• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海北部海马冷泉区表层沉积物的AOM生物标志化合物特征及意义

    吴一帆 管红香 许兰芳 茅晟懿 刘磊 苏正 刘丽华

    吴一帆, 管红香, 许兰芳, 茅晟懿, 刘磊, 苏正, 刘丽华, 2022. 南海北部海马冷泉区表层沉积物的AOM生物标志化合物特征及意义. 地球科学, 47(8): 3005-3015. doi: 10.3799/dqkx.2021.202
    引用本文: 吴一帆, 管红香, 许兰芳, 茅晟懿, 刘磊, 苏正, 刘丽华, 2022. 南海北部海马冷泉区表层沉积物的AOM生物标志化合物特征及意义. 地球科学, 47(8): 3005-3015. doi: 10.3799/dqkx.2021.202
    Wu Yifan, Guan Hongxiang, Xu Lanfang, Mao Shengyi, Liu Lei, Su Zheng, Liu Lihua, 2022. Characteristics and Significance of Biomarkers Related to AOM in Surface Sediments of the Haima Cold Seep in the Northern South China Sea. Earth Science, 47(8): 3005-3015. doi: 10.3799/dqkx.2021.202
    Citation: Wu Yifan, Guan Hongxiang, Xu Lanfang, Mao Shengyi, Liu Lei, Su Zheng, Liu Lihua, 2022. Characteristics and Significance of Biomarkers Related to AOM in Surface Sediments of the Haima Cold Seep in the Northern South China Sea. Earth Science, 47(8): 3005-3015. doi: 10.3799/dqkx.2021.202

    南海北部海马冷泉区表层沉积物的AOM生物标志化合物特征及意义

    doi: 10.3799/dqkx.2021.202
    基金项目: 

    国家自然科学基金资助项目 91958105

    国家重点研发项目 2018YFC031005

    广东省基础与应用基础研究重大项目 2019B030302004

    详细信息
      作者简介:

      吴一帆(1996-),男,硕士研究生,主要研究冷泉生物地球化学. ORCID:0000-0002-2189-829X.E-mail:wuyf@ms.giec.ac.cn

      通讯作者:

      管红香, E-mail: guanhongxiang@ouc.edu.cn

    • 中图分类号: P67

    Characteristics and Significance of Biomarkers Related to AOM in Surface Sediments of the Haima Cold Seep in the Northern South China Sea

    • 摘要: 选取采自南海天然气水合物赋存区海马冷泉,管状蠕虫区(ROV06站位)和贻贝区(HM101站位)的2个表层沉积物柱状样品,提取其中的生物标志化合物,对其种类和稳定碳同位素进行了测定,用以探讨海底表层沉积物中的有机质来源、微生物种群分布及其对冷泉渗漏活动的响应特征. 两个站位的沉积物中均发现了大量与甲烷厌氧氧化古菌(ANME)有关的生物标志物,如2,6,11,15⁃四甲基十六烷(crocetane)、2,6,10,15,19⁃五甲基二十烷(PMI)等类异戊二烯烃,古醇(archaeol)、sn2⁃羟基古醇(sn2⁃OH⁃Ar)等,以及来源于硫酸盐还原菌(SRB)的异构/反异构脂肪酸iso⁃C15ai⁃C15等. 这些生物标志物均具有极低的碳同位素特征(古菌生标δ13C值低至-126‰,硫酸盐还原菌生标δ13C值低至⁃89‰),表明沉积物中发生了甲烷厌氧氧化作用(AOM). ROV06和HM101站位沉积物中均检测到了crocetane,大多数sn2⁃羟基古醇/古醇大于1,同时ai⁃C15/iso⁃C15脂肪酸比值小于2,这说明两个站位沉积物中的甲烷厌氧氧化古菌主要以ANME⁃2/DSS为主,指示甲烷渗漏强度较强. ROV06站位的表层沉积物含有crocetane,但sn2⁃羟基古醇/古醇小于1,且ai⁃C15/iso⁃C15脂肪酸比值大于2.1,指示了ANME⁃1/DSS和ANME⁃2/DSS混合存在的种群特征,说明ROV06站位顶部甲烷渗漏强度有减小的趋势. 根据古菌种群ANME⁃2化合物对甲烷的碳同位素分馏(Δ:-50‰)及古菌生物标志物(PMI、古醇、sn2⁃羟基古醇)的平均δ13C值,计算得到甲烷δ13C值(-58‰~-53‰),显示甲烷为热成因和生物成因混合气. 虽然ROV06和HM101站位的甲烷具有相近的δ13C值,但ROV06站位的SRB生物标志物比HM101站位要更加亏损13C(Δδ13C:18‰),这可能与管状蠕虫的共生菌(硫氧化菌)吸收硫化物并释放出硫酸盐有关,因为其不断释放出的硫酸盐很可能极大地增强了甲烷厌氧氧化作用,使沉积物中含有更多13C亏损的无机碳.

