Early Permian Bimodal Magmatism in the Duolun Area of the Central Section of the Northern Margin of the North China Craton
-
摘要: 东大山地区双峰式岩浆岩位于内蒙古多伦县东部,处于华北板块北缘. 岩体由石英二长岩和玄武岩组成. 对其开展了全岩地球化学、锆石U-Pb年代学和Hf同位素组成研究. 研究结果表明:石英二长岩和玄武岩锆石LA-ICP-MS U-Pb定年结果分别为283±1.6 Ma、280±2.9 Ma,形成于早二叠世;二者锆石Hf同位素组成整体较相似,两阶段模式年龄(tDM2)普遍较为古老(1 760~2 354 Ma,仅玄武岩内测得324 Ma、824 Ma两个较新年龄),与华北板块基底接近;岩体SiO2含量在50.64%~65.87%存在明显的间断,具有双峰式岩浆岩特征,都相对富K、Na、Al,亏Ca、Mg,石英二长岩较玄武岩明显亏损Ti、P,具有明显的互补迹象. 结合前人研究成果,认为东大山地区双峰式岩浆岩可能是板块俯冲、后撤引起的伸展背景下,古亚洲洋俯冲板片脱水引起上地幔部分熔融形成的幔源岩浆向上运移、聚集于华北板块之下引起古老基底部分熔融的产物,研究区早二叠世期间构造环境为活动大陆边缘.Abstract: This paper presents petrological, Hf isotopes, geochronological and geochemical study on the early Permian Bimodal magmatites in Duolun area, Inner Mongolia, which is tectonically located in the northern margin of North China Craton, comprising quartz monzonite and basalt. U-Pb dating of zircons from the samples by LA-ICP-MS yield weighed mean 206Pb/238U ages of 283±1.6 Ma and 280±2.9 Ma respectively. They have similar Hf isotopes. Hf isotopes tDM2 was oldgenerally (from 1 760 to 2 354 Ma, merely two youngs: 324 Ma and 824 Ma) and closed to these reported in ancient basement of North China Plate. The quartz monzonite and basalt exhibit SiO2 geochemical discontinuity (50.64%~65.87%), showing typically bimodal features. They also significantly enrich K, Na, Al and deplete Ca, Mg. Besides, the quartz monzonite show significantly depletions in Ti and P compared with the basalt, showing complementary relations. This paper, combined with previous data, suggest that Bimodal magmatitesare the products of partial melting of the ancient basement of the North China Plate under the background of extension, which was caused by the upward migrating and gathering of the mantle magma formed from partial melting of mantle resulted in dewatering of subducted plate of the ancient Asian Ocean. In the early Permian, Dongdashan area is under the background of active continental margin.
-
图 6 石英二长岩TAS图解(a, 据Irvine and Baragar, 1971)和玄武岩Zr/Tio2-Nb/Y图解(b, 据Wilson, 1989)
Fig. 6. TAS(a, after Irvine and Baragar, 1971) and Zr/Tio2 vs. Nb/Y(b, after Wilson, 1989) classification diagrams for quartz monzonite(a) and basalt(b)
图 7 石英二长岩、玄武岩稀土元素配分模式图(a, 据Boynton, 1984)和微量元素原始地幔标准化图解(b,据Sun and McDonough,1989)
Fig. 7. Chondrite-normalized REE pstterns (a, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spider diagrams (b, normalization values after Sun and McDonough, 1989) for quartz monzonite (a) and basalt (b)
图 8 石英二长岩Ⅰ型-A型花岗岩判别图解(a, 据Collins et al., 1982)和玄武岩La/Yb-Sm/Yb图解(b, 据Xu et al., 2005)
Fig. 8. Ⅰ model vs. A model (a, after Collins et al., 1982) and La/Yb vs.Sm/Yb (b, after Xu et al., 2005) classification diagrams for quartz monzonite (a) and basalt (b)
图 10 石英二长岩微量元素w(Y+Nb)-w(Rb)构造环境判别图(a,据Pearce et al., 1984)及玄武岩Th-Ta协变判别图解(b, 据Pearce et al., 1982)
ORG. 大洋中脊花岗岩;WPG. 板内花岗岩;VAG. 火山弧花岗岩;Syn-COLG. 同碰撞花岗岩;MORB. 洋中脊玄武岩;WPB. 板内玄武岩;IAB. 岛弧玄武岩;SHO. 橄榄玄武岩;TH. 拉斑玄武岩;TR. 过渡性玄武岩;ALK. 碱性火山弧玄武岩;ICA. 钙碱性玄武岩
Fig. 10. w(Y+Nb) vs. w(Rb) (a, after Pearce et al., 1984) and Th vs. Ta (b, after Pearce et al., 1982) classification diagrams for quartz monzonite (a) and basalt (b)
