Geological Characteristics of Late Jurassic Volcanic Rocks in Sierbao-Baita Basin, West Liaoning Province and Its Response to Yanshan Movement
-
摘要: 辽西地区位于燕山造山带东段,发育大规模的中生代火山-沉积盆地,是研究中生代燕山运动构造体制转换、岩石圈减薄和克拉通破坏的关键地区之一.报道了辽西寺儿堡-白塔盆地晚侏罗世火山岩岩相学、锆石U-Pb年代学、地球化学和锆石Hf同位素组成等资料,确定了其形成时代、岩石成因及构造背景,探讨了晚中生代期间古太平洋板块对华北克拉通东部俯冲后撤作用时间,为进一步认识燕山运动和燕山期岩浆活动的地球动力学机制提供可靠的地质依据.盆地内大范围出露的流纹岩形成时代为153.8~160.3 Ma,在空间上呈NE向展布,具有较高的SiO2、Al2O3和全碱含量,显示准铝质-过铝质和高钾钙碱性特征.样品相对富集大离子亲石元素(LILEs:Rb、Ba、Pb、K等)和轻稀土元素(LREEs),亏损高场强元素(HFSEs:Nb、Ta、P、Ti等)和重稀土元素(HREEs),具明显的Eu负异常和较低的Cr、Co、Ni含量,结合岩浆成因锆石具有负εHf(t)值(-17.8~-23.2)和相对古老的Hf同位素二阶段模式年龄(TDM2=2 334~2 697 Ma),暗示初始岩浆可能来自于太古代或元古代的古老下地壳的部分熔融.综合研究表明,辽西地区晚侏罗世岩浆构造活动主要受控于古太平洋板块俯冲和后撤.寺儿堡-白塔盆地中流纹岩形成于古太平洋板块俯冲的NW向挤压构造背景,同时,在辽西地区存在大量与古太平洋板块后撤密切相关的变质核杂岩和伸展盆地,暗示区域上伸展体系的存在.因此,认为燕山-辽西地区构造体制于晚侏罗世发生转变,由挤压体系逐渐过渡为伸展体系,为燕山运动的响应.Abstract: The West Liaoning Province is located in the eastern part of the Yanshan orogenic belt, with large-scale Mesozoic volcanic-sedimentary basins. It is critical to study the transformation of the Yanshan movement tectonic regime, lithosphere thinning and craton destruction during the Mesozoic. In this paper it conducts a comprehensive study of the Late Jurassic volcanic rocks exposed in the Sierbao-Baita basin in West Liaoning from the aspects of the perspectives of petrography, zircon U-Pb chronology, geochemistry and zircon Hf isotopic composition, so as to determine the age of their formation, petrogenesis and tectonic setting, discusses the time of the subduction and rollback of the Paleo-Pacific plate to the eastern North China craton during the Late Mesozoic, which provides a reliable geological basis for further understanding the geodynamic mechanism of the Yanshan movement and Yanshanian magmatism. The formation age of the rhyolite exposed in the basin is 153.8-160.3 Ma, spatially distributed in NE direction, with high SiO2, Al2O3 and total-alkali contents, showing the characteristics of metaluminous-peraluminous and high-K calc-alkaline. The samples are relatively enriched in large ion lithophile elements (LILEs: Rb, Ba, Pb, K) and light rare earth elements (LREEs), depleted in high field strength elements (HFSEs: Nb, Ta, P, Ti) and heavy rare earth elements (HREEs), with obvious Eu negative anomaly and low Cr, Co, Ni contents. Combined with the magmatic origin zircons exhibit negative εHf(t) value (-17.8 to -23.2) and old Hf isotopic two-stage model age (TDM2=2 334-2 697 Ma), all suggest that the primary magma may have originated from the partial melting of the Archaean or Proterozoic ancient lower crust. The Late Jurassic magmatism and tectonic movement in the West Liaoning Province were controlled by the subduction and rollback of the paleo-Pacific plate. The rhyolite in the Sierbao-Baita basin was formed in the NW direction compression tectonic setting caused by the subduction of the paleo-Pacific plate. At the same time, there are also a large number of metamorphic core complexes and extensional basins closely related to the rollback of the paleo-Pacific plate in the West Liaoning Province, suggesting the existence of an extensional regime in this region. Therefore, it hold that the tectonic regime of the Yanshan-West Liaoning area gradually changed from compression regime to extension regime in the Late Jurassic, which is a response to Yanshan movement.
