Research and Prospecting Progress of Dayishan Pluton in Nanling Range
-
摘要: 大义山岩体为南岭地区重要的成锡岩体之一.结合资料及项目组高精度锆石LA-ICP-MS U-Pb定年结果将其划分为6个岩相(填图)单元,分别为细中粒斑状角闪黑云二长花岗岩(ηγJ3a)、中粗粒斑状黑云母二长花岗岩(ηγJ3b)、中细粒斑状黑云母二长花岗岩(ηγJ3c)、细粒少斑状黑云母二长花岗岩(ηγJ3d)、细粒斑状(含电气石)二云母二(正)长花岗岩(ηγJ3e)及细粒少斑状二云母正长花岗岩(ζγJ3f);其成岩时代集中于160~150 Ma,整体属燕山早期.岩石地球化学和同位素研究表明:大义山岩体为S型花岗岩;主要源自变质表壳岩的熔融,有少量新生陆壳贡献.区内锡成矿年龄集中于160~150 Ma,为南岭W-Sn-Mo多金属成矿作用峰期产物;形成于与太平洋板块俯冲有关的陆内伸展环境.结合资料及找矿进展指出大义山地区找矿方向:(1)加强云英岩型铷矿的调查与评价;(2)加强大义山地区晚期高分异花岗岩、伟晶岩脉的调查与评价;(3)加强大义山岩体外接触带的调查与评价;(4)大义山岩体深部及隐伏找矿.Abstract: The Dayishan pluton is one of the important tin-forming plutons in the Nanling Range. Based on the data and the high precision zircon LA-ICP-MS U-Pb dating results, in this paper it divides it into 6 lithofacies (mapping) units for field identification: fine-medium grained porphyritic amphibole biotite monzogranite (ηγJ3a), medium-coarse grained porphyritic biotite monzogranite(ηγJ3b), medium-fine grained porphyritic biotite monzogranite (ηγJ3c), fine-grained porphyritic biotite monzogranite (ηγJ3d), fine-grained porphyritic (including tourmaline) two-mica adamellite (ηγJ3e) and fine-grained porphyritic two-mica syenogranite (ζγJ3f), the diagenetic age is concentrated in 160-150 Ma, and the whole belongs to the Early Yanshanian. The rock geochemistry and isotopic characteristics indicate that the Dayishan pluton belongs to the S-type granite, which is mainly derived from the melting of metamorphic supracrustal rocks, with a small amount contribution of juvenile crust.In addition, the age of tin mineralization in the Dayishan area is concentrated at 160-150 Ma, which is the peak product of W-Sn-Mo polymetallic mineralization in the Nanling range; formed in an intra-land extensional environment related to the subduction of the Pacific plate. Combining the data and prospecting progress to point out the prospecting direction of Dayishan area: (1) strengthen the investigation and evaluation of greisen-type rubidium deposits, (2) strengthen the investigation and evaluation of late high-differentiated granite and pegmatite veins in Dayishan area, (3) strengthen the investigation and evaluation of the outer contact zone of Dayishan pluton, (4) Deep and concealed prospecting of Dayishan pluton.
-
Key words:
- zircon U-Pb age /
- geochemistry /
- prospecting progress /
- Sn deposit /
- Dayishan /
- Nanling range /
- petrology /
- mineralogy
-
图 4 大义山岩体Na2O+K2O/SiO2(a)、R1-R2(b)、K2O-SiO2(c)、A/NK-A/CNK(d)图解
图a据Middlemost(1994);图b据De la Roche et al.(1980);图c据Peccerillo and Taylor(1976);图d据Maniar and Piccoli(1989).R1=4×Si-11×(Na+K)-2×(Fe+Ti); R2=6×Ca+2×Mg+Al
Fig. 4. The Na2O+K2O/SiO2 (a), R1-R2 (b), K2O-SiO2 (c), A/NK-A/CNK (d) diagrams of Dayishan pluton
图 5 大义山岩体REE配分图(Sun and McDonough, 1989)
Fig. 5. Chondrite-normalized REE patterns of Dayishan pluton (Sun and McDonough, 1989)
图 7 大义山岩体微量元素蛛网图(Sun and McDonough, 1989)
Fig. 7. Spider diagrams of trace elements in Dayishan pluton(Sun and McDonough, 1989)
图 9 大义山岩体Rb-Y(a)、Rb-Th(b)协变图解(底图引自Chappell, 1999)
Fig. 9. Rb-Y (a) and Rb-Th (b) covariance diagrams of Dayishan pluton (base map after Chappell, 1999)
图 10 大义山岩体εNd(t)-ISr(a)、Al2O3+TFeO+MgO+TiO2-Al2O3/(TFeO+MgO+TiO2)(b)、CaO/(MgO+FeO)-Al2O3/(MgO+FeO) (c) and Rb/Sr-Rb/Ba(d)图解
