• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东喜马拉雅构造结快速隆升时期: 来自缅甸中央盆地沉积学证据

    鲁毅 崔宇驰 SiSi Thu KyawKyaw Khing MyoMin Aung 朱伟林 邵磊

    鲁毅, 崔宇驰, SiSi Thu, KyawKyaw Khing, MyoMin Aung, 朱伟林, 邵磊, 2022. 东喜马拉雅构造结快速隆升时期: 来自缅甸中央盆地沉积学证据. 地球科学, 47(7): 2573-2585. doi: 10.3799/dqkx.2021.240
    引用本文: 鲁毅, 崔宇驰, SiSi Thu, KyawKyaw Khing, MyoMin Aung, 朱伟林, 邵磊, 2022. 东喜马拉雅构造结快速隆升时期: 来自缅甸中央盆地沉积学证据. 地球科学, 47(7): 2573-2585. doi: 10.3799/dqkx.2021.240
    Lu Yi, Cui Yuchi, Si Si Thu, Kyaw Kyaw Khing, Myo Min Aung, Zhu Weilin, Shao Lei, 2022. Rapid Uplift Period of Eastern Himalayan Syntaxis: Evidence from Sedimentology in Central Myanmar Basin. Earth Science, 47(7): 2573-2585. doi: 10.3799/dqkx.2021.240
    Citation: Lu Yi, Cui Yuchi, Si Si Thu, Kyaw Kyaw Khing, Myo Min Aung, Zhu Weilin, Shao Lei, 2022. Rapid Uplift Period of Eastern Himalayan Syntaxis: Evidence from Sedimentology in Central Myanmar Basin. Earth Science, 47(7): 2573-2585. doi: 10.3799/dqkx.2021.240

    东喜马拉雅构造结快速隆升时期: 来自缅甸中央盆地沉积学证据

    doi: 10.3799/dqkx.2021.240
    基金项目: 

    国家自然科学基金重点项目 92055203

    国家自然科学基金面上项目 42076066

    详细信息
      作者简介:

      鲁毅(1996-),男,博士研究生,主要从事构造‒沉积学研究. ORCID:0000-0002-8229-5062. E-mail:luyi962180@tongji.edu.cn

      通讯作者:

      邵磊,E-mail: lshao@tongji.edu.cn

    • 中图分类号: P534;P597.3

    Rapid Uplift Period of Eastern Himalayan Syntaxis: Evidence from Sedimentology in Central Myanmar Basin

    • 摘要: 东喜马拉雅构造结快速隆升时间以及雅鲁藏布江和伊洛瓦底江是否曾经相连已经争论了超过半个世纪. 采用锆石U-Pb年代学等方法,对缅甸中央盆地新生代地层的“源‒汇”路径开展研究. 缅甸中央盆地始新统发育大量铬尖晶石、各坳陷的锆石年龄谱各不相同,表明该时期沉积物以盆地周边隆起为主要物源,不存在统一的源区;渐新世之后,源自区域变质岩的重矿物组合比例逐渐增加,盆地各坳陷碎屑锆石年龄谱特征趋于一致,均以40~ 70 Ma的主峰以及80~110 Ma次峰为特征,表明沉积物源区进入抹谷变质带,伊洛瓦底江雏形已经形成;由于缅甸中央盆地渐新统至下中新统完全没有喜马拉雅造山带信息,认为该时期雅鲁藏布江‒伊洛瓦底江并未相连. 晚中新世‒更新世,喜马拉雅造山带特征组合十字石和蓝晶石以及110~130 Ma年龄峰的出现,表明伊洛瓦底江已经侵蚀到东喜马拉雅构造结,达到现今流域规模. 因此,东喜马拉雅构造结快速隆升的时间大约在晚中新世.

