Geochemistry, Geochronology and Petrogenesis of Granite Porphyry in Langcun W-Mo Deposit, Zhejiang Province
-
摘要: 郎村钨钼矿床位于浙西北安吉县境内,是钦杭成矿带东段新发现的中型斑岩型矿床.矿体主要产于花岗斑岩岩体中以及岩体与围岩的内外接触带中.为探讨成矿岩浆来源及动力学背景,在野外地质工作基础上对矿区与成矿相关的花岗斑岩进行了详细的岩相学、锆石年代学和岩石地球化学研究.结果表明,花岗斑岩LA-ICP-MS锆石U-Pb年龄为129.7±1.1 Ma.岩石地球化学结果显示高硅、富碱和弱过铝质特征,属于钾玄岩系列花岗岩类,其稀土配分曲线显示轻稀土富集型特征,并具有明显的Eu负异常(δEu=0.36~0.40).高硅、富碱、高的10 000 Ga/Al比值(2.57~2.90)和高Zr+Nb+Ce+Y值(379.5×10-6~462.0×10-6),显示了A型花岗岩的特征.花岗斑岩全岩的(87Sr/86Sr)i为0.707 17~0.709 08,εNd(t)为-6.1~-4.0,二阶段模式年龄(TDM2)为1.25~1.42 Ga;锆石的εHf(t)为-5.94~-0.87,二阶段模式年龄(TMD2)介于1.23~1.56 Ga,表明花岗斑岩来源于中元古代地壳部分熔融,并有少量地幔物质的参与.花岗斑岩可能形成于中国东部岩石圈伸展—减薄的构造背景下,是华南大规模岩浆-构造事件的产物.Abstract: The Langcun tungsten-molybdenum deposit is a medium porphyry-skarn type deposit in the Northwest Zhejiang Province, western Qinzhou-Hangzhou metallogenic belt (QHMB). In this paper, it analyzed the petrological, chronological and geochemical characteristics of the ore-forming related granite porphyry in this deposit to constrain its genesis and interpret its tectonic significance. Granite porphyry formed at 129.7±1.1 Ma (zircon U-Pb, LA-ICP-MS) and belongs to shoshonite series with high SiO2, alkali contents, and weakly peraluminous. The characteristics, i.e., right-dipping chondrite normalized REE pattern with negative Eu anomalies (δEu=0.36-0.40) and the 10 000 Ga/Al and Zr+Nb+Ce+Y values range from 2.57 to 2.90 and 379.5×10-6 to 462.0×10-6, respectively, suggest that the granite porphyry belongs to A-type granite. Whole rock Sr-Nd compositions are characterized by ISr and εNd(t) range from 0.707 17 to 0.709 08 and -6.1 to -4.0, respectively, with Nd model ages of 1.25 to 1.42 Ga. Meanwhile, zircon Hf compositions are characterized by εHf(t)=-5.94 to -0.87 with two stage model ages of 1.23 to 1.56 Ga. All these evidences suggest that granite porphyry is formed by an ancient continental crust mixed with mantle material source under the tectonic of lithosphere extension and thinning in South China.
-
Key words:
- Langcun W-Mo deposit /
- granite porphyry /
- geochemistry /
- geochronology /
- petrology /
- mineralogy
-
图 1 钦杭成矿带及周围晚中生代W矿床分布
据参考文献:杨明桂和梅勇文(1997);Tang et al.(2017)
Fig. 1. Distribution of the W deposits in the Qinzhou-Hangzhou metallogenic belt (QHMB) and surrounding area
图 5 郎村花岗斑岩岩石判别图解
a. TAS图解(底图据Middlemost,1994);Ir-Irvine分界线,上方为碱性,下方为亚碱性;1.橄榄辉长岩;2a.碱性辉长岩;2b.亚碱性辉长岩;3.辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.硅英岩;8.二长辉长岩;9.二长闪长岩;10.二长岩;11.石英二长岩;12.正长岩;13.副长石辉长岩;14.副长石二长岩;15.副长石二长正长岩;16.副长正长岩;17.副长深成岩;18.霓方钠岩/磷霞岩/白榴岩;b. SiO2-K2O岩石序列图解(底图据Rickwood,1989);c. A/CNK-A/NK图解(底图据Maniar and Piccoli,1989)
Fig. 5. The discriminative diagrams for granite porphyry from Langcun
图 6 郎村花岗斑岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)
a. 标准化值据McDonough and Sun(1995);b. 标准化值据Boynton(1984);数据来源:骑田岭花岗岩据柏道远等(2005);白菊花尖花岗岩据Wong et al.(2009)
Fig. 6. Chondrite-normalized REE patterns and primitive mantle-normalized trace element patterns of the granite porphyry from Langcun
图 9 郎村花岗斑岩岩石成因类别判别图解
底图据Whalen et al.(1987);数据来源:白菊花尖花岗岩据Wong et al.(2009);大茅山和桐山花岗岩据Jiang et al.(2011);大桥坞花岗斑岩和杨梅湾花岗岩据Yang et al.(2012);密坑山花岗岩据邱检生等(2005);FG.分异型的长英质花岗岩;OGT.未分异的I、S和M型花岗岩
Fig. 9. Petrogenesis diagrams of granite porphyry from Langcun
图 10 郎村花岗斑岩ISr-εNd(t)图解(a)和εHf(t)-t图解(b)
a. 底图据Li et al.(2013),数据来源:相山花岗斑岩据Yang et al.(2011);其他数据来源同图 9
Fig. 10. Initial Sr isotope ratio ISr vs. εNd(t) diagram and εHf(t)-t diagram of granite porphyry from Langcun
图 11 郎村花岗斑岩构造环境判别图
a. 底图据Batchelor and Bowden(1985);①地幔斜长花岗岩;②破坏性活动板块边缘(板块碰撞前)花岗岩;③板块碰撞后隆起期花岗岩;④晚造山期花岗岩;⑤非造山期A型花岗岩;⑥同碰撞(S型)花岗岩;⑦造山期后A型花岗岩;b. 底图据Pearce et al.(1984)
Fig. 11. Tectonic environment diagrams of granite porphyry from Langcun
表 1 郎村花岗斑岩主量元素(%)和微量、稀土元素(10-6)分析结果
Table 1. Major element compositions (%) and rare earth and trace element compositions (10-6) of granite porphyry from Langcun