图b引自Patiño Douce(1999);图c和图d引自Patiño Douce and Harris(1998)
Fig. 10. εNd(t)-ISr(a), Al2O3+TFeO+MgO+TiO2-Al2O3/(TFeO+MgO+TiO2)(b), CaO/(MgO+FeO)-Al2O3/(MgO+FeO) (c) and Rb/Sr-Rb/Ba (d) diagrams of Dayishan pluton
图 11 大义山岩体Y-Nb(a)、Yb-Ta(b)、Rb-Yb+Ta(c)、Rb/30-Hf-3Ta(d) 构造判别图解
图a~c引自Pearce et al.(1984);图d引自Harris et al.(1986)
Fig. 11. Y-Nb (a), Yb-Ta (b), Rb-Yb+Ta (c) and Rb/30-Hf-3Ta (d) construction discrimination diagrams of Dayi-shan pluton
表 1 大义山岩体锆石LA-ICP-MS U-Pb定年结果统计
Table 1. Zircon LA-ICP-MS U-Pb dating results statistics of Dayishan pluton
样品号 经度(°) 纬度(°) 测试对象 年龄(Ma) 填图单元 新岩相分类 传统单元划分 12D74-1 112.68 26.12 中粒斑状二长花岗岩 159.5±1.0 ηγJ3a 细中粒角闪黑云母二长花岗岩 湖冲庵单元(J1Hc) 14D38-2 112.71 26.07 中细粒含斑二长花岗岩 158.7±1.3 14D38-5 112.71 26.07 细中粒多斑状花岗岩 160.2±2.2 PM21-8 112.54 26.20 粗粒含斑花岗岩 159.3±0.9 ηγJ3b 中粗粒斑状黑云母二长花岗岩 岩前(J2Y) TC117b2 112.49 26.26 中粗粒斑状黑云母二长花岗岩 158.8±1.1 14D30-1 112.69 26.08 中细粒少斑二长花岗岩 157.0±1.4 PM21-27 112.57 26.25 细中粒黑云母花岗岩 153.5±0.9 ηγJ3c 中细粒斑状黑云母二长花岗岩 介头(J2J) PM21-19 112.56 26.23 细粒花岗岩 157.7±0.9 PM21-13 112.56 26.23 中细粒花岗岩 154.8±0.9 道士仙、岩前
(J2D、J2Y)PM21-9 112.55 26.21 细粒花岗岩 157.6±1.1 17D96 112.56 26.19 中粗粒巨斑黑云母二长花岗岩 156.2±2.0 14D32-1 112.67 26.08 细粒少斑状黑云母二长花岗岩 155.2±0.9 ηγJ3d 细粒少斑状黑云母二长花岗岩 下东卡坪、小恒(J1X)、
(J2X)17D61 112.46 26.16 中粒少斑黑云母二长花岗岩 155.8±1.5 17D62 112.57 26.19 中粒少斑黑云母二长花岗岩 154.9±1.9 17D68 112.57 26.19 细中粒斑状黑云母二长花岗岩 153.4±3.1 ηγJ3e 细粒(含)斑状(含电气石)二云母二(正)长花岗岩 杉树排、小恒
(J2Sh、J2X)17D97-1 112.57 26.19 细粒二云母二长花岗岩(含电气石) 154.0±2.5 17D97-2 112.57 26.19 中细粒斑状黑云母二长花岗岩 151.2±2.8 D2997 112.53 26.31 粗中粒斑状电气石黑云母花岗岩 154.1±1.0 杉树排(J2Sh) D0329-1 112.49 26.31 含电气石云英岩 151.7±1.1 14D36 112.57 26.24 中细粒含斑二长花岗岩 154.5±1.8 PM21-9 112.55 26.21 细粒花岗岩 151.6±1.1 ζγJ3f (微)细粒含斑状二云母正长花岗岩 小江(J3Xj) D2994 112.52 26.31 中细粒少斑二云母花岗岩 150.0±1.2 17D108 112.52 26.31 细中粒斑状二云母二长花岗岩 150.4±2.0 注:本文统计24个谐和年龄均为项目组未发表数据. 表 2 大义山矿田成矿年龄统计
Table 2. Metallogenic age statistics of Dayishan ore field
样号 矿床 测试对象 定年方法 年龄(Ma) 数据来源 14D30-2 猫仔山锡矿 锡石 LA-ICP-MS U-Pb 154.4±4.0 本项目 17D71-5 雷坪锡铜矿 锡石 LA-ICP-MS U-Pb 154.0±2.3 本项目 17D83 藤山坳锡矿 锡石 LA-ICP-MS U-Pb 156.7±4.3 Zhang et al.(2021) 17D99 狮形岭锡矿 锡石 LA-ICP-MS U-Pb 159.0±3.0 本项目 14D30-2 大义山猫仔山锡矿 铁锂云母 40Ar-39Ar 154.7±1.1 本项目 14D32-1 大义山猫仔山锡矿 铁锂云母 40Ar-39Ar 152.6±0.9 本项目 14D37-1 吴家坪锡矿 铁锂云母 40Ar-39Ar 150.4±0.9 Lu et al.(2022) 14D38-3 雷坪(大顺窿)钨锡矿 铁锂云母 40Ar-39Ar 151.1±0.9 本项目 白砂子岭锡矿 石英 Rb-Sr 160±1 张晓军等(2014) 14D38-1 雷坪(大顺窿)钨锡矿 石英 Rb-Sr 148±5 本项目 14D36 吴家坪锡矿 石英 Rb-Sr 148.1±2.1 本项目 -
Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/S0024-4937(98)00086-3 Chen, B., Xiong, F. H., Ma, C. Q., et al., 2021. Coupling Relation between Magma Mixing and Igneous Petrological Diversity: An Example of Bairiqili Felsic Pluton in East Kunlun Orogen. Earth Science, 46(6): 2057-2072 (in Chinese with English abstract). Chen, J., Wang, R. C., Zhu, J. C., et al., 2014. Multiple-Aged Granitoids and Related Tungsten-Tin Mineralization in the Nanling Range, South China. Science China Earth Sciences, 44(1): 111-121 (in Chinese). De la Roche, H., Leterrier, J., Grandclaude, P., et al., 1980. A Classification of Volcanic and Plutonic Rocks Using R1R2-Diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 29(1-4): 183-210. https://doi.org/10.1016/0009-2541(80)90020-0 