• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    先存构造对断层后期生长及形态的影响:以海拉尔盆地红旗凹陷为例

    刘恒麟 李忠权 李根 李敬生 蒙启安 彭杨 胡懿灵 龙伟 晏山 万双双

    刘恒麟, 李忠权, 李根, 李敬生, 蒙启安, 彭杨, 胡懿灵, 龙伟, 晏山, 万双双, 2022. 先存构造对断层后期生长及形态的影响:以海拉尔盆地红旗凹陷为例. 地球科学, 47(7): 2646-2666. doi: 10.3799/dqkx.2021.192
    引用本文: 刘恒麟, 李忠权, 李根, 李敬生, 蒙启安, 彭杨, 胡懿灵, 龙伟, 晏山, 万双双, 2022. 先存构造对断层后期生长及形态的影响:以海拉尔盆地红旗凹陷为例. 地球科学, 47(7): 2646-2666. doi: 10.3799/dqkx.2021.192
    Liu Henglin, Li Zhongquan, Li Gen, Li Jingsheng, Meng Qi’an, Peng Yang, Hu Yiling, Long Wei, Yan Shan, Wan Shuangshuang, 2022. Influences of Pre-Existing Structures on Future Growth and Geometry of Faults: A Case Study of Hongqi Sag, Hailar Basin. Earth Science, 47(7): 2646-2666. doi: 10.3799/dqkx.2021.192
    Citation: Liu Henglin, Li Zhongquan, Li Gen, Li Jingsheng, Meng Qi’an, Peng Yang, Hu Yiling, Long Wei, Yan Shan, Wan Shuangshuang, 2022. Influences of Pre-Existing Structures on Future Growth and Geometry of Faults: A Case Study of Hongqi Sag, Hailar Basin. Earth Science, 47(7): 2646-2666. doi: 10.3799/dqkx.2021.192

    先存构造对断层后期生长及形态的影响:以海拉尔盆地红旗凹陷为例

    doi: 10.3799/dqkx.2021.192
    基金项目: 

    国家自然科学基金项目 41672196

    国家科技重大专项 2016ZX05004-005

    国家科技重大专项 2017ZX05008-001

    四川省科技计划项目 2018TY0014

    四川省科技计划项目 2019YFS00756

    四川省国土资源厅计划项目 KJ-2019-13

    详细信息
      作者简介:

      刘恒麟(1994-),男,博士研究生,主要从事造山带与盆地分析方面的研究. ORCID:0000-0003-0814-7288. E-mail:lhenglin@163.com

      通讯作者:

      李忠权,E-mail: lizq@cdut.edu.cn

    • 中图分类号: P554

    Influences of Pre-Existing Structures on Future Growth and Geometry of Faults: A Case Study of Hongqi Sag, Hailar Basin

    • 摘要: 红西断层作为红旗凹陷的边界断裂长期控制着凹陷的形成演化与油气成藏,目前对断层的识别刻画及生长模式的认识还存在诸多不足. 以地震剖面精细解释为基础,确定红旗凹陷几何学特征及边界条件,结合控制变量法进行多组构造物理模拟实验;将实验结果与红旗凹陷基底顶面构造图各项参数进行对比,最终确立红西断层先存构造的规模及断层的演化模式. 实验结果显示,红旗凹陷先存构造总体规模至少占整个边界断层现今长度的50%,即34 km以上. 红西断层的构造演化具有孤立断层(先存构造)分段发育→“软连接”→“硬连接”的生长模式,并且在断层转换部位发育典型的中继构造.

       

    • 图  1  红旗凹陷构造单元划分(据刘志宏等(2011)修改)

      Fig.  1.  Structural units of Hongqi Sag(modified from Liu et al., 2011)

      图  2  海拉尔盆地红旗凹陷地层柱状图

      Fig.  2.  Stratigraphic column of Hongqi Sag in Hailar Basin

      图  3  红旗凹陷Ln85-427_5地震剖面解释

      Fig.  3.  Geological interpretation of seismic profile Ln85-427_5 of Hongqi Sag

      图  4  红旗凹陷T5地震反射层构造图

      Fig.  4.  Structure map of T5 seismic reflection layer in Hongqi Sag

      图  5  红旗凹陷T5反射层断层分布及走向玫瑰花图

      Fig.  5.  Fault distribution and strike rose diagram of T5 reflection layer in Hongqi Sag

      图  6  红西断层T5反射层水平位移‒距离曲线

      Fig.  6.  Horizontal displacement-distance graph of T5 reflection layer in Hongxi Fault