样品号 LC1089-1 LC1089-2 LC1089-3 LC1089-4 LC1089-5 样品号 LC1089-1 LC1089-2 LC1089-3 LC1089-4 LC1089-5 SiO2 71.53 71.46 71.58 70.58 70.77 Sb 0.74 0.83 0.72 0.64 0.56 Al2O3 14.25 14.07 14.19 14.46 14.40 Cs 3.95 4.24 4.23 5.33 5.00 Fe2O3 2.92 3.25 2.79 3.57 3.29 Ba 674.00 666.00 751.00 736.00 701.00 FeO 2.61 2.34 1.39 1.43 1.92 La 58.70 62.40 61.50 56.00 60.90 MgO 0.38 0.40 0.40 0.39 0.40 Ce 99.50 93.00 108.00 87.00 99.20 CaO 0.53 0.55 0.57 0.52 0.61 Pr 11.70 12.10 11.60 11.60 12.60 Na2O 4.09 4.10 4.07 3.71 3.81 Nd 45.30 46.70 50.20 45.60 50.80 K2O 5.44 5.33 5.39 5.44 5.34 Sm 8.81 8.42 8.84 8.96 9.71 MnO 0.05 0.05 0.06 0.06 0.05 Eu 1.00 0.97 1.04 1.09 1.14 TiO2 0.29 0.29 0.28 0.33 0.33 Gd 7.88 7.83 8.06 7.13 8.57 P2O5 0.08 0.08 0.08 0.10 0.10 Tb 1.36 1.33 1.41 1.34 1.38 LOI 0.41 0.43 0.53 0.80 0.87 Dy 7.01 6.85 6.83 6.84 7.22 Total 99.67 99.75 99.78 99.79 99.75 Ho 1.42 1.22 1.40 1.39 1.34 A/CNK 1.05 1.04 1.04 1.12 1.09 Er 4.11 3.87 3.99 4.05 3.92 A/NK 1.13 1.12 1.13 1.20 1.19 Tm 0.67 0.67 0.69 0.61 0.61 DI 89.15 89.03 90.48 88.86 88.42 Yb 4.79 4.23 4.54 4.18 4.27 Li 11.50 7.84 10.70 14.60 15.20 Lu 0.60 0.64 0.63 0.59 0.61 Be 3.71 3.58 3.78 3.72 3.60 Ta 1.69 1.84 1.99 1.90 2.01 Sc 6.09 5.83 6.12 6.58 7.06 W 3.40 3.77 2.98 4.44 4.94 V 11.80 11.70 12.10 15.40 14.60 Re 0.00 0.01 0.01 0.01 0.01 Cr 11.70 10.30 10.70 10.30 7.27 Tl 0.95 1.01 0.98 1.03 0.94 Co 2.59 2.75 2.66 2.68 2.56 Pb 17.70 19.10 20.90 17.90 16.80 Ni 6.07 5.70 5.10 5.18 3.82 Bi 0.14 0.13 0.17 0.25 0.15 Cu 7.69 6.95 7.28 7.79 9.38 Th 21.20 22.30 21.90 21.70 21.30 Zn 52.70 53.40 53.70 54.00 54.30 U 8.55 4.88 5.45 4.88 4.96 Ga 18.40 19.30 20.40 20.30 20.90 Zr 215.00 269.00 270.00 291.00 298.00 Rb 183.00 193.00 195.00 214.00 216.00 Hf 6.77 8.55 8.54 8.12 8.47 Sr 87.30 89.40 102.00 133.00 136.00 ∑REE 252.84 250.22 268.73 236.38 262.27 Y 38.20 38.40 41.90 34.20 39.90 LREE/HREE 2.99 3.14 3.12 3.02 3.19 Nb 26.80 29.10 27.60 27.60 24.90 (La/Yb)N 8.26 9.95 9.13 9.03 9.62 Mo 4.74 5.38 4.53 5.06 3.15 (La/Sm)N 4.19 4.66 4.38 3.93 3.95 Cd 0.35 0.29 0.27 0.37 0.40 (Gd/Yb)N 1.33 1.49 1.43 1.38 1.62 In 0.08 0.08 0.08 0.07 0.06 δEu 0.36 0.36 0.37 0.40 0.37 注:A/CNK代表Al2O3/(CaO+Na2O+K2O)摩尔比;A/NK代表Al2O3/(Na2O+K2O)摩尔比;分异指数DI=Qz+Or+Ab+Ne+Le+Kp.主量元素质量分数单位为%;微量和稀土元素质量分数单位为10-6. 表 2 郎村花岗斑岩锆石U-Pb定年结果
Table 2. Zircon U-Pb dating data of the granite porphyry from Langcun
分析点 Th232 U238 Th/U 同位素比值 年龄(Ma) (10-6) 207Pb/206Pb 206Pb/238Th 207Pb/206Pb(Ma) 206Pb/238U(Ma) LC1089-1 237 191 1.242 1 0.083 4±0.050 6 0.020 1±0.022 0 1 278±99 123±3 LC1089-2 114 173 0.658 6 0.066 3±0.058 3 0.020 3±0.018 0 816±122 127±2 LC1089-3 100 148 0.677 3 0.074 8±0.061 8 0.020 6±0.016 5 1 062±124 127±2 LC1089-4 177 237 0.747 9 0.061 6±0.037 0 0.020 3±0.017 0 659±79 128±2 LC1089-5 152 203 0.751 0 0.050 9±0.033 2 0.020 1±0.016 8 239±77 128±2 LC1089-6 129 161 0.804 1 0.048 5±0.033 5 0.020 2±0.015 2 124±79 129±2 LC1089-7 121 158 0.768 4 0.046 6±0.038 5 0.020 2±0.015 9 27±92 129±2 LC1089-8 80 113 0.706 5 0.057 8±0.039 2 0.020 5±0.018 5 521±86 129±2 LC1089-9 79 122 0.646 4 0.046 8±0.045 1 0.020 4±0.016 4 38±108 130±2 LC1089-10 179 206 0.866 0 0.045 9±0.049 4 0.020 5±0.017 7 -9±119 131±2 LC1089-11 78 106 0.735 9 0.049 0±0.057 2 0.020 6±0.022 9 148±134 131±3 LC1089-12 108 165 0.653 5 0.078 8±0.027 2 0.021 4±0.013 3 1 168±54 131±2 LC1089-13 149 215 0.694 0 0.053 1±0.038 6 0.020 8±0.014 3 332±88 132±2 LC1089-14 1 731 2 275 0.760 8 0.052 1±0.020 2 0.020 8±0.011 6 291±46 132±2 LC1089-15 180 176 1.020 3 0.053 2±0.046 2 0.022 4±0.026 1 338±105 142±4 表 3 郎村花岗斑岩Sr-Nd同位素组成
Table 3. Sr-Nd isotopic compositions of the granite porphyry from Langcun
样品号 87Rb/86Sr 87Sr/86Sr Isr 147Sm/144Nd 143Nd/144Nd INd εNd(t) TDM(Ma) TDM2(Ma) LC1089-1 6.835 5 0.719 853 0.707 21 0.120 9 0.512 289 0.512 186 -5.6 1 415 1 376 LC1089-2 6.818 6 0.719 735 0.707 13 0.120 7 0.512 280 0.512 177 -5.7 1 427 1 390 LC1089-3 6.545 9 0.719 489 0.707 38 0.121 6 0.512 264 0.512 161 -6.0 1 467 1 417 LC1089-4 4.487 0 0.717 349 0.709 05 0.122 3 0.512 368 0.512 264 -4.0 1 306 1 253 表 4 郎村花岗斑岩Hf同位素组成
