Quantification of Water Vapor Transport Coefficient and Priestley-Taylor Coefficient over Small Inland Water Bodies
-
摘要: 小型水体(面积 < 1 km2)数量众多,面积占全球内陆水体总面积的40%以上,在天气气候系统、水循环和水资源管理中扮演着重要角色.选取安徽省全椒县官渡村一处养殖鱼塘作为小型水体的代表,自2017年6月至2020年5月利用涡度相关方法对蒸发量进行连续观测,基于体积传输方程插补了缺失数据,在月尺度上强迫能量闭合,并利用Priestley-Taylor模型研究平流影响.研究结果表明小型水体的水汽传输系数存在夏高冬低的季节变化特征,变化范围为1.9×10-3~3.4×10-3,与风速、水面和空气温度差存在显著的相关关系.但是全球内陆水体水汽传输系数与水体面积的相关关系不显著.小型水体月尺度Priestley-Taylor模型α变化范围为1.14~1.78,8月最小,2月最大,最大值高于大型湖泊的开阔水面.与其他内陆水体相同,小型水体α系数呈现暖季低值、冷季高值的季节变化特征,说明夏季无明显平流影响,而冬季平流影响比较强烈.年尺度上,全球大型水体和小型水体的蒸发均会受到微弱的平流影响.Abstract: Small water bodies (< 1 km2) are numerous, with area accounting for more than 40% of the total area of global inland water area, and play an important role in weather and climate system, water cycle and water resources management. In this paper, the aquaculture pond in Quanjiao County of Anhui Province was selected as a representative of small water bodies. Continuous observations of evaporation from June 2017 to May 2020 were conducted using eddy covariance technology. Data gaps were interpolated based on bulk transfer equation, and energy balance closure was forced on monthly scale. Priestley-Taylor model was used to study the effect of advection. Results indicate that the water vapor transfer coefficient of small water bodies was higher in summer and lower in winter, with a range of 1.9×10-3 to 3.4×10-3. The monthly water vapor transfer coefficient was significantly correlated with wind speed and the difference between water surface temperature and air temperature over small water bodies. But the transfer coefficient is not significantly correlated with water body area.The α coefficient of Priestley-Taylor model over the small water body ranged from 1.14 to 1.78, with lowest value appeared in August and highest value appeared in February, and the maximum value is higher than those over open surface of large lakes. Similar to other inland water bodies, the α coefficient over small water bodies was lower in warm season and higher in cold season, indicating that advection effect was weak in summer and strong in winter. On annual time scale, evaporation of both small and large water bodies were affected by weak advection.
-
Key words:
- evaporation /
- small water body /
- eddy covariance /
- Priestley-Taylor model /
- water vapor transfer coefficient /
- advection /
- meteorology /
- climatology
-
表 1 基于蒸发量观测数据和水汽传输方程方法反算的全球水体CE结果
Table 1. CE results of global water bodies based on evaporation observation data and inverse calculation of water vapor transport equation method
大洲 水体名称 国家/
地区经纬度 面积
(km2)观测时段 观测高度
(m)时间
长度CE
(10-3)CE10
(10-3)文献 北
美
洲Emaiksoun Lake 美国 61°55′12″N, 113°43′48″W 1.857 2008—2010无冰期 - 数月 - 1.83 Potter(2011) Great Slave Lake 加拿大 41°N, 121°W 27 000 1997—1999无冰期 16.9 数月 - 2.0 Blanken et al.(2003) Castle Lake 美国 32°15′36″N, 90°01′12″W 0.2 08-21~11-14 2.8 < 3个月 - 1.9 Strub and Powell (1987) Ross Rarnett Reservoir 美国 72°17′54″N, 126°10′24″E 134 2007-09-01~2008-02-28 4 6个月 - 1.2 Liu et al.(2009) 欧洲 Siberian thermokarst lake 西伯利亚 61°50′N,