表 1 东大山双峰式岩浆岩中的锆石LA-ICP-MS U-Pb定年数据
Table 1. LA-ICP-MS zircon U-Pb dating results for quartz monzonite and basalt
测点 含量 Th/U 同位素比值 年龄 Th U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 石英二长岩 1 135.1 191 0.82 0.044 0.000 6 0.328 0.014 7 0.054 0.002 4 280 4 288 11 369 106 2 298.5 261 1.26 0.045 0.000 7 0.309 0.013 4 0.051 0.002 2 281 4 274 10 232 102 3 156.3 236 0.82 0.044 0.000 6 0.325 0.015 4 0.053 0.002 4 279 4 286 12 339 104 4 210.2 258 0.99 0.044 0.000 6 0.313 0.013 3 0.052 0.002 3 280 4 276 10 333 100 5 331.4 342 1.31 0.044 0.000 7 0.325 0.012 7 0.053 0.002 0 280 4 285 10 343 90 6 648.7 763 0.99 0.045 0.000 7 0.351 0.011 5 0.057 0.002 0 281 4 305 9 502 71 7 203.8 180 1.39 0.046 0.000 8 0.327 0.015 6 0.052 0.002 6 289 5 287 12 295 139 8 218.3 258 0.94 0.044 0.000 6 0.347 0.016 0 0.057 0.002 7 280 4 302 12 494 106 9 160.7 206 0.93 0.044 0.000 8 0.344 0.016 5 0.057 0.002 7 280 5 300 12 483 107 10 416.3 424 1.26 0.044 0.000 8 0.333 0.018 7 0.054 0.003 0 280 5 292 14 383 122 11 157.1 221 0.97 0.045 0.000 9 0.371 0.024 5 0.060 0.003 7 283 5 320 18 606 140 12 831.6 408 2.86 0.045 0.000 9 0.303 0.019 3 0.049 0.003 4 285 5 269 15 169 156 13 681.7 435 1.90 0.045 0.000 6 0.340 0.013 2 0.056 0.002 1 282 4 297 10 435 83 14 145.6 162 1.05 0.046 0.000 8 0.347 0.016 7 0.055 0.002 6 289 5 302 13 433 104 15 233.0 232 1.31 0.045 0.000 7 0.316 0.014 7 0.051 0.002 4 286 4 279 11 243 107 16 148.4 221 0.78 0.044 0.000 8 0.379 0.020 6 0.062 0.003 4 281 5 326 15 700 117 17 182.3 240 0.93 0.045 0.000 6 0.356 0.013 7 0.058 0.002 3 283 4 309 10 539 92 18 183.6 268 0.88 0.045 0.000 6 0.311 0.011 4 0.051 0.002 0 286 4 275 9 233 95 19 148.9 214 0.85 0.046 0.000 7 0.330 0.015 3 0.052 0.002 4 293 4 289 12 272 105 20 326.3 382 1.06 0.045 0.000 6 0.326 0.012 4 0.052 0.001 9 285 3 286 10 283 83 21 222.9 242 1.07 0.045 0.000 6 0.363 0.015 6 0.059 0.002 6 282 4 315 12 576 127 22 220.3 361 0.70 0.046 0.000 6 0.328 0.011 8 0.051 0.001 8 293 4 288 9 261 75 23 1615 521 3.56 0.044 0.000 6 0.310 0.012 9 0.051 0.002 2 278 4 274 10 256 100 24 156.6 148 1.31 0.045 0.000 9 0.350 0.022 9 0.057 0.003 8 283 6 305 17 498 148 25 362.1 504 0.82 0.045 0.000 6 0.323 0.001 0 0.053 0.001 6 282 3 285 8 309 69 玄武岩 1 186 256 0.73 0.04 0.000 8 0.34 0.015 0.055 0.002 0 280 5 296 12 433 94 2 351 292 1.20 0.05 0.000 6 0.36 0.016 0.058 0.003 0 287 4 313 12 522 96 3 185 250 0.74 0.04 0.000 8 0.32 0.015 0.053 0.003 0 281 5 282 12 309 119 4 194 272 0.71 0.04 0.000 8 0.36 0.018 0.06 0.003 0 277 5 313 14 611 111 5 170 177 0.96 0.04 0.001 8 0.33 0.047 0.055 0.009 0 271 11 288 36 432 373 6* 112 140 0.80 0.04 0.000 9 0.33 0.026 0.064 0.006 0 243 6 286 20 744 198 7* 788 683 1.15 0.03 0.000 5 0.26 0.008 0.057 0.002 0 207 3 231 6 500 67 8 290 397 0.73 0.04 0.000 8 0.39 0.015 0.065 0.002 0 277 5 337 11 783 78 9* 81 107 0.76 0.05 0.000 9 0.58 0.028 0.084 0.004 0 314 5 462 18 1 302 90 10* 168 248 0.68 0.04 0.000 8 0.33 0.012 0.053 0.002 0 281 5 286 9 324 112 11 201 364 0.55 0.04 0.000 9 0.32 0.018 0.052 0.003 0 280 5 283 13 306 116 12* 873 870 1.00 0.03 0.000 5 0.28 0.009 0.061 0.002 0 208 3 248 7 633 59 13* 1 259 1679 0.75 0.02 0.000 4 0.2 0.006 0.069 0.002 0 135 2 185 5 900 61 14 319 441 0.72 0.04 0.000 7 0.33 0.012 0.056 0.002 0 274 4 293 9 450 76 15* 133 198 0.67 0.05 0.000 9 0.37 0.014 0.054 0.002 0 313 6 318 11 391 93 16* 322 337 0.95 0.04 0.000 8 0.38 0.027 0.072 0.006 0 243 5 324 20 972 159 17 217 509 0.43 0.04 0.000 6 0.35 0.010 0.059 0.002 0 277 4 308 8 561 64 注:标*号的数据因不协和而未参加统计 表 2 石英二长岩、玄武岩中锆石的Hf同位素分析结果