Table 4. Hf isotopic compositions of zircon from granite porphyry from Langcun
测点号 t(Ma) 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ IHf εHf(t) TDM2(Ma) fLu/Hf 1 142 0.064 848 0.001 100 0.001 571 0.001 100 0.282 534 0.000 030 0.282 530 -5.71 1 548 -0.95 2 127 0.033 649 0.000 140 0.000 843 0.000 140 0.282 637 0.000 026 0.282 635 -2.00 1 313 -0.97 3 131 0.057 155 0.000 310 0.001 427 0.000 310 0.282 587 0.000 026 0.282 583 -3.84 1 429 -0.96 4 129 0.053 719 0.000 160 0.001 306 0.000 160 0.282 528 0.000 026 0.282 524 -5.93 1 562 -0.96 5 130 0.029 816 0.000 084 0.000 749 0.000 084 0.282 558 0.000 028 0.282 556 -4.79 1 490 -0.98 6 129 0.052 278 0.000 240 0.001 292 0.000 240 0.282 555 0.000 025 0.282 552 -4.94 1 500 -0.96 7 123 0.068 835 0.002 400 0.001 681 0.002 400 0.282 675 0.000 041 0.282 670 -0.76 1 233 -0.95 8 128 0.078 133 0.000 270 0.002 026 0.000 270 0.282 550 0.000 026 0.282 545 -5.18 1 517 -0.94 9 131 0.041 398 0.000 034 0.001 057 0.000 034 0.282 594 0.000 022 0.282 591 -3.56 1 412 -0.97 -
Anderson, I.C., Frost, C.D., Frost, B.R., 2003. Petrogenesis of the Red Mountain Pluton, Laramie Anorthosite Complex, Wyoming: Implications for the Origin of A-Type Granite. Precambrian Research, 124(2-4): 243-267. https://doi.org/10.1016/S0301-9268(03)00088-3 Bai, D.Y., Chen, J.C., Ma, T.Q., et al., 2005. Geochemical Characteristics and Tectonic Setting of Qitianling A-Type Granitic Pluton in Southeast Hunan. Acta Petrologica et Mineralogica, 24(4): 255-272(in Chinese with English abstract). Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007 Boynton, W. V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. Chappell, B.W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173-174. Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 1-26. https://doi.org/10.1017/S0263593300007720 Chen, J. F., Guo, X. S., Tang, J. F., et al., 1999. Nd Isotopic Model Ages: Implications of the Growth of the Continental Crust of Southeastern China. Journal of Nanjing University (Natural Science), 35(6): 649-658(in Chinese with English abstract). Chen, Q., 2015. Discussion on Prospecting Conditions and Direction of Langcun Mining Area. In: Geological Society of Zhejiang Province, ed., The 120th Anniversary of the Birth of Geologist Zhu Tinghu—Proceedings of the 2015 Academic Annual Meeting of Geological Society of Zhejiang Province. Zhejiang Land Resource Magazine, Hangzhou, 89-94(in Chinese). Chen, X.F., Zhou, T.F., Zhang, D.Y., et al., 2017. Geochronology, Geochemistry and Geological Characteristics of the Granite Porphyry beneath Guilinzheng Mo Deposit, Chizhou, Southern Anhui. Acta Petrologica Sinica, 33(10): 3200-3216(in Chinese with English abstract). Chen, Y.C., 1983. The Metallogenetic Series of the Rare-Earth, Rare and Nonferrous Metal Deposits Related to the Yanshanian Granites in South China. Mineral Deposits, 2(2): 15-24(in Chinese with English abstract). Chen, Y. J., Li, C., Zhang, J., et al., 2000. Sr and O Isotopic Characteristics of Porphyries in the Qinling Molybdenum Deposit Belt and Their Implication to Genetic Mechanism and Type. Science in China (Series D), 43(1): 82-94. https://doi.org/10.1007/BF02911935 Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895 Creaser, R.A., Price, R.C., Wormald, R.J., 1991. A-Type Granites Revisited: Assessment of a Residual-Source Model. Geology, 19: 163-166. https://doi.org/10.1130/0091-7613(1991)0190163:ATGRAO>2.3.CO;2 doi: 10.1130/0091-7613(1991)0190163:ATGRAO>2.3.CO;2 Crofu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469 Faure, G., 1986. Principles of Isotope Geology (Second Edition). Wiley and Sons, New York. Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x Hou, Z.Q., Yang, Z.M., 2009. Porphyry Deposits in Continental Settings of China: Geological Characteristics, Magmatic-Hydrothermal System, and Metallogenic Model. Acta Geologica Sinica, 83(12): 1779-1817(in Chinese with English abstract). Hu, K.M., 2001. Initial Discussion on the Tectonic Evolution of Jiangshan-Shaoxing Fault Zone. Geology of Zhejiang, 17(2): 1-11(in Chinese with English abstract). Hu, Z. R., Deng, G.H., 2009. Tectonic Characteristics of the Qinzhou-Hangzhou Joint Belt. Journal of East China University of Technology (Natural Science), 32(2): 114-122(in Chinese with English abstract). Hua, R. M., Chen, P. R., Zhang, W. L., et al., 2003. Metallogenic Systems Related to Mesozoic and Cenozoic Granitoids in South China. Science in China (Series D), 46(8): 816-829. https://doi.org/10.1007/BF02879525 Hua, R.M., Chen, P.R., Zhang, W.L., et al., 2003. Metallogenic System Related to Granitoids in Mesozoic and Cenozoic in South China. Science in China (Series D), 33(4): 335-343(in Chinese). Hua, R.M., Li, G.L., Zhang, W.L., et al., 2010. A Tentative Discussion on Differences between Large-Scale Tungsten and Tin Mineralizations in South China. Mineral Deposits, 29(1): 9-23(in Chinese with English abstract). Huang, G. C., Wang, D. H., Wu, X.Y., 2012a. Characteristics and LA-ICP-MS Zircon U-Pb Geochronology Study of Metallogenic Intrusion in the Xiaseling Tungsten Deposit in Lin'an, Zhejiang Province. Rock and Mineral Analysis, 31(5): 915-921(in Chinese with English abstract). Huang, G. C., Wang, D. H., Wu, X.Y., 2012b. LA-ICP-MS Zircon U-Pb Dating of the Granite from the Qianmutian Tungsten-Beryllium Mine in Lin'an, Zhejiang Province and Its Significance in Regional Exploration. Geotectonica et Metallogenia, 36(3): 392-398(in Chinese with English abstract). Huang, L. C., Jiang, S.Y., 2012. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Porphyric-Like Muscovite Granite in the Dahutang Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3887-3900(in Chinese with English abstract). Jiang, S. Y., Zhao, K. D., Jiang, H., et al., 2020. Spatiotemporal Distribution, Geological Characteristics and Metallogenic Mechanism of Tungsten and Tin Deposits in China: An Overview. Chinese Science Bulletin, 65(33): 3730-3745(in Chinese). Jiang, S.Y., Zhao, K.D., Jiang, Y.H., et al., 2008. Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509(in Chinese with English abstract). Jiang, Y.H., Peng, Z., Qing, Z., 2011. Petrogenesis and Tectonic Implications of Early Cretaceous S- and A-Type Granites in the Northwest of the Gan-Hang Rift, SE China. Lithos, 121(1-4): 55-73. https://doi.org/10.1016/j.lithos.2010.10.001 King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371 Li, X. H., Li, W. X., Li, Z. X., 2007. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885. https://doi.org/10.1007/s11434-007-0259-0 Li, X.H., 2000. Cretaceous Magmatism and Lithospheric Extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305. https://doi.org/10.1016/S1367-9120(99)00060-7 Li, Z. L., Zhou, J., Mao, J. R., et al., 2013. Age and Geochemistry of the Granitic Porphyry from the Northwestern Zhejiang Province, SE China, and Its Geological Significance. Acta Petrologica Sinica, 29(10): 3607-3622(in Chinese with English abstract). Li, Z. L, Zhou. J., Mao, J.R., et al., 2013. Zircon U-Pb Geochronology and Geochemistry of Two Episodes of Granitoids from the Northwestern Zhejiang Province, SE China: Implication for Magmatic Evolution and Tectonic Transition. Lithos, 179: 334-352. https://doi.org/10.1016/j.lithos.2013.07.014 Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/G23193A.1 Lü, J.S., Zhang, X. H., Sun, J. D., et al., 2017. Spatiotemporal Evolution and Metallogenic Regularity of Felsic Rocks in the Yanshanian of the Eastern Segment Qinhang Metallogenic Belt, South China. Acta Petrologica Sinica, 33(11): 3635-3658(in