24°17′E1.21 2014-06-24~
08-16无冰期2.39 数月 - 2.2 Franz et al.(2018) Lake Kuivajärvi 芬兰 61°13′48″N, 25°3′E 0.63 2010—2011
(06~10)1.7 10个月 1.9 1.45 Mammarella et al.(2015) Lake
Valkea-Kotinen芬兰 0.041 2005—2008
(04~10)- 21个月 - 1.0 Nordbo et al.(2011) Lake Tämnaren 瑞典 60°0′N,
17°20′E37 1994-06
(12,13, 20)3 3天 1.07 1.0 Heikinheimo et al.(1999) 亚洲 Lake Kasumigaura 日本 36°02′35″N, 140°24′42″E 220 2008—2010 3.72 3年 - 1.1 Wei et al.(2016) 鄂陵湖 中国 35°01′28″N, 97°38′59″E 610 2011-07~
2011-113 5个月 - 1.36 Li et al.(2015) 太湖东部湖区
太湖北部湖区中国 31°10′12″N, 120°24′E
31°25′N,
120°13′E2 400 2011-12-15~2012-06-30
2010-07~
2012-088.5
3.5数月 - 1.0 Xiao et al.(2013) 洱海 中国 25°46′N,
100°10′E256.5 2012全年 2.5 月/年 - 1.2~1.75/1.36 Liu et al.(2015) 小型养殖鱼塘 中国 31°58′7″N, 118°15′10″E 0.0077 2017-06~
2020-051.8 月/年 1.9~3.4/2.5 1.25~2.1/1.6 本文 表 2 文献中全球内陆水体Priestley-Taylor模型α系数的研究结果
Table 2. Results of the α coefficients in the Priestley-Taylor model over global inland water bodies in literature
大洲 水体 国家/地区 经纬度 面积(km2) 观测时期 尺度 α 文献 湖泊/水库/湿地 - - - - 日 1.08~1.34/1.26 Priestley and Taylor(1972) Lake Léman 瑞士 46°26′N, 6°33′E 580 - < 日 约为0.7~2.5 Assouline et al.(2016) Lake Kinneret 以色列 32°50′N, 35°35′E 166 - The Eshkol reservoirs 以色列 32°46′N, 35°14′E - - The Tilopozo wetland 智利 23°47′S, 68°14′W 6 - 北美洲 浅水湖 加拿大 57°45′N, 88°45′W 0.1 1972-07 小时/日 1.26 Stewart and Rouse(1976) Lake Flevo 荷兰 52°23′9″N, 5°24′46″E 467.6 1967-07~1967-09 日/月 1.26/1.15~1.42 De Bruin and Keijman(1979) 1967-04~1967-10 月 1.2~1.5 Ross Barnett Reservoir 美国 32°26′N, 90°2′W - 2007-08-25~2007-09-30 小时 1.00~1.32(H > 0; E > 0)1.24~2.04(H < 0; E > 0) Guo et al.(2015) 南美洲 Lake Serra Azul水库 巴西 - 8.8 1993-01~1995-06 月 1.16(整体月尺度)1~1.5(1993.09,H < 0,α=2.3) Dos Reis and Dias(1998) 亚洲 青海湖 中国 36°32′~37°15′N, 99°36′~100°47′E 4 432.32 2013-05-11~2015-05-10 月 1.16~1.62 Li et al.(2016) 太湖 中国 30°5′40″~31°32′58″N,
119°52′32″~120°36′10″E2 400 2010-07~2017-12 季节 1.36(春)1.23(夏)1.30(秋)1.60(冬) Xiao et al.(2020) 年 1.39 2010—2018 日
月1.25~1.28(各站点日平均状况)
1.26~1.27(各站点月平均状况)Han et al.(2021) 31°25′11″N, 120°12′50″E 2010-06-14~2012-08-31 月 1.14~1.94 Wang et al.(2014) 小型养殖鱼塘 中国 31°58′7″N, 118°15′10″E 0.007 7 2017-06~2020-05 月 1.14~1.78 本文 季节 1.34(春)1.18(夏)1.28(秋)1.56(冬) 年 1.31 -
Assouline, S., Li, D., Tyler, S., et al., 2016. On the Variability of the Priestley-Taylor Coefficient over Water Bodies. Water Resources Research, 52(1): 150-163. https://doi.org/10.1002/2015wr017504 Baldocchi, D., Falge, E., Gu, L. H., et al., 2001. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 82(11): 2415-2434. https://doi.org/10.1175/1520-0477(2001)0822415:fantts>2.3.co;2 doi: 10.1175/1520-0477(2001)0822415:fantts>2.3.co;2 Blanken, P. D., Rouse, W. R., Schertzer, W. M., 2003. Enhancement of Evaporation from a Large Northern Lake by the Entrainment of Warm, Dry Air. Journal of Hydrometeorology, 4(4): 680-693. doi: 10.1175/1525-7541(2003)004<0680:EOEFAL>2.0.CO;2 Cao, L., Shen, J. M., Nie, Z. L., et al., 2021. Stable Isotopic Characteristics of Precipitation and Moisture Recycling in Badain Jaran Desert. Earth Science, 46(8): 2973-2983(in Chinese with English abstract). Chen, J. W., Ge, J. W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092(in Chinese with English abstract). De Bruin, H. A. R., Keijman, J. Q., 1979. The Priestley-Taylor Evaporation Model Applied to a Large, Shallow Lake in the Netherlands. Journal of Applied Meteorology, 18(7): 898-903. https://doi.org/10.1175/1520-0450(1979)0180898: tptema>2.0.co;2 doi: 10.1175/1520-0450(1979)0180898:tptema>2.0.co;2 Deng, B., Liu, S. D., Xiao, W., et al., 2013. Evaluation of the CLM4 Lake Model at a Large and Shallow Freshwater Lake. Journal of Hydrometeorology, 14(2): 636-649. https://doi.org/10.1175/jhm-d-12-067.1 Dos Reis, R. J., Dias, N. L., 1998. Multi-Season Lake Evaporation: Energy-Budget Estimates and CRLE Model Assessment with Limited Meteorological Observations. Journal of Hydrology, 208(3-4): 135-147. doi: 10.1016/S0022-1694(98)00160-7 Franz, D., Mammarella, I., Boike, J., et al., 2018. Lake-Atmosphere Heat Flux Dynamics of a Thermokarst Lake in Arctic Siberia. Journal of Geophysical Research: Atmospheres, 123(10): 5222-5239. https://doi.org/10.1029/2017jd027751 Friedrich, K., Grossman, R. L., Huntington, J., et al., 2018. Reservoir Evaporation in the Western United States: Current Science, Challenges, and Future Needs. Bulletin of the American Meteorological Society, 99(1): 167-187. https://doi.org/10.1175/bams-d-15-00224.1 Garratt, J. R., 1992. The Atmospheric Boundary Layer. Cambridge University Press, Cambridge. Gibson, J. J., Birks, S. J., Yi, Y., 2016. Stable Isotope Mass Balance of Lakes: A Contemporary Perspective. Quaternary Science Reviews, 131: 316-328. https://doi.org/10.1016/j.quascirev.2015.04.013 Guo, X. F., Liu, H. P., Yang, K., 2015. On the Application of the Priestley-Taylor Relation on Sub-Daily Time Scales. Boundary-Layer Meteorology, 156(3): 489-499. https://doi.org/10.1007/s10546-015-0031-y Guo, Y. H., Zhang, Y. S., Ma, N., et al., 2019. Long-Term Changes in Evaporation over Siling Co Lake on the Tibetan Plateau and Its Impact on Recent Rapid Lake Expansion. Atmospheric Research, 216: 141-150. https://doi.org/10.1016/j.atmosres.2018.10.006 Han, S. J., Tian, F. Q., Wang, W., et al., 2021. Sigmoid Generalized Complementary Equation for Evaporation over Wet Surfaces: A Nonlinear Modification of the Priestley-Taylor Equation. Water Resources Research, 57(9): e2020WR028737. https://doi.org/10.1029/2020wr028737 Heikinheimo, M., Kangas, M., Tourula, T., et al., 1999. Momentum and Heat Fluxes over Lakes Tämnaren and RÅKSJÖ Determined by the Bulk-Aerodynamic and Eddy-Correlation Methods. Agricultural and Forest Meteorology, 98/99: 521-534. https://doi.org/10.1016/S0168-1923(99)00121-5 