowan, M. J., 1978. Applications of Steranes, Terpanes and Monoaromatics to the Maturation, Migration and Source of Crude Oils. Geochimica et Cosmochimica Acta, 42(1): 77-95. https://doi.org/10.1016/0016-7037(78)90219-3
      Seifert, W. K., Michael Moldowan, J., 1979. The Effect of Biodegradation on Steranes and Terpanes in Crude Oils. Geochimica et Cosmochimica Acta, 43(1): 111-126. https://doi.org/10.1016/0016-7037(79)90051-6
      Seifert, W. K., Michael Moldowan, J., Demaison, G. J., 1984. Source Correlation of Biodegraded Oils. Organic Geochemistry, 6: 633-643. https://doi.org/10.1016/0146-6380(84)90085-8
      Shang, P., Chen, H. H., Hu, S. Z., et al., 2020. Geochemical Characteristics of Crude Oil and Hydrocarbon Accumulation in the Ordovician of Yuqixi Area, Tarim Basin. Earth Science, 45(3): 1013-1026(in Chinese with English abstract).
      Sun, C. H., Zhu, G. Y., Zheng, D. M., et al., 2016. Characteristics and Controlling Factors of Fracture-Cavity Carbonate Reservoirs in the Halahatang Area, Tarim Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 1028-1036 (in Chinese with English abstract).
      Thompson, K. F. M., 1988. Gas-Condensate Migration and Oil Fractionation in Deltaic Systems. Marine and Petroleum Geology, 5(3): 237-246. https://doi.org/10.1016/0264-8172(88)90004-9
      Wang, Y. P., Zhang, S. C., Wang, F. Y., et al., 2006. Thermal Cracking History by Laboratory Kinetic Simulation of Paleozoic Oil in Eastern Tarim Basin, NW China, Implications for the Occurrence of Residual Oil Reservoirs. Organic Geochemistry, 37(12): 1803-1815. https://doi.org/10.1016/j.orggeochem.2006.07.010
      Wei, Z. B., Mankiewicz, P., Walters, C., et al., 2011. Natural Occurrence of Higher Thiadiamondoids and Diamondoidthiols in a Deep Petroleum Reservoir in the Mobile Bay Gas Field. Organic Geochemistry, 42(2): 121-133. https://doi.org/10.1016/j.orggeochem.2010.12.002
      Wei, Z. B., Moldowan, J. M., Zhang, S. C., et al., 2007. Diamondoid Hydrocarbons as a Molecular Proxy for Thermal Maturity and Oil cracking: Geochemical Models from Hydrous Pyrolysis. Organic Geochemistry, 38(2): 227-249. https://doi.org/10.1016/j.orggeochem.2006.09.011
      Williams, J. A., Bjorøy, M., Dolcater, D. L., et al., 1986. Biodegradation in South Texas Eocene Oils—Effects on Aromatics and Biomarkers. Organic Geochemistry, 10(1-3): 451-461. https://doi.org/10.1016/0146-6380(86)90045-8
      Yan, L., Yang, M., Zhang, J. L., et al., 2020. Distribution of Cambrian Source Rocks and Evaluation and Optimization of Favorable Zones in East Tarim Basin. Natural Gas Geoscience, 31(5): 667-674(in Chinese with English abstract).
      Yang, C. P., Geng, A. S., Liao, Z. W., et al., 2009. Quantitative Evaluation of Gas Invasion in Tazhong Area of Tarim Basin. Science in China (Series D), 39(1): 51-60(in Chinese).
      Zhang, D. J., Huang, D. F., Li, J. C., 1988. Biodegraded Sequence of Karamay Oils and Semi-Quantitative Estimation of Their Biodegraded Degrees in Junggar Basin, China. Organic Geochemistry, 13(1-3): 295-302. https://doi.org/10.1016/0146-6380(88)90048-4
      Zhang, S. C., Liang, D. G., Zhang, B. M., et al., 2004. Formation of Marine Oil and Gas in Tarim Basin. In: Jia, C. Z., ed., Tarim Basin Petroleum Geology and Exploration Series 7. Petroleum Industry Publishing House, Beijing, 299-344 (in Chinese).
      Zhang, S. C., Zhu, G. Y., He, K., 2011. The Effects of Thermochemical Sulfate Reduction on Occurrence of Oil-Cracking Gas and Reformation of Deep Carbonate Reservoir and the Interaction Mechanisms. Acta Petrologica Sinica, 27(3): 809-826(in Chinese with English abstract).