Table 2. Zircon Hf isotopic data for quartz monzonite and basalt
测点号 Age(Ma) 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf() εHf(t) TDM TDMc fLu/Hf 石英二长岩 1 280 0.037 074 0.000 429 0.001 154 0.000 014 0.282 132 0.000 020 -22.64 -16.70 1 583 2 354 -0.97 2 281 0.038 734 0.000 140 0.001 201 0.000 004 0.282 202 0.000 024 -20.17 -14.24 1 487 2 198 -0.96 3 279 0.028 828 0.000 247 0.000 881 0.000 009 0.282 196 0.000 019 -20.37 -14.39 1 482 2 208 -0.97 4 280 0.054 428 0.000 439 0.001 617 0.000 015 0.282 285 0.000 023 -17.21 -11.34 1 385 2 017 -0.95 5 280 0.041 198 0.000 270 0.001 215 0.000 008 0.282 253 0.000 020 -18.35 -12.41 1 415 2 084 -0.96 6 281 0.046 922 0.000 353 0.001 371 0.000 009 0.282 312 0.000 018 -16.28 -10.37 1 339 1 955 -0.96 7 289 0.044 059 0.001 810 0.001 303 0.000 054 0.282 245 0.000 022 -18.65 -12.54 1 431 2 100 -0.96 8 280 0.048 764 0.000 347 0.001 487 0.000 015 0.282 311 0.000 020 -16.32 -10.42 1 345 1 960 -0.96 9 280 0.052 770 0.000 749 0.001 535 0.000 026 0.282 213 0.000 024 -19.76 -13.91 1 484 2 177 -0.95 10 280 0.048 744 0.000 135 0.001 414 0.000 005 0.282 288 0.000 022 -17.11 -11.21 1 374 2 009 -0.96 11 283 0.038 939 0.000 132 0.001 153 0.000 002 0.282 290 0.000 023 -17.04 -11.03 1 361 1 999 -0.97 12 285 0.041 294 0.000 628 0.001 190 0.000 022 0.282 207 0.000 025 -19.98 -13.92 1 479 2 183 -0.96 13 282 0.058 001 0.000 598 0.001 646 0.000 021 0.282328 0.000 024 -15.69 -9.79 1 325 1 920 -0.95 14 289 0.046 676 0.000 511 0.001 329 0.000 010 0.282 297 0.000 025 -16.81 -10.74 1 359 1 984 -0.96 15 286 0.056 501 0.001 133 0.001 579 0.000 032 0.282 239 0.000 025 -18.86 -12.88 1 450 2 117 -0.95 16 281 0.059 493 0.000 144 0.001 677 0.000 008 0.282 401 0.000 022 -13.11 -7.27 1 223 1 760 -0.95 17 283 0.034 540 0.000 511 0.000 937 0.000 016 0.282 261 0.000 021 -18.07 -12.03 1 394 2 062 -0.97 18 286 0.039 795 0.000 275 0.001 110 0.000 005 0.282 197 0.000 024 -20.35 -14.27 1 491 2 207 -0.97 玄武岩 1 280 0.051 617 0.000 453 0.001 463 0.000 013 0.282 292 0.000 029 -16.96 -11.08 1 369 1 999 -0.96 2 287 0.039 388 0.000 622 0.001 058 0.000 016 0.282 282 0.000 024 -17.34 -11.24 1 370 2 015 -0.97 3 281 0.098 110 0.000 979 0.002 717 0.000 027 0.282 296 0.000 032 -16.84 -11.18 1 412 2 006 -0.92 4 277 0.043 547 0.000 114 0.001 188 0.000 003 0.282 270 0.000 019 -17.77 -11.87 1 391 2 048 -0.96 5 271 0.075 961 0.000 978 0.002 194 0.000 033 0.282 222 0.000 026 -19.45 -13.89 1 498 2 170 -0.93 8 277 0.056 354 0.000 476 0.001 568 0.000 007 0.282 308 0.000 021 -16.42 -10.59 1 352 1 969 -0.95 10 281 0.045 425 0.000 527 0.001 275 0.000 015 0.282 311 0.000 019 -16.32 -10.38 1 337 1 956 -0.96 11 280 0.034 278 0.000 075 0.000 988 0.000 004 0.282 814 0.000 019 1.48 7.47 620 824 -0.97 14 274 0.058 519 0.000 619 0.001 873 0.000 027 0.282 225 0.000 022 -19.34 -13.67 1 481 2 158 -0.94 17 277 0.051 655 0.000 323 0.001 707 0.000 015 0.283 039 0.000 025 9.44 15.23 307 324 -0.95 表 3 石英二长岩、玄武岩的主量元素(%)、稀土微量元素(×10-6)分析结果表