       

    • 图  1  沉积物取样位置图

      Fig.  1.  The location of the sampling sites in this study

      图  2  ROV06站位(a)和HM101站位(b)烷烃类组分的气相色谱图

      Cr. 2,6,11,15四甲基十六烷;罗马数字. 正构烷烃碳数

      Fig.  2.  Gas chromatograms (FID) of hydrocarbon fraction from samples ROV06(a) and HM101(b)

      图  3  ROV06站位(a)和HM101站位(b)醇类组分的气相色谱图

      Istd. 正构十三醇(标样);phytanol. 植醇;con. 污染峰;5α⁃cholestan⁃3β⁃ol. 5α⁃胆甾⁃3β⁃醇;diploterol. 里白醇;Ar. 古醇;sn2⁃OH⁃Ar. sn2⁃羟基古醇;罗马数字. 正构醇碳数

      Fig.  3.  Gas chromatograms (FID) of alcohol fraction from samples ROV06(a) and HM101(b)

      图  4  ROV06站位(a)和HM101站位(b)酸类组分的气相色谱图

      Fig.  4.  Gas chromatograms (FID) of carboxylic acid fraction from samples ROV06(a) and HM101(b)

      图  5  ROV06站位(左)和HM101站位(右)正构烷烃相对含量(%)和CPI变化

      Fig.  5.  variation of CPI and relative amount of n⁃alkanes of ROV06(left) and HM101(right)

      图  6  ROV06站位sn2⁃羟基古醇/古醇(a)、ai⁃C15/iso⁃C15脂肪酸(b)、C16:1ω5/iso⁃C15脂肪酸(c)比值变化

      Fig.  6.  Variation of ratios of sn2⁃OH⁃Ar/Ar (a), ai⁃C15/iso⁃C15 fatty acids(b), C16:1ω5/iso⁃C15 fatty acids (c) from site ROV06

      图  7  HM101站位sn2⁃羟基古醇/古醇(a)、ai⁃C15/iso⁃C15脂肪酸(b)、C16:1ω5/iso⁃C15脂肪酸(c)比值变化

      Fig.  7.  Variation of ratio of Ar/sn2⁃OH⁃Ar (a), ai⁃C15/iso⁃C15 fatty acids (b), C16:1ω5/iso⁃C15 fatty acids (c) from site HM101