       

    • 图  1  雅鲁藏布江‒伊洛瓦底江假说(a)及顺次袭夺模型中雅鲁藏布江‒伊洛瓦底江的连接(b)(Clark et al., 2004

      Fig.  1.  Tsangpo-Irrawaddy hypothesis (a) and Tsangpo-Irrawaddy connection in successive capture model (b) (Clark et al., 2004)

      图  2  缅甸周缘陆块及构造单元(a)及样品分布位置(b)

      Licht et al.(2019)Zhang et al.(2017)Robinson et al.(2014)

      Fig.  2.  Continental blocks and tectonic units around Myanmar (a) and sample location (b)

      图  3  缅甸周缘潜在源区锆石U-Pb年龄

      数据来源:印缅山脉三叠纪浊积岩(Sevastjanova et al., 2016Yao et al., 2017);西缅岛弧带(Mitchell,1993Barley et al., 2003Mitchell et al., 2012Gardiner et al., 2017, 2018Zhang et al., 2017);缅中花岗岩带(Barley et al., 2003Mitchell et al., 2012Gardiner et al., 2017, 2018);掸邦高原(Cai et al., 2017);滇缅岩浆岩带(Xie et al., 2016);波密‒察隅岩浆岩带(Chiu et al., 2009Xie et al., 2016);冈底斯弧(Wen et al., 2008Ji et al., 2009Chu et al., 2011);喜马拉雅造山带(DeCelles et al., 2004

      Fig.  3.  Zircon U-Pb ages of potential sources around Myanmar

      图  4  中央盆地重矿物组合特征

      Fig.  4.  Characteristics of heavy mineral assemblage in Central Myanmar Basin

      图  5  中央盆地锆石年龄谱

      Fig.  5.  Zircon age spectrum of Central Myanmar Basin a. 0~3 200 Ma; b. 0~300 Ma

      图  7  伊洛瓦底江发育演化过程

      a. 古新世‒始新世;b.早渐新世;c.晚渐新世‒中中新世;d.晚中新世至今

      Fig.  7.  Schematic reconstructions for the drainage evolution of the Irrawaddy River