Lee, X. H., Liu, S. D., Xiao, W., et al., 2014. The Taihu Eddy Flux Network: An Observational Program on Energy, Water, and Greenhouse Gas Fluxes of a Large Freshwater Lake. Bulletin of the American Meteorological Society, 95(10): 1583-1594. https://doi.org/10.1175/bams-d-13-00136.1 Li, X. Y., Ma, Y. J., Huang, Y. M., et al., 2016. Evaporation and Surface Energy Budget over the Largest High-Altitude Saline Lake on the Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 121(18): 10470-10485. https://doi.org/10.1002/2016jd025027 Li, Z. G., Lyu, S. H., Zhao, L., et al., 2015. Turbulent Transfer Coefficient and Roughness Length in a High-Altitude Lake, Tibetan Plateau. Theoretical and Applied Climatology, 124(3/4): 723-735. https://doi.org/10.1007/s00704-015-1440-z Lim, W. H., Roderick, M. L., Hobbins, M. T., et al., 2013. The Energy Balance of a US Class a Evaporation Pan. Agricultural and Forest Meteorology, 182/183: 314-331. https://doi.org/10.1016/j.agrformet.2013.07.001 Liu, H. P., Zhang, Y., Liu, S. H., et al., 2009. Eddy Covariance Measurements of Surface Energy Budget and Evaporation in a Cool Season over Southern Open Water in Mississippi. Journal of Geophysical Research: Atmospheres, 114(D4): D04110. https://doi.org/10.1029/2008jd010891 Liu, H. Z., Feng, J. W., Sun, J. H., et al., 2015. Eddy Covariance Measurements of Water Vapor and CO2 Fluxes above the Erhai Lake. Science China Earth Sciences, 58(3): 317-328. https://doi.org/10.1007/s11430-014-4828-1 Mammarella, I., Nordbo, A., Rannik, Ü., et al., 2015. Carbon Dioxide and Energy Fluxes over a Small Boreal Lake in Southern Finland. Journal of Geophysical Research: Biogeosciences, 120(7): 1296-1314. https://doi.org/10.1002/2014jg002873 McGloin, R., McGowan, H., McJannet, D., et al., 2014. Quantification of Surface Energy Fluxes from a Small Water Body Using Scintillometry and Eddy Covariance. Water Resources Research, 50(1): 494-513. https://doi.org/10.1002/2013wr013899 Moukomla, S., Blanken, P. D., 2017. The Estimation of the North American Great Lakes Turbulent Fluxes Using Satellite Remote Sensing and MERRA Reanalysis Data. Remote Sensing, 9(2): 141-154. https://doi.org/10.3390/rs9020141 Nicholson, S. E., Kim, J., Ba, M. B., et al., 1997. The Mean Surface Water Balance over Africa and Its Interannual Variability. Journal of Climate, 10(12): 2981-3002. https://doi.org/10.1175/1520-0442(1997)0102981: tmswbo>2.0.co;2 doi: 10.1175/1520-0442(1997)0102981:tmswbo>2.0.co;2 Nordbo, A., Launiainen, S., Mammarella, I., et al., 2011. Long-Term Energy Flux Measurements and Energy Balance over a Small Boreal Lake Using Eddy Covariance Technique. Journal of Geophysical Research: Atmospheres, 116(D2): D02119. https://doi.org/10.1029/2010jd014542 Potter, B. L., 2011. Climatic Controls on the Summertime Energy Balance of a Thermokarst Lake in Northern Alaska: Short‐Term, Seasonal, and Interannual Variability (Dissertation). University of