    • [1] Birgel, D., Feng, D., Harry, H, et al., 2011. Changing Redox Conditions at Cold Seeps as Revealed by Authigenic Carbonates from Alaminos Canyon, Northern Gulf of Mexico. Chemical Geology, 285(1-4): 82-96. https://doi.org/10.1016/j.chemgeo.2011.03.004
      [2] Blumenberg, M., Seifert, R., Reitner, J., et al., 2004. Membrane Lipid Patterns Typify Distinct Anaerobic Methanotrophic Consortia. Proceedings of the National Academy of Sciences, 101(30): 11111-11116. https://doi.org/10.1073/pnas.0401188101
      [3] Blumer, M., Guillard, R., Chase, T., 1971. Hydrocarbons of Marine Phytoplankton. Marine Biology, 8(3): 183-189. https://doi.org/10.1007/BF00355214
      [4] Boetius, A., Ravenschlag, K., Schubert, C. J., et al., 2000. A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane. Nature, 407(6804): 623-626. https://doi.org/10.1038/35036572
      [5] Chen, D.F., Chen, X.P., Chen G.Q., 2002. Geology and Geochemistry of Cold Seepage and Venting-Related Carbonates. Acta Sedimentologica Sinica, (1): 34-40(in Chinese with English abstract).
      [6] Chen, Z. Yang, H.P., Huang Y.Q., et al., 2007. Characteristics of Cold Seeps and Structures of Chemoautosynthesis-Based Communities in Seep Sediments. Journal of Tropical Oceanography, (06): 73-82(in Chinese with English abstract).
      [7] Cui, Z.H., He, Z.H., Jia, G.D., 2021. Composition Distribution of N-Alkanes in Slope Sediments of the Northeast Sunda Shelf Since the Last Glacial Period and Its Palaeo-Vegetation Significance, Earth Science, 46(01): 331-340(in Chinese with English abstract).
      [8] Dattagupta, S., Miles, L. L., Barnabei, M. S., et al., 2006. The Hydrocarbon Seep Tubeworm Lamellibrachia luymesi Primarily Eliminates Sulfate and Hydrogen Ions across Its Roots to Conserve Energy and Ensure Sulfide Supply. Journal of Experimental Biology, 209(19): 3795-3805. https://doi.org/10.1242/jeb.02413
      [9] Ding, L., Zhao, M.X., 2010. Application Of Biomarkers And Carbon Isotopes to Cold Seep Biogeochemical Processes. Marine Geology & Quaternary Geology., 30(2): 133-142(in Chinese with English abstract).
      [10] Elvert, M., Hopmans, E., Treude, T., et al., 2010. Spatial Variations of Methanotrophic Consortia at Cold Methane Seeps: Implications from a High-Rresolution Molecular and Isotopic Approach. Geobiology, 3(3): 195-209. https://doi.org/10.1111/j.1472-4669.2005.00051.x
      [11] Fang, Y.X., Wei, J. G, Gu, H.L., et al., 2019. Chemical and Structural Characteristics of Gas Hydrates from the Haima Cold Seeps in the Qiongdongnan Basin of the South China Sea. Journal of Asian Earth Sciences, (182): 56-78. https://doi.org/10.1016/j.jseaes.2019.103924
      [12] Gan, J., Zhang, Y.Z., Liang, G., et al., 2019. Deposition Pattern and Differential Thermal Evolution of Source Rocks, Deep Water Area of Qiongdongnan Basin. Earth Science, 44(08): 2627-2635(in Chinese with English abstract).
      [13] Ge, L., Jiang, S.Y., Blumenberg M, et al., 2015. Lipid Biomarkers and Their Specific Carbon Isotopic Compositions of Cold Seep Carbonates from the South China Sea. Marine and Petroleum Geology, 66: 501-510. https://doi.org/10.1016/j.marpetgeo.2015.02.005
      [14] Goi, M. A., Ruttenberg, K. C., Eglinton, T. I., 1997. Sources and Contribution of Terrestrial Organic Carbon in the Gulf of Mexico. Nature, 389(6648): 275-278. https://doi.org/10.1038/38477
      [15] Gontharet, S., Stadnitskaia, A., Bouloubassi, I., et al., 2009. Palaeo Methane-Seepage History Traced by Biomarker Patterns in a Carbonate Crust, Nile Deep-Sea Fan (Eastern Mediterranean Sea). Marine Geology, 261(1-4): 105-113. https://doi.org/10.1016/j.margeo.2008.11.006