      图  6  中央盆地蓝晶石、十字石含量

      Fig.  6.  Contents of kyanite and grenatite of Central Myanmar Basin

      表  1  本文样品及相关研究样品信息

      Table  1.   Information of samples from this paper and related study

      样号 位置 地层年龄 重矿物 锆石 参考文献
      M75 沙林坳陷 中‒晚始新世 本文
      W3 钦敦坳陷 中‒晚始新世 Wang et al., 2014
      R1 睡宝坳陷 中‒晚始新世 Robinson et al., 2014
      MY5 沙林坳陷 早渐新世 本文
      M10 沙林坳陷 晚渐新世 本文
      AZY1 睡宝坳陷 晚渐新世 Zhang et al., 2019
      M06 沙林坳陷 早中新世 本文
      R3 睡宝坳陷 早中新世 Robinson et al., 2014
      R5 睡宝坳陷 中中新世 Robinson et al., 2014
      W1 钦敦坳陷 中中新世 Wang et al., 2014
      M90 沙林坳陷 晚中新世‒更新世 本文
      Y3‒3 沙林坳陷 晚中新世‒更新世 Zhang et al., 2019
      M89 沙林坳陷 现代 本文
      下载: 导出CSV
    • [1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
      [2] Barley, M. E., Pickard, A. L., Zaw, K., et al., 2003. Jurassic to Miocene Magmatism and Metamorphism in the Mogok Metamorphic Belt and the India-Eurasia Collision in Myanmar. Tectonics, 22(3): 1-11. https://doi.org/10.1029/2002TC001398
      [3] Bertrand, G., Rangin, C., Maluski, H., et al., 2001. Diachronous Cooling along the Mogok Metamorphic Belt (Shan Scarp, Myanmar): The Trace of the Northward Migration of the Indian Syntaxis. Journal of Asian Earth Sciences, 19(5): 649-659. https://doi.org/10.1016/S1367-9120(00)00061-4
      [4] Blum, M., Rogers, K., Gleason, J., et al., 2018. Allogenic and Autogenic Signals in the Stratigraphic Record of the Deep-Sea Bengal Fan. Scientific Reports, 8(1): 1-13. https://doi.org/10.1038/S41598-018-25819-5
      [5] Brookfield, M. E., 1998. The Evolution of the Great River Systems of Southern Asia during the Cenozoic India-Asia Collision: Rivers Draining Southwards. Geomorphology, 22(3-4): 285-312. https://doi.org/10.1016/S0169-555X(97)00082-2
      [6] Cai, F. L., Ding, L., Yao, W., et al., 2017. Provenance and Tectonic Evolution of Lower Paleozoic-Upper Mesozoic Strata from Sibumasu Terrane, Myanmar. Gondwana Research, 41: 325-336. https://doi.org/10.1016/j.gr.2015.03.005
      [7] Chen, W. H., Yan, Y., Clift, P. D., et al., 2020. Drainage Evolution and Exhumation History of the Eastern Himalaya: Insights from the Nicobar Fan, Northeastern Indian Ocean. Earth and Planetary Science Letters, 548: 116472. https://doi.org/10.1016/j.epsl.2020.116472
      [8] Chiu, H. Y., Chung, S. L., Wu, F. Y., et al., 2009. Zircon U-Pb and Hf Isotopic Constraints from Eastern Transhimalayan Batholiths on the Precollisional Magmatic and Tectonic Evolution in Southern Tibet. Tectonophysics, 477(1-2): 3-19. https://doi.org/10.1016/j.tecto.2009.02.034
      [9] Chu, M. F., Chung, S. L., O'Reilly, S. Y., et al., 2011. India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks. Earth and Planetary Science Letters, 307(3-4): 479-486. https://doi.org/10.1016/j.epsl.2011.05.020
      [10] Clark, M. K., Schoenbohm, L. M., Royden, L. H., et al., 2004. Surface Uplift, Tectonics, and Erosion of Eastern Tibet from Large-Scale Drainage Patterns. Tectonics, 23(1): TC1006. https://doi.org/10.1029/2002TC001402
      [11] Compston, W., Williams, I. S., Kirschvink, J. L., et al., 1992. Zircon U-Pb Ages for the Early Cambrian Time-Scale. Journal of the Geological Society, 149(2): 171-184. https://doi.org/10.1144/gsjgs.149.2.0171
      [12] DeCelles, P. G., Gehrels, G. E., Najman, Y., et al., 2004. Detrital Geochronology and Geochemistry of Cretaceous-Early Miocene Strata of Nepal: Implications for Timing and Diachroneity of Initial Himalayan Orogenesis. Earth and Planetary Science Letters, 227(3-4): 313-330. https://doi.org/10.1016/j.epsl.2004.08.019
      [13] Gardiner, N. J., Robb, L. J., Searle, M. P., et al., 2017. The Bawdwin Mine, Myanmar: A Review of Its Geological Setting and Genesis. Geological Society London Memoirs, 48(1): 669-686. https://doi.org/10.1144/M48.30