-
Key words:
- Yanshan movement /
- zircon U-Pb age /
- North China craton /
- West Liaoning /
- paleo-Pacific plate /
- petrology /
- tectonics
-
图 1 华北克拉通基底构造单元划分(据Zhao et al., 2005修改)
Fig. 1. Simplified map showing the tectonic subdivisions of the North China craton and the distribution of the basement rocks (modified after Zhao et al., 2005)
图 2 辽西地区地质图(a)及晚侏罗世火山岩展布及采样位置(b)
年代学数据来自:崔芳华(2015);赵伟策(2015);宋旸等(2018);Hu et al.(2019);Lin et al.(2021)
Fig. 2. Geological map of West Liaoning Province (a) and distribution of the Late Jurassic volcanics with sampling locations (b)
图 5 晚侏罗世流纹岩TAS图解(a,据Irvine and Baragar, 1971),SiO2-K2O图解(b,据Peccerillo and Taylor, 1976)和A/CNK-A/NK图解(c, Maniar and Piccoli, 1989)
Fig. 5. TAS (a, after Irvine and Baragar, 1971), SiO2 versus K2O (b, after Peccerillo and Taylor, 1976) and A/CNK versus ANK (c, after Maniar and Piccoli, 1989) diagrams of the Late Jurassic rhyolites
图 6 晚侏罗世流纹岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分图(b)
图a据Sun and McDonough(1989);图b据Boynton(1984)
Fig. 6. Primitive mantle-normalized trace element spidergrams (a) and chondrite-normalized REE patterns (b) of the Late Jurassic rhyolites
图 8 辽西寺儿堡-白塔盆地晚侏罗世流纹岩的锆石Hf同位素特征
图a据Yang et al.(2006);图b据吴福元等(2007)
Fig. 8. Zircon Hf isotopic characteristics of the Late Jurassic rhyolites in Sierbao-Baita basin, West Liaoning
图 9 晚侏罗世酸性火山岩岩石成因类型判别图解(据Whalen et al., 1987)
Fig. 9. Genetic discrimination diagrams for the Late Jurassic acidic volcanic rocks (after Whalen et al., 1987)
图 10 晚侏罗世酸性火山岩构造环境判别图解
图例与图 9一致;图a据Pearce et al.(1984);图b据Schandl and Gorton(2002)
Fig. 10. Tectonic discrimination diagrams for the Late Jurassic acidic volcanic rocks
表 1 辽西寺儿堡-白塔盆地晚侏罗世流纹岩主量元素(%)、微量元素(10-6)测试结果
Table 1. Major (%) and trace (10-6) element compositions for Late Jurassic rhyolites in Sierbao-Baita basin, West Liaoning Province
样品号 S4013 S4017 S4038 S4047 S4049 S4073 S7038-1 岩性 流纹岩 SiO2 75.95 75.53 76.01 76.10 75.79 75.68 75.58 TiO2 0.14 0.14 0.14 0.14 0.14 0.14 0.14 Al2O3 12.85 12.92 12.84 12.86 12.90 13.05 12.94 TFeO 0.97 1.45 1.02 1.20 1.15 1.08 0.98 MnO < 0.02 0.03 0.04 0.02 0.03 0.03 0.01 MgO < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 0.17 0.17 CaO 0.52 0.51 0.55 0.41 0.58 0.36 0.33 Na2O 3.65 3.64 3.50 3.67 3.79 3.42 3.44 K2O 5.29 5.31 5.36 5.01 5.25 5.49 5.35 P2O5 0.02 0.02 0.02 0.02 0.02 0.03 0.02 LOI 0.67 0.72 0.56 0.71 0.30 0.72 0.96 Total 100.16 100.43 100.15 100.28 100.08 100.28 99.94 A/NK 1.10 1.10 1.11 1.12 1.08 1.13 1.13 A/CNK 1.01 1.02 1.02 1.05 0.99 1.07 1.07 全碱 8.94 8.95 8.86 8.68 9.04 8.91 8.79 K2O/Na2O 1.45 1.46 1.53 1.37 1.39 1.61 1.56 Cr 4.89 5.29 4.48 5.79 5.98 4.98 3.28 Ni 1.76 3.33 2.61 1.23 1.61 1.10 0.81 Sc 1.69 1.44 1.63 1.50 1.46 1.27 1.81 Co 0.79 1.14 0.93 0.55 0.73 0.62 V 11.99 13.84 11.03 12.64 11.67 12.53 Ba 606.27 594.41 537.29 631.37 691.95 570.99 582.63 Rb 167.66 170.61 174.84 156.09 171.53 178.99 196.50 Th 12.69 11.82 12.94 13.57 12.48 13.10 14.82 U 1.26 1.68 1.54 1.38 2.45 1.55 1.72 Nb 14.32 14.38 14.54 13.78 13.91 14.63 15.19 Ta 1.19 1.16 1.31 1.16 1.37 1.19 1.32 Sr 94.32 95.12 95.09 