Chinese with English abstract). http://www.researchgate.net/publication/330637125_Spatiotemporal_evolution_and_metallogenic_regularity_of_felsic_rocks_in_the_Yanshanian_of_the_eastern_segment_Qinhang_metallogenic_belt_South_China Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 Mao, J. R., Li, Z. L., Ye, H.M., 2014. Mesozoic Tectono-Magmatic Activities in South China: Retrospect and Prospect. Science in China (Ser. D), 44(12): 2593-2617(in Chinese). Mao, J. R., Ye, H. M., Li, Z. L., et al., 2013. Magmatic Activity and Metallogenic Record of Late Mesozoic Compressional-Extensional Structure in the Eastern Part of Qin-Hang Junction Zone. Acta Mineralogica Sinica, 33(S2): 30-31(in Chinese with English abstract). Mao, J. W., Chen, M. H., Yuan, S. D., et al., 2011. Geological Characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and Spatial-Temporal Distribution Regularity of Mineral Deposits. Acta Geologica Sinica, 85(5): 636-658(in Chinese with English abstract). Mao, J. W., Wu, S. H., Song, S. W., et al., 2020. The World-Class Jiangnan Tungsten Belt: Geological Characteristics, Metallogeny, and Ore Deposit Model. Chinese Science Bulletin, 65(33): 3746-3762(in Chinese). Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2007. Large-Scale Tungsten-Tin Mineralization in the Nanling Region, South China: Metallogenic Ages and Corresponding Geodynamic Processes. Acta Petrologica Sinica, 23(10): 2329-2338(in Chinese with English abstract). Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2008. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14(4): 510-526(in Chinese with English abstract). McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4 Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 Mingram, B., Trumbull, R. B, Littman, S., et al., 2000. A Petrogenetic Study of Anorogenic Felsic Magmatism in the Cretaceous Paresis Ring Complex, Namibia: Evidence for Mixing of Crust and Mantle-Derived Components. Lithos, 54(1-2): 1-22. https://doi.org/10.1016/S0024-4937(00)00033-5 Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 Qiu, J. S., McInnes, B.I.A., Jiang, S.Y., et al., 2005. Geochemistry of the Mikengshan Pluton in Huichang County, Jiangxi Province and New Recognition about Its Genetic Type. Geochimica, 34(1): 20-32(in Chinese with English abstract). Qiu, J. S., Wang, D. Z., Zecongshi, X., et al., 2000. Geochemistry and Petrogenesis of Aluminous A-Type Granitesin the Coastal Area of Fujian Province. Geochimica, 29(4): 313-321(in Chinese with English abstract). Ren, Z., Zhou, T.F., Hollings, P., et al., 2018. Magmatism in the Shapinggou District of the Dabie Orogen, China: Implications for the Formation of Porphyry Mo Deposits in a Collisional Orogenic Belt. Lithos, 308/309: 346-363. https://doi.org/10.1016/j.lithos.2018.03.013 Rickwood, P.C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5 Shu, L.S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract). Shu, L. S., Faure, M., Wang, B., et al., 2008. Late Palaeozoic-Early Mesozoic Geological Features of South China: Response to the Indosinian Collision Events in Southeast Asia. Comptes Rendus Geoscience, 340(2/3): 151-165. https://doi.org/10.1016/j.crte.2007.10.010 Skjerlie, K. P., Dana Johnston, A., 1993. Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-Crustal Pressures: Implications for the Generation of Anorogenic Granites. Journal of Petrology, 34(4): 785-815. https://doi.org/10.1093/petrology/34.4.785 Tang, Y. W., Li, X. F., Xie, Y. L., et al., 2017. Geochronology and Geochemistry of Late Jurassic Adakitic Intrusions and Associated Porphyry Mo-Cu Deposit in the Tongcun Area, East China: Implications for Metallogenesis and Tectonic Setting. Ore Geology Reviews, 80: 289-308. https://doi.org/10.1016/j.oregeorev.2016.06.032 Tang, Y.W., Cui, K., Zheng, Z., et al., 2020. LA-ICP-MS U-Pb Geochronology of