      [14] Gardiner, N. J., Searle, M. P., Morley, C. K., et al., 2018. The Crustal Architecture of Myanmar Imaged through Zircon U-Pb, Lu-Hf and O Isotopes: Tectonic and Metallogenic Implications. Gondwana Research, 62: 27-60. https://doi.org/10.1016/j.gr.2018.02.008
      [15] Garzanti, E., Wang, J. G., Vezzoli, G., et al., 2016. Tracing Provenance and Sediment Fluxes in the Irrawaddy River Basin (Myanmar). Chemical Geology, 440: 73-90. https://doi.org/10.1016/j.chemgeo.2016.06.010
      [16] Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3-4): 229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
      [17] Li, X. Q., Ding, H. K., Peng, P., et al., 2021. Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin: Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8): 2819-2831 (in Chinese with English abstract).
      [18] Licht, A., Dupont-Nivet, G., Win, Z., et al., 2019. Paleogene Evolution of the Burmese Forearc Basin and Implications for the History of India-Asia Convergence. GSA Bulletin, 131(5-6): 730-748. https://doi.org/10.1130/B35002.1
      [19] Licht, A., Reisberg, L., France-Lanord, C., et al., 2016. Cenozoic Evolution of the Central Myanmar Drainage System: Insights from Sediment Provenance in the Minbu Sub-Basin. Basin Research, 28(2): 237-251. https://doi.org/10.1111/bre.12108
      [20] Liu, C. Z., Chung, S. L., Wu, F. Y., et al., 2016. Tethyan Suturing in Southeast Asia: Zircon U-Pb and Hf-O Isotopic Constraints from Myanmar Ophiolites. Geology, 44(4): 311-314. https://doi.org/10.1130/G37342.1
      [21] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      [22] Metcalfe, I., 2011. Tectonic Framework and Phanerozoic Evolution of Sundaland. Gondwana Research, 19(1): 3-21. https://doi.org/10.1016/j.gr.2010.02.016
      [23] Mitchell, A. H. G., 1993. Cretaceous-Cenozoic Tectonic Events in the Western Myanmar (Burma)-Assam Region. Journal of the Geological Society, 150(6): 1089-1102. https://doi.org/10.1144/gsjgs.150.6.1089
      [24] Mitchell, A. H. G., Chung, S. L., Oo, T., et al., 2012. Zircon U-Pb Ages in Myanmar: Magmatic-Metamorphic Events and the Closure of a Neo-Tethys Ocean? Journal of Asian Earth Sciences, 56: 1-23. https://doi.org/10.1016/j.jseaes.2012.04.019
      [25] Naing, T. T., Bussien, D. A., Winkler, W. H., et al., 2013. Provenance Study on Eocene-Miocene Sandstones of the Rakhine Coastal Belt, Indo-Burman Ranges of Myanmar: Geodynamic Implications. Geological Society, London, Special Publications, 386(1): 195-216. https://doi.org/10.1144/SP386.10
      [26] Najman, Y., Bickle, M., BouDagher-Fadel, M., et al., 2008. The Paleogene Record of Himalayan Erosion: Bengal Basin, Bangladesh. Earth and Planetary Science Letters, 273(1-2): 1-14. https://doi.org/10.1016/j.epsl.2008.04.028
      [27] Orme, D. A., Carrapa, B., Kapp, P., 2015. Sedimentology, Provenance and Geochronology of the Upper Cretaceous-Lower Eocene Western Xigaze Forearc Basin, Southern Tibet. Basin Research, 27(4): 387-411. https://doi.org/10.1111/bre.12080
      [28] Rangin, C., Maurin, T., Masson, F., 2013. Combined Effects of Eurasia/Sunda Oblique Convergence and East-Tibetan Crustal Flow on the Active Tectonics of Burma. Journal of Asian Earth Sciences, 76: 185-194. https://doi.org/10.1016/j.jseaes.2013.05.018
      [29] Ravikant, V., Wu, F. Y., Ji, W. Q., 2011. U-Pb Age and Hf Isotopic Constraints of Detrital Zircons from the Himalayan Foreland Subathu Sub-Basin on the Tertiary Palaeogeography of the Himalaya. Earth and Planetary Science Letters, 304(3-4): 356-368. https://doi.org/10.1016/j.epsl.2011.02.009