      图  7  实验模型设计

      a. 红旗凹陷三维基底模型;b. 实验平台工作原理图

      Fig.  7.  Experimental model design

      图  8  断裂平面组合的几何参数定义

      Acocella et al. (2000)付晓飞等(2015)修改

      Fig.  8.  Definition of geometric parameters of fault plane assemblies

      图  9  实验一的变形过程记录

      Fig.  9.  Records of deformation process in Experiment 1

      图  10  实验二的变形过程记录

      Fig.  10.  Records of deformation process in Experiment 2

      图  11  实验三的变形过程记录

      Fig.  11.  Records of deformation process in Experiment 3

      图  12  实验结果对比

      Fig.  12.  Comparison of experimental results

      图  13  红旗凹陷演化及红西断层分段生长模式

      Fig.  13.  Evolution of Hongqi Sag and segmented growth model of Hongxi Fault

      表  1  实验相似性计算

      Table  1.   Experimental similarity indices

      参数 代号 SI单位 模型(model) 原型(nature) 相似因子比例
      计算关系式 数值 计算关系式 数值 计算关系式 数值
      厚度 h m hm 0.1 hn 3 000 h*= hm/ hn 3.33×10‒5
      密度 ρ kg·m‒3 ρm 1 297 ρn 2 600 ρ*= ρm/ρn 0.5
      重力加速度 g m·s‒2 gm 9.81 gn 9.81 g*= gm/gn 1
      速率 v m·s‒1 vm 2.5×10‒5 vn 3.17×10‒12 v*= vm/vn 7.89×106
      垂向应力 σ Pa σm=ρm gm hm 1 272.36 σn= ρn gn hn 7.65×107 σ*=ρ* g* h* 1.665×10‒5
      垂向应变率 έ s‒1 έm= vm/hm 2.5×10‒4 έn= vn/hn 1.06×10‒15 έ*= v*/h* 2.369×1011
      下载: 导出CSV
    • [1] Acocella, V., Gudmundsson, A., Funiciello, R., 2000. Interaction and Linkage of Extension Fractures and Normal Faults: Examples from the Rift Zone of Iceland. Journal of Structural Geology, 22(9): 1233-1246. https://doi.org/10.1016/S0191-8141(00)00031-6
      [2] Bai, X. N., Jiao, Y. Q., 2011. Relay Ramp in Extensional Basins: An Important Structure of Reservoir Deposition and Hydrocarbon Migration or Accumulation. Geological Science and Technology Information, 30(6): 44-54 (in Chinese with English abstract).
      [3] Bechis, F., Cristallini, E. O., Giambiagi, L. B., et al., 2014. Transtensional Tectonics Induced by Oblique Reactivation of Previous Lithospheric Anisotropies during the Late Triassic to Early Jurassic Rifting in the Neuquén Basin: Insights from Analog Models. Journal of Geodynamics, 79: 1-17. https://doi.org/10.1016/j.jog.2014.04.010
      [4] Bonini, M., Souriot, T., Boccaletti, M., et al., 1997. Successive Orthogonal and Oblique Extension Episodes in a Rift Zone: Laboratory Experiments with Application to the Ethiopian Rift. Tectonics, 16(2): 347-362. https://doi.org/10.1029/96TC03935
      [5] Byerlee, J., Mjachkin, V., Summers, R., et al., 1978. Structures Developed in Fault Gouge during Stable Sliding and Stick-Slip. Tectonophysics, 44(1-4): 161-171. https://doi.org/10.1016/0040-1951(78)90068-9
      [6] Cao, Y. P., Chen, H. L., Lin, X. B., et al., 2020. The Effect of Pre-Existing Weak Zone on the Formation of the Pamir Salient: Insights from Physical Analogue Modeling. Acta Geologica Sinica, 94(6): 1752-1762 (in Chinese with English abstract).
      [7] Chen, Z. G., Liu, T. F., Feng, C. J., et al., 1996. The Homoplastic Research of Physical Simulation of Earth's Expansive Tectonic Dynamics. Chinese Journal of Geophysics, 39(S1): 95-104 (in Chinese with English abstract).
      [8] Clifton, A. E., Schlische, R. W., Withjack, M. O., et al., 2000. Influence of Rift Obliquity on Fault-Population Systematics: Results of Experimental Clay Models. Journal of Structural Geology, 22(10): 1491-1509. https://doi.org/10.1016/S0191-8141(00)00043-2
      [9] Contreras, J., Anders, M. H., Scholz, C. H., 2000. Growth of a Normal Fault System: Observations from the Lake Malawi Basin of the East African Rift. Journal of Structural Geology, 22(2): 159-168. https://doi.org/10.1016/S0191-8141(99)00157-1