153.05 107.18 118.85 178.30 Zr 97.45 99.51 98.31 94.96 98.54 98.08 95.56 Hf 4.25 4.77 6.25 5.24 4.41 5.75 5.44 Y 6.28 3.67 5.40 6.27 4.37 7.03 5.98 Pb 15.84 14.72 26.22 10.67 19.51 22.72 13.20 Ga 16.04 15.59 15.66 13.80 15.46 15.38 15.77 Cs 1.62 1.94 2.16 1.46 2.02 2.02 16.80 La 25.49 11.98 22.46 27.91 12.27 28.93 31.10 Ce 55.12 31.77 64.84 47.49 34.99 66.65 58.17 Pr 5.10 2.36 4.46 5.41 2.24 5.34 5.77 Nd 15.67 7.14 13.78 16.56 7.00 16.17 15.66 Sm 2.20 1.05 2.05 2.44 1.11 2.33 1.92 Eu 0.44 0.29 0.42 0.46 0.42 0.46 0.34 Gd 2.08 0.97 1.98 2.22 1.09 2.31 1.94 Tb 0.24 0.11 0.22 0.24 0.14 0.25 0.23 Dy 1.23 0.68 1.09 1.16 0.83 1.25 1.12 Ho 0.25 0.15 0.22 0.23 0.18 0.25 0.23 Er 0.81 0.54 0.73 0.75 0.64 0.82 0.72 Tm 0.14 0.11 0.13 0.13 0.13 0.14 0.12 Yb 1.03 0.83 0.94 0.96 0.93 1.04 0.91 Lu 0.16 0.12 0.15 0.15 0.13 0.16 0.15 δEu 0.63 0.86 0.62 0.60 1.15 0.59 0.53 Ce/Pb 3.48 2.16 2.47 4.45 1.79 2.93 4.41 Nb/Ta 12.03 12.40 11.10 11.88 10.15 12.29 11.51 Sr/Y 15.03 25.88 17.61 24.40 24.53 16.91 29.82 ΣREE 109.96 58.10 113.47 106.11 62.10 126.10 118.38 ΣLREE/ΣHREE 17.51 15.55 19.78 17.17 14.26 19.27 20.84 (La/Yb)N 16.24 9.47 15.68 19.08 8.66 18.26 22.43 -
Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3 Bureau of Geology and Mineral Resources of Liaoning Province, 1989. Regional Geology of Liaoning Province. Geological Publishing House, Beijing, 438-460 (in Chinese). Cui, F. H., 2015. Genesis and Crustal Evolution of Mesozoic Granitic Rocks in Xingcheng Area, Western Liaoning Province (Dissertation). Jilin University, Changchun(in Chinese with English abstract). Cui, F. H., Xu, X. C., Zheng, C. Q., et al., 2020. The Paleo-Pacific Plate Subduction and Slab Roll-back beneath Eastern North China Craton: Insights from the Late Mesozoic Granitoids in Xingcheng Area, Western Liaoning Province. Acta Petrologica Sinica, 36(8): 2463-2492 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.08.12 Dai, L. M., Li, S. Z., Li, Z. H., et al., 2018. Dynamics of Exhumation and Deformation of HP-UHP Orogens in Double Subduction-Collision Systems: Numerical Modeling and Implications for the Western Dabie Orogen. Earth-Science Reviews, 182: 68-84. https://doi.org/10.1016/j.earscirev.2018.05.005 Davis, G. A., Zheng, Y. D., Wang, C., et al., 2001. Mesozoic Tectonic Evolution of the Yanshan Fold and Thrust Belt, with Emphasis on Hebei and Liaoning Provinces, Northern China. Memoir of the Geological Society of America, 194: 171-197. https://doi.org/10.1130/0-8137-1194-0.171 Dong, S. W., Zhang, Y. Q., Li, H. L., et al., 2018. The Yanshan Orogeny and Late Mesozoic Multi-Plate Convergence in East Asia—Commemorating 90th Years of the "Yanshan Orogeny". Science China Earth Sciences, 61(12): 1888-1909. https://doi.org/10.1007/s11430-017-9297-y Dong, S. W., Zhang, Y. Q., Zhang, F. Q., et al., 2015. Late Jurassic-Early Cretaceous Continental Convergence and Intracontinental Orogenesis in East Asia: A Synthesis of the Yanshan Revolution. Journal of Asian Earth Sciences, 114: 750-770. https://doi.org/10.1016/j.jseaes.2015.08.011 Fan, W. B., Jiang, N., Zhai, M. G., et