      [16] Guan, H.X., Birgel, D., Peckmann, J., et al., 2018. Lipid Biomarker Patterns of Authigenic Carbonates Reveal Fluid Composition and Seepage Intensity at Haima cold Seeps, South China Sea. Journal of Asian Earth Sciences, 168(DEC. ): 163-172. https://doi.org/10.1016/j.jseaes.2018.04.035
      [17] Guan, H.X., Feng, D., Birgel D, et al., 2019a. Lipid Biomarker Patterns Reflect Different Formation Environments of Musseland Tubeworm Dominated Seep Carbonates from the Gulf of Mexico (Atwater Valley and Green Canyon). Chemical Geology, 505: 36-47. https://doi.org/10.1016/j.chemgeo.2018.12.005
      [18] Guan, H.X., Sun, Z.L., Mao, S.Y., et al., 2019b. Authigenic Carbonate Formation Revealed by Lipid Biomarker Inventory at Hydrocarbon Seeps: A Case Study From the Okinawa Trough. Marine and Petroleum Geology, 101: 502-511. https://doi.org/10.1016/j.marpetgeo.2018.12.028
      [19] Gretchen, D, Onstad, A., et al., 2000. Sources of Particulate Organic Matter in Rivers from the Continental USA: Lignin Phenol and Stable Carbon Isotope Compositions. Geochimica et Cosmochimica Acta, 64(20): 3539-3546. https://doi.org/10.1016/S0016-7037(00)00451-8
      [20] Han, J., Calvin, M., 1969. Hydrocarbon Distribution of Algae and Bacteria, and Microbiological Activity in Sediments. Proceedings of the National Academy of Sciences, 64(2): 436-443. https://doi.org/10.1073/pnas.64.2.436
      [21] Hinrichs, K. U., Hayes, J. M., Sylva, S. P., et al., 1999. Methane-Consuming Archaebacteria in Marine Sediments. Nature, 398(6730). https://doi.org/10.1038/19751
      [22] Liang, Q.Y., Hu, Y., Feng, D., et al., 2017. Authigenic Carbonates from Newly Discovered Active Cold Seeps on the Northwestern Slope of the South China Sea Constraints on Fluid Sources, Formation Environments, and Seepage Dynamics. Deep Sea Res Pt I: Oceanogr Res Pap, 124: 31-41. https://doi.org/10.1016/j.dsr.2017.04.015
      [23] Ma, Q.Q., Wei, X., Wu, Y., et al., 2015. Composition and Distribution of Organic Matter in the Surface Sediments of the Changjiang River in Post-Three Gorges Dam period. China Environmental Science, 35(08): 2485-2493(in Chinese with English abstract).
      [24] Meyers, P., 2003. Applications of Organic Geochemistry to Paleolimnological Reconstructions: ASummary of Examples from the Laurentian Great Lakes. Organic Geochemistry, 34(2): 261-289. https://doi.org/10.1016/S0146-6380(02)00168-7
      [25] Nauhaus, K., Treude, T., Boetius, A., et al., 2010. Environmental Regulation of the Anaerobic Oxidation of Methane: AComparison of ANME-I and ANME-Ⅱ Communities. Environmental Microbiology, 7(1): 98-106. https://doi.org/10.1111/j.1462-2920.2004.00669.x
      [26] Niemann, H., Elvert, M., 2008. Diagnostic Lipid Biomarker and Stable Carbon Isotope Signatures of Microbial Communities Mediating the Anaerobic Oxidation of Methane with Sulphate. Organic Geochemistry, 39(12): 1668-1677. https://doi.org/10.1016/j.orggeochem.2007.11.003
      [27] Knittel, K., Boetius, A., Lemke, A., et al., 2003. Activity, Distribution, and Diversity of Sulfate Reducers and Other Bacteria in Sediments above Gas Hydrate (Cascadia Margin, Oregon). Geomicrobiology, 20(4): 269-294. https://doi.org/10.1080/01490450303896
      [28] Knittel, K., Boetius, A., 2009. Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual review of microbiology, 63(1): 311-334. https://doi.org/10.1146/annurev.micro.61.080706.093130
      [29] Orphan, V. J., Hinrichs, K. U., Ussler, W., et al., 2001. Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments. Applied and Environmental Microbiology, 67(4): 1922-1934. https://doi.org/10.1128/AEM.67.4.1922-1934.2001