      [10] Corti, G., Van Wijk, J., Cloetingh, S., et al., 2007. Tectonic Inheritance and Continental Rift Architecture: Numerical and Analogue Models of the East African Rift System. Tectonics, 26(6): 1-13. https://doi.org/10.1029/2006TC002086
      [11] Dai, H. K., Zheng, J. P., Xiong, Q., et al., 2021. Deep Lithosphere of the North China Craton Archives the Fate of the Paleo-Asian Ocean. Earth-Science Reviews, 215: 103554. https://doi.org/10.1016/j.earscirev.2021.103554
      [12] Feng, X., Sun, C. C., Hou, H. S., et al., 2019. Features of the Geophysical Field of Basin-Control Fault Regions on either Side of the Da Hinggan Mountains and Geological Implications. Chinese Journal of Geophysics, 62(3): 1093-1105 (in Chinese with English abstract).
      [13] Freitag, U. A., Sanderson, D. J., Lonergan, L., et al., 2017. Comparison of Upwards Splaying and Upwards Merging Segmented Normal Faults. Journal of Structural Geology, 100: 1-11. https://doi.org/10.1016/j.jsg.2017.05.005
      [14] Fu, X. F., Chen, Z., Yan, B. Q., et al., 2013. Analysis of Main Controlling Factors for Hydrocarbon Accumulation in Central Rift Zones of the Hailar-Tamtsag Basin Using a Fault-Caprock Dual Control Mode. Science China Earth Sciences, 56(8): 1357-1370. https://doi.org/10.1007/s11430-013-4622-5
      [15] Fu, X. F., Dong, J., Lü, Y. F., et al., 2012. Fault Structural Characteristics of Wuerxun-Beier Depression in the Hailar Basin and Their Reservoir-Controlling Mechanism. Acta Geologica Sinica, 86(6): 877-889 (in Chinese with English abstract).
      [16] Fu, X. F., Sun, B., Wang, H. X., et al., 2015. Fault Segmentation Growth Quantitative Characterization and Its Application on Sag Hydrocarbon Accumulation Research. Journal of China University of Mining & Technology, 44(2): 271-281 (in Chinese with English abstract).
      [17] Griffiths, P. S., 1980. Box-Fault Systems and Ramps: A Typical Associations of Structures from the Eastern Shoulder of the Kenya Rift. Geological Magazine, 117(6): 579-586. https://doi.org/10.1017/S0016756800028910
      [18] Guo, F., Li, H. X., Fan, W. M., et al., 2015. Early Jurassic Subduction of the Paleo-Pacific Ocean in NE China: Petrologic and Geochemical Evidence from the Tumen Mafic Intrusive Complex. Lithos, 224-225: 46-60. https://doi.org/10.1016/j.lithos.2015.02.014
      [19] Gupta, S., Underhill, J. R., Sharp, I. R., et al., 1999. Role of Fault Interactions in Controlling Synrift Sediment Dispersal Patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt. Basin Research, 11(2): 167-189. https://doi.org/10.1046/j.1365-2117.1999.00300.x
      [20] Hall, J., 1815. II. On the Vertical Position and Convolutions of Certain Strata, and Their Relation with Granite. Transactions of the Royal Society of Edinburgh, 7(1): 79-108. https://doi.org/10.1017/S0080456800019268
      [21] Hao, H., 2008. The Reseach of the Structural Styles and Evolution in Hongqi Sag, Hailar Basin (Dissertation). Daqing Petroleum Institute, Daqing (in Chinese with English abstract).
      [22] He, J. H., Ding, W. L., Xiao, Z. K., et al., 2019. Research Progress of Characterization and Genetic Mechanism of Fold-Thrust Belt Salients and Its Control on Oil Accumulation. Progress in Geophysics, 34(6): 2262-2275 (in Chinese with English abstract).