      [30] Robinson, R. A. J., Brezina, C. A., Parrish, R. R., et al., 2014. Large Rivers and Orogens: The Evolution of the Yarlung Tsangpo-Irrawaddy System and the Eastern Himalayan Syntaxis. Gondwana Research, 26(1): 112-121. https://doi.org/10.1016/j.gr.2013.07.002
      [31] Searle, M. P., Noble, S. R., Cottle, J. M., et al., 2007. Tectonic Evolution of the Mogok Metamorphic Belt, Burma (Myanmar) Constrained by U-Th-Pb Dating of Metamorphic and Magmatic Rocks. Tectonics, 26(3): TC3014. https://doi.org/10.1029/2006TC002083
      [32] Sevastjanova, I., Hall, R., Rittner, M., et al., 2016. Myanmar and Asia United, Australia Left behind Long Ago. Gondwana Research, 32: 24-40. https://doi.org/10.1016/j.gr.2015.02.001
      [33] Tun, S. T., Watkinson, I. M., 2017. The Sagaing Fault, Myanmar. Geological Society London Memoirs, 48(1): 413-441. https://doi.org/10.1144/M48.19
      [34] Van Hattum, M. W. A., Hall, R., Pickard, A. L., et al., 2013. Provenance and Geochronology of Cenozoic Sandstones of Northern Borneo. Journal of Asian Earth Sciences, 76: 266-282. https://doi.org/10.1016/j.jseaes.2013.02.033
      [35] Wang, J. G., Wu, F. Y., Tan, X. C., et al., 2014. Magmatic Evolution of the Western Myanmar Arc Documented by U-Pb and Hf Isotopes in Detrital Zircon. Tectonophysics, 612-613: 97-105. https://doi.org/10.1016/j.tecto.2013.11.039
      [36] Wen, D. R., Liu, D. Y., Chung, S. L., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3-4): 191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003
      [37] Xie, J. C., Zhu, D. C., Dong, G. C., et al., 2016. Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in Southern Tibet through Magmatic Correlation. Gondwana Research, 39: 217-229. https://doi.org/10.1016/j.gr.2016.02.007
      [38] Yao, W., Ding, L., Cai, F. L., et al., 2017. Origin and Tectonic Evolution of Upper Triassic Turbidites in the Indo-Burman Ranges, West Myanmar. Tectonophysics, 721: 90-105. https://doi.org/10.1016/j.tecto.2017.09.016
      [39] Zeng, Q. G., Wang, B. D., Xiluo, L. J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763 (in Chinese with English abstract).
      [40] Zhang, J. Y., Yin, A., Liu, W. C., et al., 2012. Coupled U-Pb Dating and Hf Isotopic Analysis of Detrital Zircon of Modern River Sand from the Yalu River (Yarlung Tsangpo) Drainage System in Southern Tibet: Constraints on the Transport Processes and Evolution of Himalayan Rivers. Geological Society of America Bulletin, 124(9-10): 1449-1473. https://doi.org/10.1130/B30592.1
      [41] Zhang, P., Mei, L. F., Hu, X. L., et al., 2017. Structures, Uplift, and Magmatism of the Western Myanmar Arc: Constraints to Mid-Cretaceous-Paleogene Tectonic Evolution of the Western Myanmar Continental Margin. Gondwana Research, 52: 18-38. https://doi.org/10.1016/j.gr.2017.09.002
      [42] Zhang, P., Najman, Y., Mei, L. F., et al., 2019. Palaeodrainage Evolution of the Large Rivers of East Asia, and Himalayan-Tibet Tectonics. Earth-Science Reviews, 192: 601-630. https://doi.org/10.1016/j.earscirev.2019.02.003
      [43] Zhao, X. C., Liu, C. Y., Wang, J. Q., et al., 2020. Provenance Analyses of Lower Cretaceous Strata in the Liupanshan Basin: From Paleocurrents Indicators, Conglomerate Clast Compositions, and Zircon U-Pb Geochronology. Journal of Earth Science, 31(4): 757-771. https://doi.org/10.1007/s12583-020-1324-8
      [44] 李祥权, 丁洪坤, 彭鹏, 等, 2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据. 地球科学, 46(8): 2819-2831. doi: 10.3799/dqkx.2020.197
      [45] 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  35
    • HTML全文浏览量:  58
    • PDF下载量:  23
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-25
    • 网络出版日期:  2022-07-29
    • 刊出日期:  2022-07-25

    目录

      /

      返回文章
      返回