al., 2021. Origin of the Low δ18O Signals in Zircons from the Early Cretaceous A-Type Granites in Eastern China: Evidence from the Kulongshan Pluton. Journal of Earth Science, 32(6): 1415-1427. https://doi.org/10.1007/s12583-021-1515-y Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162 Hu, P. Y., Liang, C. Y., Zheng, C. Q., et al., 2019. Tectonic Transformation and Metallogenesis of the Yanshan Movement during the Late Jurassic Period: Evidence from Geochemistry and Zircon U-Pb Geochronology of the Adamellites in Xingcheng, Western Liaoning, China. Minerals, 9(9): 518. https://doi.org/10.3390/min9090518 Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007 Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055 Li, G., Liu, Z. H., Li, Y. F., et al., 2013. Strain and Kinematic Vorticity Analysis of the Ductile Shear Zone in Yiwulüshan Area, Western Liaoning Province. Geological Bulletin of China, 32(2): 408-423(in Chinese with English abstract). Li, Z. H., Dong, S. W., Qu, H. J., 2014. Timing of the Initiation of the Jurassic Yanshan Movement on the North China Craton: Evidence from Sedimentary Cycles, Heavy Minerals, Geochemistry, and Zircon U-Pb Geochronology. International Geology Review, 56(3): 288-312. https://doi.org/10.1080/00206814.2013.855013 Liang, C. Y., Liu, Y. J., Li, W. M., et al., 2016. Ductile Deformation and Rock Rheological Characteristics from Southern Yiwulüshan Metamorphic Core Complex. Acta Petrologica Sinica, 32(9): 2656-2676(in Chinese with English abstract). Liang, C. Y., Liu, Y. J., Neubauer, F., et al., 2015a. Structures, Kinematic Analysis, Rheological Parameters and Temperature-Pressure Estimate of the Mesozoic Xingcheng-Taili Ductile Shear Zone in the North China Craton. Journal of Structural Geology, 78: 27-51. https://doi.org/10.1016/j.jsg.2015.06.007 Liang, C. Y., Liu, Y. J, Neubauer, F., et al., 2015b. Structural Characteristics and LA-ICP-MS U-Pb Zircon Geochronology of the Deformed Granitic Rocks from the Mesozoic Xingcheng-Taili Ductile Shear Zone in the North China Craton. Tectonophysics, 650: 80-103. https://doi.org/10.1016/j.tecto.2014.05.010 Liang, C. Y., Liu, Y. J., Song, Z. W., et al., 2020. Deformation Pattern and Age of Hulin Complex in Heilongjiang Province: Implications for Subduction of the Palaeo-Pacific Plate during the Early Cretaceous, Eastern NE China. Acta Petrologica Sinica, 36(3): 685-702(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.03.04 Lin, W., Zeng, J. P., Meng, L. T., et al., 2021. Extensional Tectonics and North China Craton Destruction: Insights from the Magnetic Susceptibility Anisotropy (AMS) of Granite and Metamorphic Core Complex. Science China Earth Sciences, 64(9): 1557-1589. https://doi.org/10.1007/s11430-020-9754-1 Ludwig, K. R., 2003. User's Manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. Ma, Q., 2013. Triassic-Jurassic Volcanic Rocks in Western Liaoning: Lower Crustal Reconstruction and Craton Destruction in the Eastern Part of Northern Margin of North China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Ma, Q., Zheng, J. P., 2009. In-Situ U-Pb Dating and Hf Isotopic Analyses of Zircons in the Volcanic Rock of the Lanqi Formation in the Beipiao Area, Western Liaoning Province. Acta Petrologica Sinica, 25(12): 3287-3297(in Chinese with English abstract). Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 Meng, Q. R., 2003. What Drove Late Mesozoic Extension of the Northern China-Mongolia Tract? Tectonophysics, 369(3/4): 155-174. https://doi.org/10.1016/S0040-1951(03)00195-1 Mercier, J. L., Hou, M. J., Vergely, P., et al., 2007. Structural and Stratigraphical Constraints on the Kinematics History of the Southern Tan-Lu Fault Zone during the Mesozoic Anhui Province, China. Tectonophysics, 439(1-4): 33-66. https://doi.org/10.1016/j.tecto.2007.03.001 Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745 Pitcher, W. S., 1997. The Nature and Origin of Granite(2nd Edition). Chapman and Hall, London. Ren, Q., Zhang, S. H., Wu, H. C., et al., 2016. Further Paleomagnetic Results from the ~155 Ma Tiaojishan Formation, Yanshan Belt, North China, and Their Implications for the Tectonic Evolution of the Mongol-Okhotsk Suture. Gondwana Research, 35: 180-191. https://doi.org/10.1016/j.gr.2015.05.002 Schandl, E. S., Gorton, M. P., 2002. Application of High Field Strength Elements to Discriminate Tectonic Settings in VMS Environments. Economic Geology, 97(3): 629-642. https://doi.org/10.2113/gsecongeo.97.3.629 Shao, J. A., Meng, Q. R., Wei, H. Q., et al., 2003. Nature and Tectonic Environment of Late Jurassic Volcanic-Sedimentary Basins in Northwestern Hebei Province. Geological Bulletin of China, 22(10): 751-761(in Chinese with English abstract). Song, Y., Xu, X. C., Zheng, C. Q., et al., 2018. Petrology, Isotopic Geochronology and Geochemistry of Jurassic Volcanic Rocks in Baita Area, Western Liaoning. Global Geology, 37(1): 70-87(in Chinese with English abstract). Song, Z. W., Zheng, C. Q., Liang, C. Y., et al., 2021. Identification and Geological Significance of Early Jurassic Adakitic Volcanic Rocks in Xintaimen Area, Western Liaoning. Minerals, 11(3): 331. https://doi.org/10.3390/min11030331 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Sun, W. D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 262(3-4): 533-542. https://doi.org/10.1016/j.epsl.2007.08.021 Tang, J., Xu, W. L., Wang, F., et al., 2018. Subduction History of the Paleo-Pacific Slab beneath Eurasian Continent: Mesozoic-Paleogene Magmatic Records in Northeast Asia. Science China Earth Sciences, 61(5): 527-559. https://doi.org/10.1007/s11430-017-9174-1 Wang, Y., Sun, L. X., Zhou, L. Y., et al., 2018. Discussion on the Relationship between the Yanshanian Movement and Cratonic Destruction in North China. Science China Earth Sciences, 61(5): 499-514. https://doi.org/10.1007/s11430-017-9177-2 Wang, Y., Zhou, L. Y., Luo, Z. H., 2017. Kinematics and Timing of Continental Block Deformation from Margins to Interiors. Terra Nova, 29(4): 253-263. https://doi.org/10.1111/ter.12272 Wang, Y., Zhou, L. Y., Zhao, L. J., et al., 2015. Tectonic Transformations in the North of Eastern