      [23] Henza, A. A., Withjack, M. O., Schlische, R. W., 2010. Normal-Fault Development during Two Phases of Non-Coaxial Extension: An Experimental Study. Journal of Structural Geology, 32(11): 1656-1667. https://doi.org/10.1016/j.jsg.2009.07.007
      [24] Hubbert, M. K., 1951. Mechanical Basis for Certain Familiar Geologic Structures. Geological Society of America Bulletin, 62(4): 355-372. https://doi.org/10.1130/0016-7606(1951)62[355: mbfcfg]2.0.co;2 doi: 10.1130/0016-7606(1951)62[355:mbfcfg]2.0.co;2
      [25] Krantz, R. W., 1988. Multiple Fault Sets and Three-Dimensional Strain: Theory and Application. Journal of Structural Geology, 10(3): 225-237. https://doi.org/10.1016/0191-8141(88)90056-9
      [26] Krantz, R. W., 1991. Measurements of Friction Coefficients and Cohesion for Faulting and Fault Reactivation in Laboratory Models Using Sand and Sand Mixtures. Tectonophysics, 188(1-2): 203-207. https://doi.org/10.1016/0040-1951(91)90323-K
      [27] Lai, D., He, Y., Fan, C. W., et al., 2019. Structural Characteristics of Diapir Structure under Distributed Strike-Slip: A Case Study on Yinggehai Basin. Mineralogy and Petrology, 39(2): 70-80 (in Chinese with English abstract).
      [28] Li, C. Y., Wang, Q., Zhang, Z. M., et al., 1980. A Preliminary Study of Plate Tectonics of China. Acta Geoscientica Sinica, 2(1): 11-22 (in Chinese with English abstract).
      [29] Liang, C. Y., Liu, Y. J., Zheng, C. Q., et al., 2020. Deformation of Granitic Rocks within Derbugan Fault Belt, Erguna Massif, Northeast China: Implication of the Subduction of Mongol-Okhotsk Oceanic Plate. Geological Journal, 55(6): 4159-4183. https://doi.org/10.1002/gj.3666
      [30] Liu, C. F., 2007. Research on Sequence Stratigraphy and Prediction of Prospects of Hongqi Depression in Haila'er Basin (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [31] Liu, H. L., Li, Z. Q., Peng, Y., et al., 2020. Structural Physical Simulation and Structural Evolution Characteristics of Typical Profile in Hongqi Sag, Hailaer Basin. Mineralogy and Petrology, 40(3): 92-106 (in Chinese with English abstract).
      [32] Liu, J. L., Ni, J. L., Chen, X. Y., et al., 2021. Early Cretaceous Tectonics across the North Pacific: New Insights from Multiphase Tectonic Extension in Eastern Eurasia. Earth-Science Reviews, 217: 103552. https://doi.org/10.1016/j.earscirev.2021.103552
      [33] Liu, J. Q., Yao, Z. C., Zhang, C. Y., et al., 2019. Prediction of "Hard-Connection" Fault Trap and Formation Period. Special Oil & Gas Reservoirs, 26(5): 33-37 (in Chinese with English abstract).
      [34] Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013
      [35] Liu, Y. M., Wu, Z. P., Yan, S. Y., et al., 2021. Identification of Eocene Tectonic Transition and Its Geological Significance of Rift Basins Offshore China: A Case Study in Weixi'nan Sag, Beibu Bay Basin. Earth Science, 46(6): 2145-2156 (in Chinese with English abstract).
      [36] Liu, Z. H., Huang, C. Y., Wang, P., et al., 2011. Structural Features and Determination of Deformation Stages of Hongqi Sag in Hailar Basin during the Early Cretaceous. Journal of Jilin University (Earth Science Edition), 41(2): 327-334 (in Chinese with English abstract).
      [37] Long, W., Li, Z. Q., Li, Y., et al., 2018. Experimental Insights on the Structural Patterns and Their Formation Mechanisms of the Xujiaweizi Fault Depression in the Songliao Basin. Journal of Earth Science, 29(2): 369-375. https://doi.org/10.1007/s12583-017-0767-z