Wolframite by Combining NIST Series and Common Lead-Bearing MTM as the Primary Reference Material: Implications for Metallogenesis of South China. Gondwana Research, 83: 217-231. https://doi.org/10.1016/j.gr.2020.02.006 Tang, Z.C., Wang, F.X., Dong, X.F., et al., 2017. Zircon U-Pb Age, Hf Isotope and Geochemistry of the Shuangxikou Granite in Western Zhejiang: Constraints on the Tin Mineralization. Geotectonica et Metallogenia, 41(5): 879-891(in Chinese with English abstract). Wang, W., Liu, S.W., Bai, X., et al., 2013. Geochemistry and Zircon U-Pb-Hf Isotopes of the Late Paleoproterozoic Jianping Diorite-Monzonite-Syenite Suite of the North China Craton: Implications for Petrogenesis and Geodynamic Setting. Lithos, 162/163: 175-194. https://doi.org/10.1016/j.lithos.2013.01.005 Wang, Y. J., Fan, W. M., Cawood, P. A., et al., 2007. Indosinian High-Strain Deformation for the Yunkaidashan Tectonic Belt, South China: Kinematics and 40Ar/39Ar Geochronological Constraints. Tectonics, 26(6): TC6008. https://doi.org/10.1029/2007tc002099 Wang, Y. J., Zhang, Y. H., Fan, W. M., et al., 2005. Structural Signatures and 40Ar/39Ar Geochronology of the Indosinian Xuefengshan Tectonic Belt, South China Block. Journal of Structural Geology, 27(6): 985-998. https://doi.org/10.1016/j.jsg.2005.04.004 Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 White, A. J. R., Chappell, B. W., 1983. Granitoid Types and Their Distribution in the Lachlan Fold Belt, Southeastern Australia. Geological Society of America Memoirs, 159: 21-34. https://doi.org/10.1130/mem159-p21 Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x Wong, J., Sun, M., Xing, G. F., et al., 2009. Geochemical and Zircon U-Pb and Hf Isotopic Study of the Baijuhuajian Metaluminous A-Type Granite: Extension at 125-100 Ma and Its Tectonic Significance for South China. Lithos, 112(3-4): 289-305. https://doi.org/10.1016/j.lithos.2009.03.009 Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003. Highly Fractionated I-Type Granites in NE China (Ⅰ): Geochronology and Petrogenesis. Lithos, 66(3-4): 241-273. https://doi.org/10.1016/S0024-4937(02)00222-0 Wu, F. Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract). Wu, S. P., Wang, M. Y., Qi, K.J., 2007. Present Situation of Researches on A-Type Granites: A Review. Acta Petrologica et Mineralogica, 26(1): 57-66(in Chinese with English abstract). Wu, Y.B., Zheng, Y.F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). Xie, H., Liang, X.Q., Wang, C., et al., 2020. U-Pb Geochronological and Geochemical Significance of Granites from the Baishizhang Molybdenum Area, Guangdong Province. Geochimica, 49(5): 479-493 (in Chinese with English abstract). Xie, Y.L., Cui, K., Xia, J.M., et al., 2020. The Origin of Ore-Forming Materials of the Yanshanian Porphyry Mo Hydrother-Mal Pb-Zn (Ag) Metallogenic System in Eastern China. Earth Science Frontiers, 27(2): 182-196(in Chinese with English abstract). Xie, Y.L., Tang, Y.W., Li, Y.X., et al., 2012. Petrochemistry, Chronology and Ore-Forming Geological Significance of Fine Crystalline Granite in Anji Polymetallic Deposit of Zhejiang Province. Mineral Deposits, 31(4): 891-902(in Chinese with English abstract). Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1/2): 89-106. https://doi.org/10.1016/j.lithos.2005.10.002 Yang, M. G., Huang, S. B., Lou, F. S., et al., 2009. Lithospheric Structure and Large-Scale Metallogenic Process in Southeast China Continental Area. Geology in China, 36(3): 528-543(in Chinese with English abstract). Yang, M. G., Mei, Y.W., 1997. Characteristics of Geology and Metallization in the Qinzhou-Hangzhou Paleoplate Juncture. Geology and Mineral Resources of South China, 13(3): 52-59(in Chinese with English abstract). Yang, S. Y., Jiang, S. Y., Jiang, Y. H., et al., 2011. Geochemical, Zircon U-Pb Dating and Sr-Nd-Hf Isotopic Constraints on