      [30] Pan, A.Y., Shen, B.J., Yao, S.P., et al., 2017. Advances in Biogeochemical Study of Glycerol Diether Membrane Lipids, Marine Geology Frontiers, 33(09): 1-12(in Chinese with English abstract).
      [31] Wang, J.S., Wang, Y.B., Li, Q., 2007. Potential Relationship between Extremophiles and Hydrocarbon Resources in Marine Extreme Environment, Earth Science, 32(6): 781-788(in Chinese with English abstract).
      [32] Yu, X.G., Han, X.Q., Li, H.L., et al., 2008. Biomarkers and Carbon Isotope Composition of Anaerobic Oxidation of Methane in Sediments and Carbonates of Northeastern Part of Dongsha, South China Sea, Acta Oceanologica Sinica, (03): 77-84(in Chinese with English abstract).
      [33] Robson, J., Rowland, S., 1993. Chromatographic and Spectral Characterisation of 2, 6, 11, 15-Tetramethylhexadecane (Crocetane) and 2, 6, 9, 13-Tetramethyltetradecane: Reference Acyclic Isoprenoids for Geochemical Studies. Organic geochemistry, 20(7): 1093-1098. https://doi.org/10.1016/0146-6380(93)90117-T
      [34] Stadnitskaia, A., Nadezhkin, D., Abbas, B., et al., 2008. Carbonate Formation by Anaerobic Oxidation of Methane: Evidence from Lipid Biomarker and Fossil 16S rDNA. Geochimica et Cosmochimica Acta, 72(7): 1824-1836. https://doi.org/10.1016/j.gca.2008.01.020
      [35] Thiel, V., Peckmann, J., Seifert, R., et al., 1999. Highly Isotopically Depleted Isoprenoids: Molecular Markers for Ancient Methane Venting. Geochimica et Cosmochimica Acta, 63(23-24): 3959-3966. https://doi.org/10.1016/S0016-7037(99)00177-5
      [36] Zhang, W., Liang, J.Q., Lu, J.A., et al., 2020. Characteristics and Controlling Mechanism of Typical Leakage Gas Hydrate Reservoir Forming System in the Qiongdongnan Basin, northern South China Sea, Natural Gas Industry, 40(8): 90-99(in Chinese with English abstract).
      [37] Zhao, M.X., Zhang, Y.Z., Xing, L., et al., 2011. The Composition and Distribution of N-Alkanes in Surface Sediments from the South Yellow Sea and Their Potential as Organic Matter Source Indicators, Periodical of Ocean University of China, 41(4): 90-96(in Chinese with English abstract).
      [38] 陈多福, 陈先沛, 陈光谦, 2002. 冷泉流体沉积碳酸盐岩的地质地球化学特征. 沉积学报, (1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007
      [39] 陈忠, 杨华平, 黄奇瑜, 等, 2007. 海底甲烷冷泉特征与冷泉生态系统的群落结构. 热带海洋学报, (6): 73-82 doi: 10.3969/j.issn.1009-5470.2007.06.013
      [40] 崔子恒, 贺娟, 贾国东, 2021. 末次冰期以来巽他陆架东北部陆坡区正构烷烃分布特征及其古植被意义. 地球科学, 46(1): 331-340. doi: 10.3799/dqkx.2019.246
      [41] 丁玲, 赵美训, 2010. 生物标志物及其碳同位素在冷泉区生物地球化学研究中的应用. 海洋地质与第四纪地质, 30(2): 133-142. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201002027.htm
      [42] 甘军, 张迎朝, 梁刚, 等, 2019. 琼东南盆地深水区烃源岩沉积模式及差异热演化. 地球科学, 44(8): 2627-2635. doi: 10.3799/dqkx.2019.202
      [43] 马倩倩, 魏星, 吴莹, 等, 2015. 三峡大坝建成后长江河流表层沉积物中有机物组成与分布特征. 中国环境科学, 35(8): 2485-2493. doi: 10.3969/j.issn.1000-6923.2015.08.029
      [44] 潘安阳, 申宝剑, 姚素平, 等, 2017. 甘油二醚膜类脂化合物的生物地球化学研究进展. 海洋地质前沿, 33(9): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201709001.htm
      [45] 王家生, 王永标, 李清, 2007. 海洋极端环境微生物活动与油气资源关系. 地球科学, (6): 781-788. doi: 10.3321/j.issn:1000-2383.2007.06.008
      [46] 于晓果, 韩喜球, 李宏亮, 等, 2008. 南海东沙东北部甲烷缺氧氧化作用的生物标志化合物及其碳同位素组成. 海洋学报(中文版), (3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200803010.htm
      [47] 张伟, 梁金强, 陆敬安, 等, 2020. 琼东南盆地典型渗漏型天然气水合物成藏系统的特征与控藏机制. 天然气工业, 40(8): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202008011.htm
      [48] 赵美训, 张玉琢, 邢磊, 等, 2011. 南黄海表层沉积物中正构烷烃的组成特征、分布及其对沉积有机质来源的指示意义. 中国海洋大学学报(自然科学版), 41(4): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201104016.htm
    • dqkxzx-47-8-3005-附表.docx
    • 加载中
    图(7)
    计量
    • 文章访问数:  53
    • HTML全文浏览量:  21
    • PDF下载量:  11
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-03
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回