      [38] Ma, Y. G., 2019. The Characteristics and the Tectonic Significance of Mesozoic Ductile Shear Belts in the Fukeshan Area, Northern Greater Khingan Range. Non-Ferrous Mining and Metallurgy, 35(2): 1-4 (in Chinese with English abstract).
      [39] Marques, F. O., Cobbold, P. R., 2002. Topography as a Major Factor in the Development of Arcuate Thrust Belts: Insights from Sandbox Experiments. Tectonophysics, 348(4): 247-268. https://doi.org/10.1016/S0040-1951(02)00077-X
      [40] McClay, K. R., White, M. J., 1995. Analogue Modelling of Orthogonal and Oblique Rifting. Marine and Petroleum Geology, 12(2): 137-151. https://doi.org/10.1016/0264-8172(95)92835-K
      [41] Morley, C. K., 2002. A Tectonic Model for the Tertiary Evolution of Strike-Slip Faults and Rift Basins in SE Asia. Tectonophysics, 347(4): 189-215. https://doi.org/10.1016/S0040-1951(02)00061-6
      [42] Morley, C. K., Gabdi, S., Seusutthiya, K., 2007. Fault Superimposition and Linkage Resulting from Stress Changes during Rifting: Examples from 3D Seismic Data, Phitsanulok Basin, Thailand. Journal of Structural Geology, 29(4): 646-663. https://doi.org/10.1016/j.jsg.2006.11.005
      [43] Morley, C. K., Haranya, C., Phoosongsee, W., et al., 2004. Activation of Rift Oblique and Rift Parallel Pre-Existing Fabrics during Extension and Their Effect on Deformation Style: Examples from the Rifts of Thailand. Journal of Structural Geology, 26(10): 1803-1829. https://doi.org/10.1016/j.jsg.2004.02.014
      [44] Morley, C. K., Nelson, R. A., Patton, T. L., et al., 1990. Transfer Zones in the East African Rift System and Their Relevance to Hydrocarbon Exploration in Rifts. AAPG Bulletin, 74: 1234-1253. https://doi.org/10.1306/0c9b2475-1710-11d7-8645000102c1865d
      [45] Peng, Y., Li, Z. Q., Liu, H. L., et al., 2020. Deformation Characteristics and Physical Simulation of Typical Structures in Hongqi Sag. Science Technology and Engineering, 20(18): 7159-7166 (in Chinese with English abstract).
      [46] Peng, Y. M., 1990. Physical Simulation Test of Engineering Geology. Hydrogeology and Engineering Geology, (2): 25-29 (in Chinese).
      [47] Peng, Y. M., Sun, J. Z., Hao, X. S., 1987. Mathematical and Physical Modelling of Seismic Response in the Beijing Depression. Acta Geologica Sinica, 61(4): 308-321 (in Chinese with English abstract).
      [48] Qi, J. F., Xia, Y. P., Yang, Q., 2006. Analysis of Oil Region Structure. Petroleum Industry Press, Beijing (in Chinese).
      [49] Reches, Z. E., Dieterich, J. H., 1983. Faulting of Rocks in Three-Dimensional Strain Fields I. Failure of Rocks in Polyaxial, Servo-Control Experiments. Tectonophysics, 95(1-2): 111-132. https://doi.org/10.1016/0040-1951(83)90263-9
      [50] Ren, Q., Zhang, S. H., Wu, Y. Q., et al., 2018. New Late Jurassic to Early Cretaceous Paleomagnetic Results from North China and Southern Mongolia and Their Implications for the Evolution of the Mongol-Okhotsk Suture. Journal of Geophysical Research: Solid Earth, 123(12): 10370-10398. https://doi.org/10.1029/2018JB016703
      [51] Roche, V., Camanni, G., Childs, C., et al., 2021. Variability in the Three-Dimensional Geometry of Segmented Normal Fault Surfaces. Earth-Science Reviews, 216: 103523. https://doi.org/10.1016/j.earscirev.2021.103523
      [52] Schellart, W. P., 2000. Shear Test Results for Cohesion and Friction Coefficients for Different Granular Materials: Scaling Implications for Their Usage in Analogue Modelling. Tectonophysics, 324(1-2): 1-16. https://doi.org/10.1016/S0040-1951(00)00111-6