the Age and Petrogenesis of an Early Cretaceous Volcanic-Intrusive Complex at Xiangshan, Southeast China. Mineralogy and Petrology, 101(1-2): 21-48. https://doi.org/10.1007/s00710-010-0136-4 Yang, S. Y., Jiang, S. Y., Zhao, K. D., et al., 2012. Geochronology, Geochemistry and Tectonic Significance of Two Early Cretaceous A-Type Granites in the Gan-Hang Belt, Southeast China. Lithos, 150: 155-170. https://doi.org/10.1016/j.lithos.2012.01.028 Yuan, H.L., Gao, S., Dai, M.N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003 Zhang, H.F., Gao, S., 2012. Geochemistry. Geological Publishing House, Beijing (in Chinese). Zhang, Y.Q., Dong, S.W., Li, J.H., et al., 2012. The New Progress in the Study of Mesozoic Tectonics of South China. Acta Geoscientia Sinica, 33(3): 257-279(in Chinese with English abstract). Zhao, K.D., Jiang, S.Y., 2022. How to Form the Famous South China W-Sn Province? Earth Science, 47(10): 3882-3884 (in Chinese with English abstract). Zhao, Z.H., 2016. Geochemical Principles of Trace Elements. Science Press, Beijing(in Chinese). Zhou, X.M., Li, W.X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4): 269-287. https://doi.org/10.1016/S0040-1951(00)00120-7 Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 Zhou, Y., Liang, X.Q., Cai, Y.F., et al., 2017. Petrogenesis and Mineralization of Xitian Tin-Tungsten Polymetallic Deposit: Constraints from Mineral Chemistry of Biotite from Xitian A-Type Granite, Eastern Hunan Province. Earth Science, 42(10): 1647-1657(in Chinese with English abstract). Zhou, Y.Z., Li, X. Y, Zheng, Y., et al., 2017. Geological Settings and Metallogenesis of Qinzhou Bay-Hangzhou Bay Orogenic Juncture Belt, South China. Acta Petrologica Sinica, 33(3): 667-681(in Chinese with English abstract). Zhu, A.Q., Zhang, Y.S., Lu, Z.D., 2009. Study on Metallogenic Series and Metallogenic Zones of Metallic and Nonmetallic Deposits in Zhejiang Province. Geological Publishing House, Beijing (in Chinese). Zhu, G.L.L., 2016. Characteristics and Evolution of Ore-Forming Fluids at the Langcun W-Mo Deposit in Zhejiang Province, China (Dissertation). University of Science and Technology Beijing, Beijing (in Chinese with English abstract). Zhu, J.C., Chen, J., Wang, R.C., et al., 2008. Early Yanshanian NE Trending Sn/W-Bearing A-Type Granites in the Western-Middle Part of the Nanling Mts Region. Geological Journal of China Universities, 14(4): 474-484(in Chinese with English abstract). 柏道远, 陈建超, 马铁球, 等, 2005. 湘东南骑田岭岩体A型花岗岩的地球化学特征及其构造环境. 岩石矿物学杂志, 24(4): 255-272. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200504001.htm 陈江峰, 郭新生, 汤加富, 等, 1999. 中国东南地壳增长与Nd同位素模式年龄. 南京大学学报(自然科学), 35(6): 649-658. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ199906000.htm 陈琦, 2015. 浅谈郎村矿区找矿条件与找矿方向. 见: 浙江省地质学会, 编, 纪念地质学家朱庭祜先生诞辰120周年——浙江省地质学会2015年学术年会论文集. 浙江省地质学会, 浙江省科学技术协会, 6. 陈雪锋, 周涛发, 张达玉, 等, 2017. 皖南池州桂林郑钼矿床成矿岩体的年代学和地球化学特征及其地质意义. 岩石学报, 33(10): 3200-3216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201710015.htm 陈毓川, 1983. 华南与燕山期花岗岩有关的稀土、稀有、有色金属矿床成矿系列. 矿床地质, 2(2): 15-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198302002.htm 侯增谦, 杨志明, 2009. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型. 地质学报, 83(12): 1779-1817. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200912002.htm 胡开明, 2001. 江绍断裂带的构造演化初探. 浙江地质, 17(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJDZ200102000.htm 胡肇荣, 邓国辉, 2009. 钦-杭接合带之构造特征. 东华理工大学学报(自然科学版), 32(2): 114-122. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200902004.htm 华仁民, 陈培荣, 张文兰, 等, 2003. 华南中、新生代与花岗岩类有关的成矿系统. 中国科学(D辑), 33(4): 335-343. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304005.htm 华仁民, 李光来, 张文兰, 等, 2010. 华南钨和锡大规模成矿作用的差异及其原因初探. 矿床地质, 29(1): 9-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201001004.htm 黄国成, 王登红, 吴小勇, 2012a. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS锆石铀-铅年代学研究. 