      Zhang, Y., Cao, Z. C., Chen, H. H., et al., 2023. Difference of Hydrocarbon Charging Events and Their Contribution Percentages to Ordovician Reservoirs among Strike-Slip Fault Belts in Shunbei Area, Tarim Basin. Earth Science, 48(6): 2168-2188(in Chinese with English abstract).
      Zhang, Z., Yang, X. Z., Hao, F., et al., 2024. Fluid Inclusion Characteristics and Hydrocarbon Accumulation Process in Lungu Area, Tarim Basin. Earth Science, 49(7): 2407-2419(in Chinese with English abstract).
      Zhang, Z., Zhang, Y., Zhu, G., et al., 2024a. Multiphase Pools Caused by Gas Invasion in Deep Ordovician Carbonates from the Tazhong Area, Tarim Basin, China. AAPG Bulletin, 108(5): 817-848. . https://doi.org/10.1306/12212318282
      Zhang, Z., Zhu, G., Chen, W., et al., 2024b. Cryogenia-Cambrian Tectono-Sedimentary Evolution, Paleoclimate and Environment Effects, and Formation of Petroleum Resources in the Tarim Block. Earth-Science Reviews, 248: 104632. https://doi.org/10.1016/j.earscirev.2023.104632
      Zhang, Z. Y., Zhu, G. Y., Zhang, Y. J., et al., 2018. The Origin and Accumulation of Multi-Phase Reservoirs in the East Tabei Uplift, Tarim Basin, China. Marine and Petroleum Geology, 98: 533-553. https://doi.org/10.1016/j.marpetgeo.2018.08.036
      Zhao, J. Z., Li, Q. M., 2003. Formation and Distribution of Oil and Gas Reservoirs in Tarim Basin. In: Jia, C. Z., ed., Tarim Basin petroleum Geology and exploration Series 8. Petroleum Industry Publishing House, Beijing, 191-219 (in Chinese).
      Zhao, M. J., Zhang, S. C., Liao, Z. Q., 2001. The Cracking Gas from Crude Oil and Its Significance in Gas Exploration. Petroleum Exploration and Development, 28(4): 47-49(in Chinese with English abstract).
      Zhou, X. X., Lü, X. X., Zhu, G. Y., et al., 2019. Origin and Formation of Deep and Superdeep Strata Gas from Gucheng-Shunnan Block of the Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 177: 361-373. https://doi.org/10.1016/j.petrol.2019.02.059
      Zhu, G. Y., Hou, J. K., Ren, R., et al., 2025. Tectonic-Sedimentary Responses to Major Geological Events, Source Rock Formation Mechanisms, and Resource Potential at Depths Greater than 10 000 m in the Cratonic Basins of China. APG Bulletin, 109(4): 497-544. https://doi.org/10.1306/03182523116
      Zhu, G. Y., Jiang, H., Huang, S. P., et al., 2025. New Progress of Marine Hydrocarbon Accumulation Theory and Prediction of Super Large Oil and Gas Areas in Deep Strata Buried at a Depth of about 10 000 Meters in China. Acta Petrolei Sinica, 46(4): 816-842(in Chinese with English abstract).
      Zhu, G. Y., Li, T. T., Zhang, Z. Y., et al., 2022. Nitrogen Isotope Evidence for Oxygenated Upper Ocean during the Cryogenian Interglacial Period. Chemical Geology, 604: 120929. https://doi.org/10.1016/j.chemgeo.2022.120929
      Zhu, G. Y., Wang, P. J., Li, T. T., et al., 2021a. Nitrogen Geochemistry and Abnormal Mercury Enrichment of Shales from the Lowermost Cambrian Niutitang Formation in South China: Implications for the Marine Redox Conditions and Hydrothermal Activity. Global and Planetary Change, 199: 103449. https://doi.org/10.1016/j.gloplacha.2021.103449
      Zhu, G. Y., Li, T. T., Zhao, K., et al., 2021b. Mo Isotope Records from Lower Cambrian Black Shales, Northwestern Tarim Basin (China): Implications for the Early Cambrian Ocean. GSA Bulletin, 134(1-2): 3-14. https://doi.org/10.1130/b35726.1