      [53] Sun, X. M., Liu, C., Zhu, D. F., et al., 2011. Geophysical Features and Tectonic Attribute of the Derbugan Fault in the Western Slope of Da Hinggan Ling Mountains. Chinese Journal of Geophysics, 54(2): 433-440 (in Chinese with English abstract).
      [54] Sun, Y. H., Bai, L., Fu, X. F., 2013. Genetic Mechanism of T2 Reflector Fault Dense Zones in Northern Songliao Basin. Earth Science, 38(4): 797-806 (in Chinese with English abstract).
      [55] Tong, H. M., Cai, D. S., Wu, Y. P., et al., 2011. Activity Criterion of Pre-Existing Fabrics in Non-Homogeneous Deformation Domain. Scientia Sinica Terrae, 41(2): 158-168 (in Chinese). doi: 10.1360/zd-2011-41-2-158
      [56] Tong, H. M., Nie, J. Y., Meng, L. J., et al., 2009a. The Law of Basement Pre-Existing Fabric Controlling Fault Formation and Evolution in Rift Basin. Earth Science Frontiers, 16(4): 97-104 (in Chinese with English abstract).
      [57] Tong, H. M., Meng, L. J., Cai, D. S., et al., 2009b. Fault Formation and Evolution in Rift Basins—Sandbox Modeling and Cognition. Acta Geologica Sinica, 83(6): 759-774 (in Chinese with English abstract).
      [58] Trudgill, B., Cartwright, J., 1994. Relay-Ramp Forms and Normal-Fault Linkages, Canyonlands National Park, Utah. Geological Society of America Bulletin, 106(9): 1143-1157. https://doi.org/10.1130/0016-7606(1994)1061143: rrfanf>2.3.co;2 doi: 10.1130/0016-7606(1994)1061143:rrfanf>2.3.co;2
      [59] Wang, H. X., Li, M. H., Shen, Z. S., et al., 2014a. The Establishment and Geological Significance of Quantitative Discrimination Criterion of Fault Segmentation Growth: An Example from Saertu Reservoir in Xingbei Development Area of Songliao Basin. Geological Review, 60(6): 1259-1264 (in Chinese with English abstract).
      [60] Wang, H. X., Fu, X. F., Fu, G., et al., 2014b. Vertical Segmentation Growth of Fault and Oil Source Fault Determination in Fuyang Oil Layer of Sanzhao Depression. Earth Science, 39(11): 1639-1646 (in Chinese with English abstract).
      [61] Wang, H. X., Lü, Y. F., Fu, X. F., et al., 2013. Formation, Evolution and Reservoir-Controlling Mechanism of Relay Zone in Rift Basin. Geological Science and Technology Information, 32(4): 102-110 (in Chinese with English abstract).
      [62] Wang, H. X., Wang, F. L., Wu, T., et al., 2019. Trends and Application of Fault Vertically Segmented Growth in the Hydrocarbon Exploration and Production. Progress in Geophysics, 34(6): 2336-2345 (in Chinese with English abstract).
      [63] Wang, J. H., Wang, H., Xiao, D. Q., et al., 2008. Control of Transfer Zone on Sandbodies in the Extensional Structure System—A New Approach to Reservoir Prediction. Oil & Gas Geology, 29(1): 19-25 (in Chinese with English abstract).
      [64] Wang, Y. G., Lü, Y. F., Fu, G., et al., 2014. Growth Characteristic of Boundary Control Faults and Its Significance to Oil and Gas Geology: An Example from the Early Cretaceous Compound Fracture in Changling, Songliao Basin. Acta Geologica Sinica, 88(9): 1666-1676 (in Chinese with English abstract).
      [65] Wu, H., Qiu, N. S., Chang, J., et al., 2019. Physical Simulation on Development of Multilayer Detachment Fold Belt in Eastern Sichuan. Earth Science, 44(3): 784-797 (in Chinese with English abstract).
      [66] Yang, H. F., Lü, D. Y., Sun, Y. H., et al., 2021. The Fault System and Its Tectonophysics Simulation in the Eastern Huanghekou Sag in Bohai Bay Basin. Earth Science, 46(7): 2391-2402 (in Chinese with English abstract).