岩矿测试, 31(5): 915-921. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201205029.htm 黄国成, 王登红, 吴小勇, 2012b. 浙江临安千亩田钨铍矿区花岗岩锆石LA-ICP-MS U-Pb年龄及对区域找矿的意义. 大地构造与成矿学, 36(3): 392-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201203013.htm 黄兰椿, 蒋少涌, 2012. 江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究. 岩石学报, 28(12): 3887-3900. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212008.htm 蒋少涌, 赵葵东, 姜海, 等, 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展. 科学通报, 65(33): 3730-3745. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033009.htm 蒋少涌, 赵葵东, 姜耀辉, 等, 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496-509. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804006.htm 厉子龙, 周静, 毛建仁, 等, 2013. 浙西北木瓜燕山期花岗斑岩的定年、地球化学特征及其地质意义. 岩石学报, 29(10): 3607-3622. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201310023.htm 吕劲松, 张雪辉, 孙建东, 等, 2017. 钦杭成矿带东段燕山期中酸性岩浆活动时空演化与成矿规律. 岩石学报, 33(11): 3635-3658. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711020.htm 毛建仁, 厉子龙, 叶海敏, 2014. 华南中生代构造-岩浆活动研究: 现状与前景. 中国科学(地球科学), 44(12): 2593-2617. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201412001.htm 毛建仁, 叶海敏, 厉子龙, 等, 2013. 钦杭结合带(东段)晚中生代挤压-伸展构造的岩浆活动与成矿记录. 矿物学报, 33(增刊2): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2013S2018.htm 毛景文, 陈懋弘, 袁顺达, 等, 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636-658. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105006.htm 毛景文, 吴胜华, 宋世伟, 等, 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型. 科学通报, 65(33): 3746-3762. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033010.htm 毛景文, 谢桂青, 郭春丽, 等, 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710003.htm 毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804007.htm 邱检生, McInnes, B.I.A., 蒋少涌, 等, 2005. 江西会昌密坑山岩体的地球化学及其成因类型的新认识. 地球化学, 34(1): 20-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200501002.htm 邱检生, 王德滋, 蟹泽聪史, 等, 2000. 福建沿海铝质A型花岗岩的地球化学及岩石成因. 地球化学, 29(4): 313-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200004000.htm 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm 唐增才, 汪发祥, 董学发, 等, 2017. 浙西双溪口花岗岩锆石U-Pb定年、Hf同位素组成和地球化学特征: 对Sn成矿作用的制约. 大地构造与成矿学, 41(5): 879-891. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201705007.htm 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm 吴锁平, 王梅英, 戚开静, 2007. A型花岗岩研究现状及其述评. 岩石矿物学杂志, 26(1): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200701008.htm 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm 谢昊, 梁新权, 王策, 等, 2020. 广东白石嶂钼矿区花岗岩U-Pb年代学及其地球化学特征. 地球化学, 49(5): 479-493. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX202005002.htm 谢玉玲, 崔凯, 夏加明, 等, 2020. 中国东部燕山期斑岩钼热液型铅锌(银)成矿系统的成矿物质来源. 地学前缘, 27(2): 182-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002013.htm 谢玉玲, 唐燕文, 李应栩, 等, 2012. 浙江安吉铅锌多金属矿区细粒花岗岩的岩石化学、年代学及成矿意义探讨. 矿床地质, 31(4): 891-902. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201204018.htm 杨明桂, 黄水保, 楼法生, 等, 2009. 中国东南陆区岩石圈结构与大规模成矿作用. 中国地质, 36(3): 528-543. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200903006.htm 杨明桂, 梅勇文, 1997. 钦-杭古板块结合带与成矿带的主要特征. 华南地质与矿产, 13(3): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC199703008.htm 张宏飞, 高山, 2012. 地球化学. 北京: 地质出版社. 张岳桥, 董树文, 李建华, 等, 2012. 华南中生代大地构造研究新进展. 地球学报, 33(3): 257-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203001.htm 赵葵东, 蒋少涌, 2022. 世界著名的华南钨锡成矿省是如何形成的? 地球科学, 47(10): 3882-3884. doi: 10.3799/dqkx.2022.849 赵振华, 2016. 微量元素地球化学原理. 北京: 科学出版社. 周永章, 李兴远, 郑义, 等, 2017. 钦杭结合带成矿地质背景及成矿规律. 岩石学报, 33(3): 667-681. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703001.htm 周云, 梁新权, 蔡永丰, 等, 2017. 湘东锡田燕山期A型花岗岩黑云母矿物化学特征及其成岩成矿意义. 地球科学, 42(10): 1647-1657. doi: 10.3799/dqkx.2017.557 朱安庆, 张永山, 陆祖达, 2009. 浙江省金属非金属矿床成矿系列和成矿区带研究. 北京: 地质出版社. 朱高伶俐, 2016. 浙江安吉郎村钨钼矿床成矿流体特征及演化(硕士学位论文). 北京: 北京科技大学. 朱金初, 陈骏, 王汝成, 等, 2008. 南岭中西段燕山早期北东向含锡钨A型花岗岩带. 高校地质学报, 14(4): 474-484. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804004.htm