China during 170-150 Ma: Causal Linkage to the Rapid Formation of the Paleo-Pacific Plate. Geological Society of America, 561-587. https://doi.org/10.1130/2015.2513(18) Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 Wong, W. H., 1926. Crustal Movement in Eastern China. In Proceeding of the 3th Pan-Pacific Scientific Congress, 1: 265-285. Wong, W. H., 1927. Crustal Movements and Igneous Activities in Eastern China since Mesozoic Time. 1. Bulletin of the Geological Society of China, 6(1): 9-37. https://doi.org/10.1111/j.1755-6724.1927.mp6001002.x Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract). Xu, W. L., Wang, Q. H., Wang, D. Y., et al., 2004. Processes and Mechanism of Mesozoic Lithospheric Thinning in Eastern North China Craton: Evidence from Mesozoic Igneous Rocks and Deep-Seated Xenoliths. Earth Science Frontiers, 11(3): 309-317(in Chinese with English abstract). Xue, J. X., Liu, Z. H., Liu, J. X., et al., 2020. Geochemistry, Geochronology, Hf Isotope and Tectonic Significance of Late Jurassic Huangdi Pluton in Xiuyan, Liaodong Peninsula. Earth Science, 45(6): 2030-2043(in Chinese with English abstract). Yang, J. H., Wu, F. Y., Shao, J. A., et al., 2006. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246(3/4): 336-352. https://doi.org/10.1016/j.epsl.2006.04.029 Yang, J. H., Wu, F. Y., Wilde, S. A., 2003. A Review of the Geodynamic Setting of Large-Scale Late Mesozoic Gold Mineralization in the North China Craton: An Association with Lithospheric Thinning. Ore Geology Reviews, 23(3/4): 125-152. https://doi.org/10.1016/S0169-1368(03)00033-7 Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2008. Mesozoic Decratonization of the North China Block. Geology, 36(6): 467-470. https://doi.org/10.1130/g24518a.1 Yang, W., Li, S., 2008. Geochronology and Geochemistry of the Mesozoic Volcanic Rocks in Western Liaoning: Implications for Lithospheric Thinning of the North China Craton. Lithos, 102(1/2): 88-117. https://doi.org/10.1016/j.lithos.2007.09.018 Zhang, B. H., Zhang, J., Qu, J. F., et al., 2021. Lüliangshan: A Mesozoic Basement Involved Fold System in the Central North China Craton. Earth Science, 46(7): 2423-2448(in Chinese with English abstract). Zhang, C. H., Wu, G. G., Xu, D. B., et al., 2004. Mesozoic Tectonic Framework and Evolution in the Central Segment of the Intraplate Yanshan Orogenic Belt. Geological Bulletin of China, 23(9): 864-875(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2004.09.007 Zhang, Y. T., Sun, F. Y., Wang, S., 2018. Geochronology and Geochemistry of Late Jurassic to Early Cretaceous Granitoids in the Northern Great Xing'an Range, NE China: Petrogenesis and Implications for Late Mesozoic Tectonic Evolution. Lithos, 312/313: 171-185. https://doi.org/10.1016/j.lithos.2018.05.006 Zhang, Z. K., Ling, M. X., Lin, W., et al., 2020. "Yanshanian Movement" Induced by the Westward Subduction of the Paleo-Pacific Plate. Solid Earth Sciences, 5(2): 103-114. https://doi.org/10.1016/j.sesci.2020.04.002 Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222/223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016 Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002 Zhao, W. C., 2015. Mesozoic Tectonic Deformation Sequence in Yaowangmiao Area of Jianchang, Southern Liaoning Province and Its Significance (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). Zhao, Y., Xu, G., Zhang, S. H., et al., 2004. Yanshanian Movement and Conversion of Tectonic Regimes in East Asia. Earth Science Frontiers, 11(3): 319-328(in Chinese with English abstract). Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4): 353-385. https://doi.org/10.1007/s11430-017-9160-3 Zhu, G., Liu, C., Gu, C. C., et al., 2018. Oceanic Plate Subduction History in the Western Pacific Ocean: Constraint from Late Mesozoic Evolution of the Tan-Lu Fault Zone. Science China Earth Sciences, 61(4): 386-405. https://doi.org/10.1007/s11430-017-9136-4 Zhu, R. X., Xu, Y. G., 2019. The Subduction of the West Pacific Plate and the Destruction of the North China Craton. Science China Earth Sciences, 62(9): 1340-1350. https://doi.org/10.1007/s11430-018-9356-y Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China Earth Sciences, 55(10): 1565-1587. https://doi.org/10.1007/s11430-012-4516-y 崔芳华, 2015. 辽西兴城地区中生代花岗质岩石的成因与地壳演化(博士学位论文). 长春: 吉林大学. 崔芳华, 徐学纯, 郑常青, 等, 2020. 华北克拉通东部古太平洋板块俯冲与回撤作用: 来自辽西兴城地区晚中生代花岗质岩石的记录与启示. 岩石学报, 36(8): 2463-2492. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202008013.htm 李刚, 刘正宏, 李永飞, 等, 2013. 辽西医巫闾山地区韧性剪切带的应变与运动学涡度. 地质通报, 32(2): 408-423. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1018.htm 梁琛岳, 刘永江, 李伟民, 等, 2016. 医巫闾山变质核杂岩南段韧性变形与流变特征. 岩石学报, 32(9): 2656-2676. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201609005.htm 梁琛岳, 刘永江, 宋志伟, 等, 2020. 黑龙江虎林杂岩变形样式与时代: 对中国东北东部早白垩世古太平洋板块俯冲的启示. 岩石学报, 36(3): 685-702. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202003004.htm 辽宁省地质矿产局, 1989. 辽宁省区域地质志. 北京: 地质出版社. 马强, 2013. 辽西三叠纪-侏罗纪火山岩: 华北北缘东段下地壳再造与克拉通破坏(博士学位论文). 武汉: 中国地质大学. 马强, 郑建平, 2009. 辽西北票蓝旗组火山岩锆石U-Pb年龄和Hf同位素组成. 岩石学报, 25(12): 3287-3297. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200912018.htm 邵济安, 孟庆任, 魏海泉, 等, 2003. 冀西北晚侏罗世火山-沉积盆地的性质及构造环境. 地质通报, 22(10): 751-761. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200310001.htm 宋旸, 徐学纯, 郑常青, 等, 2018. 辽西白塔地区侏罗纪火山岩岩石学、同位素年代学与地球化学特征. 世界地质, 37(1): 70-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201801008.htm 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm 许文良, 王清海, 王冬艳, 等, 2004. 华北克拉通东部中生代岩石圈减薄的过程与机制: 中生代火成岩和深源捕虏体证据. 地学前缘, 11(3): 309-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602014.htm 薛吉祥, 刘正宏, 刘杰勋, 等, 2020. 辽东岫岩晚侏罗世荒地岩体的地球化学、年代学与Hf同位素及构造意义. 地球科学, 45(6): 2030-2043. doi: 10.3799/dqkx.2020.008 张北航, 张进, 曲军峰, 等, 2021. 吕梁山-华北克拉通中部中生代基底卷入褶皱系统. 地球科学, 46(7): 2423-2448. doi: 10.3799/dqkx.2020.235 张长厚, 吴淦国, 徐德斌, 等, 2004. 燕山板内造山带中段中生代构造格局与构造演化. 地质通报, 23(9): 864-875. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2006.htm 赵伟策, 2015. 辽西南部建昌药王庙一带中生代构造变形序列及其意义(硕士学位论文). 北京: 中国地质大学. 赵越, 徐刚, 张拴宏, 等, 2004. 燕山运动与东亚构造体制的转变. 地学前缘, 11(3): 319-328. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403042.htm -
dqkxzx-48-10-3689-附表1.doc