      [67] Young, M. J., Gawthorpe, R. L., Sharp, I. R., 2000. Sedimentology and Sequence Stratigraphy of a Transfer Zone Coarse-Grained Delta, Miocene Suez Rift, Egypt. Sedimentology, 47(6): 1081-1104. https://doi.org/10.1046/j.1365-3091.2000.00342.x
      [68] Yu, B. S., Li, W. W., Wang, X. Y., et al., 2013. Tectonic Evolution and Its Controlling on Sedimentation in Hailar Basin. Oil Geophysical Prospecting, 48(2): 289-296 (in Chinese with English abstract).
      [69] Yu, H., 2020. Sedimentary System Characteristics and Predominant Reservoir Facies Zones of Nantun Formation in Hongqi Depression. Journal of Petrochemical Universities, 33(2): 67-74 (in Chinese with English abstract).
      [70] Zhang, H. Q, 2020. Evaluation of the Hydrocarbon Source Rock and Prediction of the Favorable Zone in Hongqi Sag of Hailar Basin. Petroleum Geology & Oilfield Development in Daqing, 39(2): 21-27 (in Chinese with English abstract).
      [71] Zhang, S. C., 2009. Research on the Structural Feature of Hailaer Basin (Dissertation). Daqing Petroleum Institute, Daqing (in Chinese with English abstract).
      [72] Zhang, X. D., Li, J. S., Hou, Y. P., et al., 2019. Controlling Action of the Tectonic Evolution on the Hydrocarbon Accumulation in Hongqi Sag of Hailar Basin. Petroleum Geology & Oilfield Development in Daqing, 38(5): 117-125 (in Chinese with English abstract).
      [73] Zhang, X. D., Liu, G. D., Wang, J. L., 1994. Structural Characters of the Hailar Basin and Its Geological Evolution. Experimental Petroleum Geology, 16(2): 119-127 (in Chinese with English abstract).
      [74] Zhang, Y. C., 2019. Geophysical Field and Structural Characteristics of the Basin Group on the West of Songliao Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      [75] 白小鸟, 焦养泉, 2011. 伸展盆地的转换斜坡: 控制储层发育与烃类运聚的重要构造单元. 地质科技情报, 30(6): 44-54. doi: 10.3969/j.issn.1000-7849.2011.06.006
      [76] 曹玉萍, 陈汉林, 林秀斌, 等, 2020. 先存薄弱带对帕米尔弧形构造带形成的影响: 来自构造物理模拟实验的制约. 地质学报, 94(6): 1752-1762. doi: 10.3969/j.issn.0001-5717.2020.06.008
      [77] 陈志耕, 刘泰峰, 冯朝军, 等, 1996. 地球膨胀构造动力物理模拟的相似性研究. 地球物理学报, 39(S1): 95-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX6S1.010.htm
      [78] 冯晅, 孙成城, 侯贺晟, 等, 2019. 大兴安岭两侧控盆断裂域地球物理场基本特征与地质意义. 地球物理学报, 62(3): 1093-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903022.htm
      [79] 付晓飞, 董晶, 吕延防, 等, 2012. 海拉尔盆地乌尔逊‒贝尔凹陷断裂构造特征及控藏机理. 地质学报, 86(6): 877-889. doi: 10.3969/j.issn.0001-5717.2012.06.003
      [80] 付晓飞, 孙兵, 王海学, 等, 2015. 断层分段生长定量表征及在油气成藏研究中的应用. 中国矿业大学学报, 44(2): 271-281.
      [81] 郝慧, 2008. 海拉尔盆地红旗凹陷构造样式与演化研究(硕士学位论文). 大庆: 大庆石油学院.
      [82] 何建华, 丁文龙, 肖子亢, 等, 2019. 弧形断裂构造带的表征、成因机制及其控油作用研究进展. 地球物理学进展, 34(6): 2262-2275. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906017.htm
      [83] 赖冬, 何宇, 范彩伟, 等, 2019. 弥散性走滑条件下底辟构造特征研究: 以莺歌海盆地为例. 矿物岩石, 39(2): 70-80. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201902008.htm
      [84] 李春昱, 王荃, 张之孟, 等, 1980. 中国板块构造的轮廓. 地球学报, 2(1): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198000001.htm
      [85] 刘春芳, 2007. 海拉尔盆地红旗凹陷层序地层研究与有利含油气区带预测(硕士学位论文). 北京: 中国地质大学.
      [86] 刘恒麟, 李忠权, 彭杨, 等, 2020. 海拉尔盆地红旗凹陷典型剖面构造物理模拟及构造演化特征. 矿物岩石, 40(3): 92-106. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202003009.htm
      [87] 刘峻桥, 姚志纯, 张成宇, 等, 2019. "硬连接"断层圈闭发育部位及形成时期预测. 特种油气藏, 26(5): 33-37. doi: 10.3969/j.issn.1006-6535.2019.05.006
      [88] 刘一鸣, 吴智平, 颜世永, 等, 2021. 中国近海裂陷盆地始新世构造变革的厘定及地质意义: 以北部湾盆地涠西南凹陷为例. 地球科学, 46(6): 2145-2156. doi: 10.3799/dqkx.2020.205