Nebraska-Lincoln, Nebraska. Priestley, C. H. B., Taylor, R. J., 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2): 81-92. https://doi.org/10.1175/1520-0493(1972)1000081: otaosh>2.3.co;2 doi: 10.1175/1520-0493(1972)1000081:otaosh>2.3.co;2 Stewart, R. B., Rouse, W. R., 1976. A Simple Method for Determining the Evaporation from Shallow Lakes and Ponds. Water Resources Research, 12(4): 623-628. https://doi.org/10.1029/wr012i004p00623 Strub, P. T., Powell, T. M., 1987. The Exchange Coefficients for Latent and Sensible Heat Flux over Lakes: Dependence upon Atmospheric Stability. Boundary-Layer Meteorology, 40(4): 349-362. https://doi.org/10.1007/bf00116102 Verpoorter, C., Kutser, T., Seekell, D. A., et al., 2014. A Global Inventory of Lakes Based on High-Resolution Satellite Imagery. Geophysical Research Letters, 41(18): 6396-6402. https://doi.org/10.1002/2014gl060641 Wang, W., Lee, X. H., Xiao, W., et al., 2018. Global Lake Evaporation Accelerated by Changes in Surface Energy Allocation in a Warmer Climate. Nature Geoscience, 11(6): 410-414. https://doi.org/10.1038/s41561-018-0114-8 Wang, W., Xiao, W., Cao, C., et al., 2014. Temporal and Spatial Variations in Radiation and Energy Balance across a Large Freshwater Lake in China. Journal of Hydrology, 511: 811-824. https://doi.org/10.1016/j.jhydrol.2014.02.012 Wei, Z. W., Miyano, A., Sugita, M., 2016. Drag and Bulk Transfer Coefficients over Water Surfaces in Light Winds. Boundary-Layer Meteorology, 160(2): 319-346. https://doi.org/10.1007/s10546-016-0147-8 Xiao, W., Lee, X. H., Hu, Y. B., et al., 2017. An Experimental Investigation of Kinetic Fractionation of Open-Water Evaporation over a Large Lake. Journal of Geophysical Research: Atmospheres, 122(21): 11651-11663. https://doi.org/10.1002/2017jd026774 Xiao, W., Liu, S. D., Wang, W., et al., 2013. Transfer Coefficients of Momentum, Heat and Water Vapour in the Atmospheric Surface Layer of a Large Freshwater Lake. Boundary-Layer Meteorology, 148(3): 479-494. https://doi.org/10.1007/s10546-013-9827-9 Xiao, W., Zhang, Z., Wang, W., et al., 2020. Radiation Controls the Interannual Variability of Evaporation of a Subtropical Lake. Journal of Geophysical Research: Atmospheres, 125(8): e2019JD031264. https://doi.org/10.1029/2019jd031264 Zhang, Z., Zhang, M., Cao, C., et al., 2020. A Dataset of Microclimate and Radiation and Energy Fluxes from the Lake Taihu Eddy Flux Network. Earth System Science Data, 12(4): 2635-2645. https://doi.org/10.5194/essd-12-2635-2020 Zhao, J. Y., Zhang, M., Xiao, W., et al., 2019. An Evaluation of the Flux-Gradient and the Eddy Covariance Method to Measure CH4, CO2, and H2O Fluxes from Small Ponds. Agricultural and Forest Meteorology, 275: 255-264. https://doi.org/10.1016/j.agrformet.2019.05.032 曹乐, 申建梅, 聂振龙, 等, 2021. 巴丹吉林沙漠降水稳定同位素特征与水汽再循环. 地球科学, 46(8): 2973-2983. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202108022.htm 谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202003031.htm -