Table 3. Major (%), rare earth and trace element (×10-6)for quartz monzonite and basalt
样品号 P09-01 P09-03 P09-04 P09-05 P09-06 P13-02 P13-03 P13-04 P13-05 岩性 石英二长岩 玄武岩 SiO2 66.37 66.59 66.85 67.17 65.87 50.64 49.31 50.36 48.83 TiO2 0.33 0.43 0.42 0.35 0.40 3.18 3.18 3.08 3.24 Al2O3 16.10 16.55 15.89 16.54 16.62 14.63 15.07 14.66 15.81 Fe2O3 2.77 1.46 1.71 1.37 1.95 9.33 6.65 6.76 6.71 P2O5 0.12 0.15 0.15 0.12 0.14 0.85 0.88 0.86 0.91 CaO 1.59 1.84 1.98 1.76 1.85 1.76 2.08 1.81 1.61 K2O 5.15 4.75 4.72 4.99 4.93 2.68 3.66 3.54 3.92 MgO 0.62 0.81 0.77 0.68 0.8 4.07 5.02 4.68 5.14 MnO 0.09 0.09 0.09 0.08 0.08 0.12 0.11 0.12 0.086 Na2O 4.67 4.72 4.82 4.76 4.9 4.48 2.94 3.45 2.92 FeO 1.47 1.84 1.81 1.56 1.74 4.35 6.44 6.14 6.48 LOS 0.37 0.77 0.75 0.65 0.70 3.71 4.25 3.82 3.83 Total 99.64 100 99.99 100 99.98 99.8 99.59 99.28 99.48 Mg# 0.23 0.33 0.30 0.32 0.30 0.37 0.43 0.42 0.44 A/CNK 1.02 1.04 0.97 1.02 1.01 1.28 1.44 1.36 1.61 AR 3.23 3.11 3.31 3.17 3.26 2.55 2.04 2.44 2.01 Cr 0.0008 12.8 12.1 13.8 10.8 39.6 27.4 23.8 25.5 Ni 2.324 4.71 6.5 6.25 5.2 18.7 41.9 17.4 72.4 Co 3.354 4.28 5.6 3.93 3.97 38.3 42.5 40.4 45.7 Rb 68.237 69.9 67.2 66.9 66.6 59.8 78.7 72.1 85.7 Cs 2.949 3.14 2.9 2.72 2.2 1.55 1.26 1.16 1.40 Sr 323.45 294 319 304 308 181 180 183 164 Ba 1339.8 1228 1322 1551 1399 1527 2750 2645 2836 V 0.002 28.7 29.4 26.1 26.5 277 293 272 296 Sc 4.497 2.98 3.49 2.75 2.46 22.760 3 21.750 9 20.98 22.10 Nb 8.038 8.75 9.68 7.91 8.13 14.6 14.3 12.8 14.7 Ta 0.736 1.08 1.43 0.93 0.86 1.64 2.22 2.75 1.53 Zr 260.25 252 246 241 229 258 226 222 233 Hf 6.606 1.3 0.5 2.1 1.9 1.20 0.60 0.70 0.50 U 0.585 0.6 0.62 0.5 0.57 0.93 0.73 0.65 0.68 Th 12.055 8.46 9.08 7.93 8.58 5.42 3.47 5.02 3.28 La 66.896 72.676 85.126 59.8 77.342 31.26 26.86 26.41 29.62 Ce 125.365 129.558 150.264 111.596 140.327 69.75 65.81 60.47 68.21 Pr 12.16 12.145 14.726 10.867 13.728 10.09 8.96 8.89 10.16 Nd 36.32 36.513 43.294 32.586 41.365 40.35 39.37 38.11 40.47 Sm 4.654 4.603 5.27 4.005 4.979 1.2 0.6 0.7 0.5 Eu 1.067 1.097 1.093 0.913 0.983 2.31 2.33 2.1 2.38 Gd 4.358 5.848 6.532 4.886 6.244 6.59 6.56 6.33 6.94 Tb 0.447 0.593 0.626 0.527 0.632 1.2 1.23 1.14 1.26 Dy 2.267 2.113 2.511 2.063 2.113 6.71 6.81 5.93 7.05 Ho 0.431 0.372 0.411 0.360 0.376 1.21 1.27 1.12 1.28 Er 1.172 1.314 1.514 1.211 1.321 3.57 3.62 3.21 3.83 Tm 0.181 0.163 0.168 0.146 0.151 0.51 0.52 0.49 0.59 Yb 1.039 1.054 1.168 0.909 1.041 3.17 3.51 3.29 3.73 Lu 0.159 0.151 0.183 0.142 0.158 0.5 0.52 0.47 0.55 Y 10.429 10.929 11.449 9.622 10.264 32.99 32 31.48 35.96 ΣREE 290.7 256.5 268.2 312.9 230.0 185.4 175.66 165.5 184.6 ΣLREE 278.7 246.5 256.6 299.8 219.8 162.0 151.6 143.5 159.4 ΣHREE 12.04 10.06 11.61 13.11 10.24 23.44 24.03 21.96 25.22 LREE/HREE 23.15 24.51 22.11 22.87 21.45 6.91 6.31 6.53 6.32 δEu 0.54 0.72 0.65 0.57 0.63 0.96 0.97 0.93 0.95 -