      [89] 刘志宏, 黄超义, 王芃, 等, 2011. 海拉尔盆地红旗凹陷早白垩世构造特征与变形期次的厘定. 吉林大学学报(地球科学版), 41(2): 327-334. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201102002.htm
      [90] 马永光, 2019. 大兴安岭北部富克山地区中生代韧性剪切带特征及其构造意义. 有色矿冶, 35(2): 1-4. doi: 10.3969/j.issn.1007-967X.2019.02.001
      [91] 彭杨, 李忠权, 刘恒麟, 等, 2020. 红旗凹陷典型构造变形特征及物理模拟. 科学技术与工程, 20(18): 7159-7166. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202018005.htm
      [92] 彭一民, 1990. 工程地质物理模拟试验. 水文地质工程地质, (2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199002008.htm
      [93] 彭一民, 孙进忠, 郝宪生, 1987. 北京凹陷地震反应的数学物理模拟. 地质学报, 61(4): 308-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198704002.htm
      [94] 漆家福, 夏义平, 杨桥, 2006. 油区构造解析. 北京: 石油工业出版社.
      [95] 孙晓猛, 刘财, 朱德丰, 等, 2011. 大兴安岭西坡德尔布干断裂地球物理特征与构造属性. 地球物理学报, 54(2): 433-440. doi: 10.3969/j.issn.0001-5733.2011.02.021
      [96] 孙永河, 白鹿, 付晓飞, 2013. 松辽盆地北部T2反射层断裂密集带成因机制. 地球科学, 38(4): 797-806. doi: 10.3799/dqkx.2013.078
      [97] 童亨茂, 蔡东升, 吴永平, 等, 2011. 非均匀变形域中先存构造活动性的判定. 中国科学: 地球科学, 41(2): 158-168. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201102004.htm
      [98] 童亨茂, 聂金英, 孟令箭, 等, 2009a. 基底先存构造对裂陷盆地断层形成和演化的控制作用规律. 地学前缘, 16(4): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200904012.htm
      [99] 童亨茂, 孟令箭, 蔡东升, 等, 2009b. 裂陷盆地断层的形成和演化: 目标砂箱模拟实验与认识. 地质学报, 83(6): 759-774. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200906003.htm
      [100] 王海学, 李明辉, 沈忠山, 等, 2014a. 断层分段生长定量判别标准的建立及其地质意义: 以松辽盆地杏北开发区萨尔图油层为例. 地质论评, 60(6): 1259-1264.
      [101] 王海学, 付晓飞, 付广, 等, 2014b. 三肇凹陷断层垂向分段生长与扶杨油层油源断层的厘定. 地球科学, 39(11): 1639-1646.
      [102] 王海学, 吕延防, 付晓飞, 等, 2013. 裂陷盆地转换带形成演化及其控藏机理. 地质科技情报, 32(4): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304017.htm
      [103] 王海学, 王凤兰, 吴桐, 等, 2019. 断裂垂向分段生长在油气勘探开发中的应用及发展趋势. 地球物理学进展, 34(6): 2336-2345. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906025.htm
      [104] 王家豪, 王华, 肖敦清, 等, 2008. 伸展构造体系中传递带的控砂作用——储层预测的新思路. 石油与天然气地质, 29(1): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200801004.htm
      [105] 王有功, 吕延防, 付广, 等, 2014. 复式断陷边界控陷断层生长特征及油气地质意义: 以松辽盆地长岭早白垩世复式断陷群东部为例. 地质学报, 88(9): 1666-1676. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409004.htm
      [106] 吴航, 邱楠生, 常健, 等, 2019. 川东多套滑脱层褶皱构造带形成物理模拟. 地球科学, 44(3): 784-797. doi: 10.3799/dqkx.2018.109
      [107] 杨海风, 吕丁友, 孙永河, 等, 2021. 渤海湾盆地黄河口凹陷东洼断裂体系发育特征及其变形过程的构造物理模拟. 地球科学, 46(7): 2391-2402. doi: 10.3799/dqkx.2020.189
      [108] 余本善, 李薇薇, 王兴宇, 等, 2013. 海拉尔盆地构造演化及对沉积的控制作用. 石油地球物理勘探, 48(2): 289-296. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201302021.htm
      [109] 于航, 2020. 红旗凹陷南屯组沉积特征及优势储集相带分析. 石油化工高等学校学报, 33(2): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHX202002012.htm
      [110] 张海桥, 2020. 海拉尔盆地红旗凹陷烃源岩评价及有利区预测. 大庆石油地质与开发, 39(2): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202002003.htm
      [111] 张绍臣, 2009. 海拉尔盆地构造特征研究(博士学位论文). 大庆: 大庆石油学院.
      [112] 张晓东, 李敬生, 侯艳平, 等, 2019. 海拉尔盆地红旗凹陷构造演化及其对成藏的控制作用. 大庆石油地质与开发, 38(5): 117-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201905016.htm
      [113] 张晓东, 刘光鼎, 王家林, 1994. 海拉尔盆地的构造特征及其演化. 石油实验地质, 16(2): 119-127. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD402.001.htm
      [114] 张雅晨, 2019. 松辽盆地西盆地群地球物理场及构造特征(博士学位论文). 长春: 吉林大学.
    • 加载中
    图(13) / 表(1)
    计量
    • 文章访问数:  43
    • HTML全文浏览量:  64
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-08-05
    • 网络出版日期:  2022-07-29
    • 刊出日期:  2022-07-25

    目录

      /

      返回文章
      返回