      Zhu, G. Y., Zhang, Z. Y., Jiang, H., et al., 2023a. Evolution of the Cryogenian Cratonic Basins in China, Paleo-Oceanic Environment and Hydrocarbon Generation Mechanism of Ancient Source Rocks, and Exploration Potential in 1 000 m-Deep Strata. Earth-Science Reviews, 244: 104506. https://doi.org/10.1016/j.earscirev.2023.104506
      Zhu, G. Y., Li, X., Li, T. T., et al., 2023b. Genesis Mechanism and Mg Isotope Difference between the Sinian and Cambrian Dolomites in Tarim Basin. Science China Earth Sciences, 66(2): 334-357. https://doi.org/10.1007/s11430-021-1010-6
      Zhu, G. Y., Li, X., Zhao, B., et al., 2024. Genesis and Reservoir Preservation Mechanism of 10 000 m Ultradeep Dolomite in Chinese Craton Basin. Deep Underground Science and Engineering, : dug2.12112. https://doi.org/10.1002/dug2.12112
      Zhu, G. Y., Zhang, S. C., Su, J., et al., 2012. The Occurrence of Ultra-Deep Heavy Oils in the Tabei Uplift of the Tarim Basin, NW China. Organic Geochemistry, 52: 88-102. https://doi.org/10.1016/j.orggeochem.2012.08.012
      Zhu, G. Y., Zhang, Z. Y., Zhou, X. X., et al., 2019a. The Complexity, Secondary Geochemical Process, Genetic Mechanism and Distribution Prediction of Deep Marine Oil and Gas in the Tarim Basin, China. Earth-Science Reviews, 198: 102930. https://doi.org/10.1016/j.earscirev.2019.102930
      Zhu, G. Y., Zhang, Z. Y., Milkov, A. V., et al., 2019b. Diamondoids as Tracers of Late Gas Charge in Oil Reservoirs: Example from the Tazhong Area, Tarim Basin, China. Fuel, 253: 998-1017. https://doi.org/10.1016/j.fuel.2019.05.030
      Zhu, G. Y., Milkov, A. V., Zhang, Z. Y., et al., 2019c. Formation and Preservation of a Giant Petroleum Accumulation in Superdeep Carbonate Reservoirs in the Southern Halahatang Oil Field Area, Tarim Basin, China. AAPG Bulletin, 103(7): 1703-1743. https://doi.org/10.1306/11211817132
      黄海平, 张水昌, 苏爱国, 2001. 油气运移聚集过程中的地球化学作用. 石油实验地质, 23(3): 278-284.
      马安来, 金之钧, 李慧莉, 等, 2020. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存. 地球科学, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157
      尚培, 陈红汉, 胡守志, 等, 2020. 塔里木盆地于奇西地区奥陶系原油特征及油气充注过程. 地球科学, 45(3): 1013-1026. doi: 10.3799/dqkx.2019.046
      孙崇浩, 朱光有, 郑多明, 等, 2016. 塔里木盆地哈拉哈塘地区超深碳酸盐岩缝洞型储集层特征与控制因素. 矿物岩石地球化学通报, 35(5): 1028-1036.
      闫磊, 杨敏, 张君龙, 等, 2020. 塔里木盆地塔东地区寒武系烃源岩分布及有利区带评价优选. 天然气地球科学, 31(5): 667-674.
      杨楚鹏, 耿安松, 廖泽文, 等, 2009. 塔里木盆地塔中地区油藏气侵定量评价. 中国科学(D辑:), 39(1): 51-60.
      张水昌, 梁狄刚, 张宝民, 等, 2004. 塔里木盆地海相油气的生成. 见: 贾承造, 主编. 塔里木盆地石油地质与勘探丛书(卷七). 北京: 石油工业出版社, 299-344.
      张水昌, 朱光有, 何坤, 2011. 硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制. 岩石学报, 27(3): 809-826.
      张钰, 曹自成, 陈红汉, 等, 2023. 顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性. 地球科学, 48(6): 2168-2188. doi: 10.3799/dqkx.2023.103
      张泽, 杨宪彰, 郝芳, 等, 2024. 塔里木盆地轮古地区流体包裹体特征与油气成藏过程. 地球科学, 49(7): 2407-2419. doi: 10.3799/dqkx.2022.494
      赵靖舟, 李启明, 2003. 塔里木盆地油气藏形成与分布规律. 见: 贾承造, 主编. 塔里木盆地石油地质与勘探丛书(卷八). 北京: 石油工业出版社, 191-219.
      赵孟军, 张水昌, 廖志勤, 2001. 原油裂解气在天然气勘探中的意义. 石油勘探与开发, 28(4): 47-49.
      朱光有, 姜华, 黄士鹏, 等, 2025. 中国海相油气成藏理论新进展与万米深层超大型油气区预测. 石油学报, 46(4): 816-842.
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  17
    • HTML全文浏览量:  4
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-10-14
    • 网络出版日期:  2025-07-11
    • 刊出日期:  2025-06-25

    目录

      /

      返回文章
      返回