Boynton, W. V., 1984. Geochemistry of the Rare Earth Elements: Meteoritestudies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-144. Cao, D. Y., Zhao, F. Liu, D., et al., 2014. Geochemical Characteristics and Tectonic Implications of the Early Permian Volcanic Rocks from Ongniud Banner, Inner Mongolia. Journal of Hunan University of Science & Technology (Natural Science Edition), 29(3): 38-43 (in Chinese with English abstract). Chu, H., Wang, H. C., Wei, C. J., et al., 2012. The Metamorphic Evolution History of High Pressure Granulites in Chengde Area, Northern Margin of North China: Zircon Chronology and Geochemical Evidence. Acta Geoscientica Sinica, 33(6): 977-987 (in Chinese with English abstract). Cheng, J. S., 2018. Petrogenesis of the Late Paleozoic to Early Mesozoic Granitic from the Chifeng Region and Their Tectonic Implication(Dissertation). Jilin University, Changchun, 151-155(in Chinese with English abstract). Cheng, T. S., Yang, W. J., Wang, D. H., 2013. Zircon U-Pb Age of the Spilite-Keratophyre Sequence of the Dashizhai Formation in Maodeng of Xilinhaote Inner Mongolia and Its Geological Significance. Geoscience, 27(3): 526-535 (in Chinese with English abstract). Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/bf00374895 Cui, Y. L., Qu, H. J., et al., 2019. First Identification of ~2.61 Ga Amphibolite in Jiefangyingzi Area on the Northern Margin of the North China Craton. Geology in China, 46(2)436-437 (in Chinese). Dong, X. J., Wang, W. Q., Sha, Q., et al., 2016. Suzy Volcanic Rocks in the Northern Margin of the North China Craton and Its Formation Mechanism. Acta Petrologica Sinica, 32(9): 2765-2779(in Chinese with English abstract). Guan, Q. B., Liu, Z. H., Bai, X. H., et al., 2016. Age and Tectonic Setting of Volcanic Rocks of the Dashizhai Formation from Xinkaiba, Balinyouqi Area, Inner Mongolia. Acta Petrologica Sinica, 32(7): 2029-2040(in Chinese with English abstract). Hao, B. W., Jiang, J., 2010. Chronology, Geochemistry of the Hadamiao Complex Related to Gold Depositsin Xianghuang Banner, Inner Mongolia. Acta Petrologica et Mineralogica, 29(6): 750-762(in Chinese with English abstract). Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.025 Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055 Li, J. Y., Gao, L. M., Sun G. H., et al., 2007. Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates. Acta Petrologica Sinica, 23(3): 566-578(in Chinese with English abstract). Li, S. C., Wang, H. T., Li, G., et al., 2020. Northward Plate Subduction Process of the Paleo-Asian Ocean in the Middle Part of the Central Asian Orogenic Belt: Evidence from Adakites. Acta Petrologica Sinica, 36(8): 2521-2536. https://doi.org/10.18654/1000-0569/2020.08.14 Liu, J., Wu, G., Liu, T. G., et al., 2014. SHRIMP Zircon U-Pb Dating, Geochemistry, Sr-Nd Isotope Analysis of the Late Paleozoic Intermediate-Acidic Intrusive Rocks in the Hadamiao ARea, Xianghuang Banner, Inner Mongolia and Its Geological Significances. Acta Petrologica Sinica, 30(1) : 96-104(in Chinese with English abstract). Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43(4): 123-148. https://doi.org/10.1016/j.gr.2016.03.013 Liu, Y. J., Feng, Z. Q., et al., 2019. Ophiolite in the Eastern Central Asian Orogenic Belt, NE China. Acta Petrologica Sinica, 35(10): 3017-3047. https://doi.org/10.18654/1000-0569/2019.10.05 Lü, Z. C., Hao, L. B., Duan, G. Z., et al., 2002. Lithogeochemical Characteristics and Tectonic Implications of Two Series of Volcanic Rocks from Early Permian Dashizhai Formation in the south section of Da Hinggan Mountains. Geochimica, 31(4): 339-345. https://doi.org/10.19700/j.0379-1726.2002.04.005 Mei, K. C., Li, Q. G., Wang, Z. Q., et al., 2015. SHRIMP Zircon U-Pb Age, Geochemistry and Tectonic Significance of the Dashizhai Formation Rhyolites in Sunid Left Banner, Middle Part of Inner Mongolia. Geological Bulletin of China, 34(12): 2182-2193(in Chinese with English abstract). Peng, B., Wang, G. Q., Liu, L., et al., 2016. Recognition of the Early Permian Volcanic Rocks and Its Geological Significance in Chifeng Region of Inner Mongolia. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1330-1339(in Chinese with English abstract). Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesits. Wiley, Chichester, 525-548. Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 Shang, Q. H. 2004. Occurrences of Permian Radio Larians in Central and Eastern Inner Mongolia and Their Geological Significance to the Northern China Orogen. Chinese Science Bulletin, 49(24): 2574-2578(in Chinese). doi: 10.1360/csb2004-49-24-2574 Shao, J. A., Tang, K. D., He, G. Q., 2014. Early Permian Tectono-Palaeo Geographic Reconstruction of Inner Mongolia, China. Acta Petrologica Sinica, 30(7): 1858-1866(in Chinese with English abstract). Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Tong, Y., Hong, D. W., Wang T., et al., 2016. Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications. Acta Geoscientica Sinica, 31(3): 395-412(in Chinese with English abstract). Wang, W. Q., Xu, Z. Y., Liu, Z. H., et al., 2013. Early Middle Permian Tectonic Evolution of the Central Northern Margin of the North China Craton: Constraints from Zircon U-Pb Ages and Geochemistry of the Granitoids. Acta Petrologica Sinica, 29(9): 2988-3000 (in Chinese with English abstract). Wang, Y. J., Fan, Z. Y., 1997. Discovery of Permian Radiolarians in Ophiolite Belt on Northern Side of Xarmoron River, Nei Monggol and Its Geological Significance. Acta Palaeontologica Sinica, 36(1): 58-61 (in Chinese with English abstract). Wang, Y. G., 2018. The Tectonic Significance of the Early Permian Volcanic Rocks in the North Margin of North China Block: A Case Study in Siziwang Banner Area(Dissertation). China University of Geosciences, Beijing, 1-30(in Chinese with English abstract). Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London, 1-466. Wu, F. Y., Zhao, G. C., Sun, D. Y., et al., 2007. The Hulan Group: Its Role in the Evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 30(3/4): 542-556. https://doi.org/10.1016/j.jseaes.2007.01.003 Wu, F. Y., Li, X. H., Yang, J. H, et al., 2007a. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6) : 1220-1233(in Chinese with English abstract). Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007b. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2) : 186-208(in Chinese with English abstract). Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 Xia, Y., Liu, L and Xu, X. S. 2016. Late Mesozoic A-Type Granitoids in SE China and Paleo-Pacific Plate Subduction and Slab Rollback. Bulletin of Mineralogy, Petrology and Geochemistry, 35(6): 1110-1116(in Chinese with English abstract). Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069. Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2009. End Permian to Mid-Triassic termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217. doi: 10.1007/s00531-008-0407-z Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. doi: 10.1146/annurev-earth-060614-105254 Xu, Y. G., Ma, J. L., Frey, F. A., et al., 2005. Role of Lithosphere-Asthenosphere Interaction in the Genesis of Quaternary Alkali and Tholeiitic Basalts from Datong, Western North China Craton. Chemical Geology, 224(4): 247-271. doi: 10.1016/j.chemgeo.2005.08.004 Xu, B., Zhao, P., Bao, Q. Z., et al., 2014. Preliminary study on the Pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt(XMOB). Acta Petrologica Sinica, 30(7): 1842-1851(in Chinese with English abstract). Xu, B., Wang, Z. W., Zhang, L. Y., et al., 2018. The Xing-Meng Intra Continent Orogenic Belt. Acta Petrologica Sinica, 34(10): 2820-2838(in Chinese with English abstract). Yuan, G. B., Wang, H. C., 2006. Magmatic Activity and Its Tectonic Implications during the Early Permianin the Northwest Ward of Wuchuan, Inner Mongolia. Geological Survey and Research, 29(4): 303-310(in Chinese with English abstract). Zhang, X. F., Liu, J. L., Feng, J. L., et al., 2016. Geochronological and Geochemical Features of Volcanic Rocks of Dashizhai Formation in Ural Sutai of Xilin Hot, Inner Mongolia, and Their Geological Significance. Geological Bulletin of China, 35(5): 767-774(in Chinese with English abstract). Zhang, X. F., Zhou, Y., Liu, J. L., et al., 2018a. Geochronology and Geochemistry for Volcanic Rocks of Dashizhai Formation and Its Geological Significance in XiUjimqin Banner, Inner Mongolia. Acta Petrologica Sinica, 34(6): 1775-1791(in Chinese with English abstract). Zhang, X. F., Zhou, Y., Cao, J., et al., 2018b. Geochronological and Geochemical Features of Bimodal Intrusive Rocks in the Hanwula Area Xiwu Banner, Inner Mongolia: Constraints on Closure of the Paleo-Asian Ocean. Acta Geologica Sinica, 92(4): 665-686 (in Chinese with English abstract). Zhu, R. X., Xu, Y. G., 2019. The Subduction of the West Pacific Plate and the Destruction of the North China Craton. Science China Earth Sciences, 49(9)1346-1356 (in Chinese). 曹代勇, 赵发, 刘登, 等, 2014. 内蒙古翁牛特旗地区早二叠世火山岩地球化学特征及其构造意义. 湖南科技大学学报, 29(3): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY201403009.htm 初航, 王慧初, 魏春景, 等, 2012. 华北北缘承德地区高压麻粒岩的变质演化历史. 地球学报, 33(6): 977-987. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201206022.htm 陈井胜, 2008. 赤峰地区晚古生代-早中生代花岗岩成因及其构造意义(博士学位论文). 长春: 吉林大学, 151-155. 程天赦, 杨文静, 王登红, 2013. 内蒙古锡林浩特毛登牧场大石寨组细碧-角斑岩系地球化学特征、锆石U-Pb年龄及地质意义. 现代地质, 27(3): 526-535. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201303003.htm 崔玉良, 渠洪杰, 陈英富, 等, 2019. 华北板块北缘解放营子地区发现~2.61 Ga斜长角闪岩. 中国地质, 46(2)436-437. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102024.htm 董晓杰, 王挽琼, 沙茜, 等, 2016. 华北克拉通北缘中段二叠纪苏吉火山岩及其形成机制. 岩石学报, 32(9): 2765-2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201609012.htm 关庆彬, 刘正宏, 白新会, 等, 2016. 内蒙古巴林右旗新开坝地区大石寨组火山岩形成时代及构造背景. 岩石学报, 32(7): 2029-2040. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201607007.htm 郝百武, 蒋杰, 2010. 内蒙古镶黄旗哈达庙金矿杂岩体年代学、地球化学及其形成机制. 岩石矿物学杂志, 29(6) : 750-762. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006012.htm 候可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm 李锦轶, 高立明, 孙桂华, 等, 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 566-578. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm 李世超, 王洪涛, 李刚, 等, 2020. 中亚造山带中段古亚洲洋北向平板俯冲过程: 来自埃达克岩的证据. 岩石学报, 36(8): 2521-2536. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202008015.htm 刘军, 武广, 刘铁刚, 等, 2014. 内蒙古镶黄旗哈达庙地区晚古生代中酸性侵入岩的年代学、地球化学、Sr-Nd同位素组成及其地质意义. 岩石学报, 30(1): 96-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401007.htm 刘永江, 冯志强, 蒋立伟, 等, 2019. 中国东北地区蛇绿岩. 岩石学报, 35(10): 3018-3034. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201910006.htm 吕志成, 郝立波, 段国正, 等, 2002. 大兴安岭南段早二叠世两类火山岩岩石地球化学特征及其构造意义. 地球化学, 31(4): 339-345. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200204004.htm 梅可辰, 李秋根, 王宗起, 等, 2015. 内蒙古中部苏尼特左旗大石寨组流纹岩SHRIMP锆石U-Pb、地球化学特征及其构造意义. 地质通报, 34(12): 2182-2193. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201512005.htm 彭斌, 王国祺, 刘乐, 等, 2016. 内蒙古赤峰地区二叠纪火山岩的发现及其地质意义. 矿物岩石地球化学通报, 35(6): 1330-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201606033.htm 尚庆华, 2004. 北方造山带内蒙古中、东部地区二叠纪放射虫的发现及意义. 科学通报, 49(24): 2574-2578. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB20042400D.htm 邵济安, 唐克东, 何国琦, 2014. 内蒙古早二叠世构造古地理的再造. 岩石学报, 30(7): 1858-1866. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407002.htm 童英, 洪大卫, 王涛, 等, 2016. 中蒙边境中段花岗岩时空分布特征及构造和找矿意义及构造和找矿. 地球学报, 31 (3): 395-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003016.htm 王挽琼, 徐仲元, 刘正宏, 等, 2013. 华北板块北缘中段早中二叠世的构造属性: 来自花岗岩类锆石U-Pb年代学及地球化学的制约. 岩石学报, 29(9): 2988-3000. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311020.htm 王玉净, 樊志勇, 1997. 内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义. 古生物学报, 36(1): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX701.004.htm 王月古, 2018. 华北板块北缘早二叠世火山岩的构造意义: 以四子王旗地区为例. 硕士学位论文. 北京: 中国地质大学, 1-30. 吴福元, 李献华, 杨进辉, 等, 2007a. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1220-1233. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm 吴福元, 李献华, 郑永飞, 等, 2007b. Lu-Hf同位素体系及其应用. 岩石学报, 23(2): 186-208. 夏炎, 刘磊, 徐夕生, 2016. 中国东南部中生代A型花岗岩类与太平洋板块俯冲-后撤. 矿物岩石地球化学通报, 35(6) : 1110-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201606007.htm 俆备, 赵盼, 鲍庆中, 等, 2014. 中亚造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1842-1851. 俆备, 王志伟, 张立杨, 等, 2018. 中亚陆内造山带. 岩石学报, 34(10): 2820-2838. 袁桂邦, 王惠初, 2006. 内蒙古武川西北部早二叠世岩浆活动及其构造意义. 地质调查与研究, 29(4): 303-309. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200604009.htm 张晓飞, 刘俊来, 冯俊岭, 等, 2016. 内蒙古锡林浩特乌拉苏太大石寨组火山岩年代学、地球化学特征及其地质意义. 地质通报, 35(5): 767-774. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201605012.htm 张晓飞, 周毅, 刘俊来, 等, 2018a. 内蒙古西乌旗大石寨组火山岩年代学和地球化学特征及地质意义. 岩石学报, 34(6): 1775-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806014.htm 张晓飞, 周毅, 曹军, 等, 2018b. 内蒙古西乌旗罕乌拉地区双峰式侵入体年代学、地球化学特征及其对古亚洲洋闭合时限的制约. 地质学报, 92(4): 665-686. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201804004.htm 朱日祥, 徐义刚, 2019. 西太平洋板块俯冲与华北克拉通破坏. 中国科学: 地球科学, 49(9)1346-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202005007.htm -