Fu, J. M., Cheng, S. B., Lu, Y. Y., et al., 2012. Metallogenic Regularity and Prospecting Direction of Tungsten-Tin Polymetallic Ore in Nanling Area. Advances in Earth Science, 27(S1): 162-164 (in Chinese with English abstract). Fu, J. M., Ma, C. Q., Xie, C. F., et al., 2005. Ascertainment of the Jinjiling Aluminous A-Type Granite, Hunan Province and Its Tectonic Settings. Geochimica, 34(3): 215-226 (in Chinese with English abstract). Fu, J. M., Ma, L. Y., Cheng, S. B., et al., 2013. Metallogenesis of W(Sn) Deposits and Their Exploration in Nanling Range, China. Geological Journal of China Universities, 19(2): 202-212 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2013.02.005 Guo, J., Lu, Y. Y., Fu, J. M., et al., 2019. Geology and Geochronology of the Maozaishan Sn Deposit, Hunan Province: Constraints from Zircon U-Pb and Muscovite Ar-Ar Dating. Minerals, 9(12): 773-789. https://doi.org/10.3390/min9120773 Guo, C. L., Zeng, L. S., Li, Q. L., et al., 2016. Hybrid Genesis of Jurassic Fayalite-Bearing Felsic Subvolcanic Rocks in South China: Inspired by Petrography, Geochronology, and Sr-Nd-O-Hf Isotopes. Lithos, 264: 175-188. https://doi.org/10.1016/j.lithos.2016.08.020 Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. https://doi.org/10.1144/gsl.sp.1986.019.01.04 He, W. H., 2011. Metallogenic Model of Tin Polymetallic Deposits of Dayishan Area, Hunan Province. Geology and Mineral Resources of South China, 27(1): 14-21 (in Chinese with English abstract). Hua, R. M., Chen, P. R., Zhang, W. L., et al., 2005. Three Major Metallogenic Events in Mesozoic in South China. Mineral Deposits, 24(2): 99-107 (in Chinese with English abstract). King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371 Li, J. F., Fu, J. M., Ma, C. Q., et al., 2020. Petrogenesis and Tectonic Setting of the Shaziling Pluton in Jiuyishan Area, Nanling: Evidence from Zircon U-Pb Geochronology, Petrogeochemistry, and Sr-Nd-Hf Isotopes. Earth Science, 45(2): 374-388 (in Chinese with English abstract). Li, J. F., Fu, J. M., Ma, C. Q., et al., 2021. LA-ICP-MS Zircon U-Pb Ages, Geochemical, Sr-Nd-Hf Isotopes Characteristics of Jinjiling Pluton in Nanling Oragenic Belt and Their Geological Implications. Earth Science, 46(4): 1231-1247(in Chinese with English abstract). Li, Y., Zhang, Y. Q., Su, J. B., et al., 2015. Zircon U-Pb Dating of Dayishan and Tashan Plutons in Hunan Province and Its Tectonic Implications. Acta Geoscientia Sinica, 36(3): 303-312 (in Chinese with English abstract). Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1 Liu, T. S., 2002. Geological Characteristics and Genesis of Rock Body-Type Tin Deposits in the Dayishan Ore Field. Geology in China, 29(4): 411-415 (in Chinese with English abstract). Lu, Y. Y., Li, J. F., Cao, J. Y., et al., 2022. Geochronology and Geochemistry of the Late Jurassic Wujiaping Sn Deposit, Dayishan Ore Field, South China: Implications to the Petrogenesis and Sn Mineralization. Solid Earth Sciences, 7(1): 72-86. https://doi.org/10.1016/j.sesci.2021.06.003 Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267-294. https://doi.org/10.1007/s00126-012-0446-z Mason, B., Moore, C. B., 1982. Principlcs of Geochemistry, 4th Edition. Wiley, New York. Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 Patiño Douce, A. E., 1999. What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1): 55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05 Patiño Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4): 689-710. https://doi.org/10.1093/petroj/39.4.689 Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745 Peng, H. Q., Wu, G. Y., 2000. Determinatioin of "Dayishan-Style Structure"in Southern Hunan and Its Geological Significance. Hunan Geology, 19(2): 87-89 (in Chinese with English abstract). Peng, J. T., Hu, R. Z., Yuan, S. D., et al., 2008. The Time Ranges of Granitoid Emplacement and Related Nonferrous Metallic Mineralization in Southern Hunan. Geological Review, 54(5): 617-625 (in Chinese with English abstract). Shu, X. J., 2014. Genesis and Crustal Evolution of Mesozoic Granite in Nanling Area of South China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). Sun, H., Zhao, Z., Yan, G., et al., 2018. Geological and Geochronological Constraints on the Formation of the Jurassic Maozaishan Sn Deposit, Dayishan Orefield, South China. Ore Geology Reviews, 94: 212-224. https://doi.org/10.1016/j.oregeorev.2018.01.033 Sun, H. R., Lü, Z. C., Han, Z. R., et al., 2021. Genesis and Geological Significance of Late Jurassic High-B Ore-Bearing A-Type Granite in the Dayishan Tin Deposit, Hunan Province. Acta Petrologica Sinica, 37(6): 1749-1764 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.06.07 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. Wang, D. H., Huang, F., Wang, Y., et al., 2020. Regional Metallogeny of Tungsten-Tin-Polymetallic Deposits in Nanling Region, South China. Ore Geology Reviews, 120: 103305. https://doi.org/10.1016/j.oregeorev.2019.103305 Wang, D. H., Chen, Z. H., Huang, G. C., et al., 2012. Northwards and Westwards Prospecting for Tungsten and Its Significance in South China. Geotectonica et Metallogenia, 36(3): 322-329(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2012.03.003 Wang, D. H., Chen, Z. Y., Huang, F., et al., 2014. Discussion on Metallogenic Specialization of the Magmatic Rocks and Related Issues in the Naming Region. Geotectonica et Metallogenia, 38(2): 230-238(in Chinese with English abstract). Wang, L. L., 2015. Geochemistry and Petrogenesis of Granitoids from Late Early Paleozoic to Mesozoic in Ganzhou, South China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Whalen, J. B., Carrie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95: 407-419. doi: 10.1007/BF00402202 Wu, G. Y., Pan, Z. F., Li, J. D., et al., 2005. Geological and Geochemical Characteristics of the Dayishan Granitoids in Southern Hunan and Their Relations to Mineralization. Geology in China, 32(3): 434-442(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2005.03.012 Yuan, S. D., 2017. Several Crucial Scientific Issues Related to the W-Sn Metallogenesis in the Nanling Range and Their Implications for Regional Exploration: A Review. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 736-749, 696 (in Chinese with English abstract). Zeng, Q. W., Peng, L. J., Tian, W. W., et al., 2016. Deep Ore Exploration of the Baishaziling Tungsten-Tin Ore District, Dayishan Pluton, Hunan. Geology in China, 43(5)1625-1636 (in Chinese with English abstract). Zhang, Z. J., Zhang, X., Badal, J., 2008. Composition of the Crust beneath Southeastern China Derived from an Integrated Geophysical Data Set. Journal of Geophysical Research, 113(B4): B04417. https://doi.org/10.1029/2006jb004503 Zhang, X. J., Luo, H., Wu, Z. H., et al., 2014. Rb-Sr Isochron Age and Its Geological Significance of Baishaziling Tin Deposit in Dayishan Ore Field, Hunan Province. Earth Science, 39(10): 1322-1332 (in Chinese with English abstract). Zhang, Y. Q., Xu, X. B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234-247 (in Chinese with English abstract). Zhang, Z. Z., Ning, Y. Y., Lu, Y. Y., et al., 2021. Geological Characteristics and Metallogenic Age of Tengshan'ao Sn Deposit in Dayishan of South Hunan and Its Prospecting Significance. Solid Earth Sciences, 6(1): 37-49. https://doi.org/10.1016/j.sesci.2021.01.002 Zhao, Z. X., Xu, Z. W., Zuo, C. H., et al., 2017. Emplacement Time and Material Source of the Southern Dayishan Granitic Batholith (Taipingshan Body), Guiyang City, Hunan Province. Geological Review, 63(2): 395-412 (in Chinese with English abstract). Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 Zhou, Z. M., Ma, C. Q., Wang, L. X., 2018. A Source-Depleted Early Jurassic Granitic Pluton from South China: Implication to the Mesozoic Juvenile Accretion of the South China Crust. Lithos, 300/301: 278-290. https://doi.org/10.1016/j.lithos.2017.11.017 陈兵, 熊富浩, 马昌前, 等, 2021. 岩浆混合作用与火成岩多样性的耦合关系: 以东昆仑造山带白日其利长英质岩体为例. 地球科学, 46(6): 2057-2072. doi: 10.3799/dqkx.2020.241 陈骏, 王汝成, 朱金初, 等, 2014. 南岭多时代花岗岩的钨锡成矿作用. 中国科学(地球科学), 44(1): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201401012.htm 付建明, 程顺波, 卢友月, 等, 2012. 南岭地区钨锡多金属矿成矿规律及找矿方向. 地球科学进展, 27(增刊1): 162-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ2012S1054.htm 付建明, 马昌前, 谢才富, 等, 2005. 湖南金鸡岭铝质A型花岗岩的厘定及构造环境分析. 地球化学, 34(3): 215-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200503002.htm 付建明, 马丽艳, 程顺波, 等, 2013. 南岭地区锡(钨)矿成矿规律及找矿. 高校地质学报, 19(2): 202-212. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201302005.htm 贺文华, 2011. 湖南大义山地区锡多金属矿成矿模式初探. 华南地质与矿产, 27(1): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201101003.htm 华仁民, 陈培荣, 张文兰, 等, 2005. 论华南地区中生代3次大规模成矿作用. 矿床地质, 24(2): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200502001.htm 李剑锋, 付建明, 马昌前, 等, 2020. 南岭九嶷山地区砂子岭岩体成因与构造属性: 来自锆石U-Pb年代学、岩石地球化学及Sr、Nd、Hf同位素证据. 地球科学, 45(2): 374-388. doi: 10.3799/dqkx.2019.013 李剑锋, 付建明, 马昌前, 等, 2021. 南岭金鸡岭岩体LA-ICP-MS锆石U-Pb年龄、地球化学和Sr-Nd-Hf同位素特征及其地质意义. 地球科学, 46(4): 1231-1247. doi: 10.3799/dqkx.2020.170 李勇, 张岳桥, 苏金宝, 等, 2015. 湖南大义山、塔山岩体锆石U-Pb年龄及其构造意义. 地球学报, 36(3): 303-312. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201503005.htm 刘铁生, 2002. 大义山矿田岩体型锡矿地质特征及矿床成因. 中国地质, 29(4): 411-415. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200204014.htm 彭和求, 伍光英, 2000. 湘南"大义山式构造"的厘定及地质意义. 湖南地质, 19(2): 87-89. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDZ200002004.htm 彭建堂, 胡瑞忠, 袁顺达, 等, 2008. 湘南中生代花岗质岩石成岩成矿的时限. 地质论评, 54(5): 617-625. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200805009.htm 舒徐洁, 2014. 华南南岭地区中生代花岗岩成因与地壳演化(博士学位论文). 南京: 南京大学. 孙海瑞, 吕志成, 韩志锐, 等, 2021. 湖南大义山晚侏罗世富硼型成锡矿A型花岗岩成因及地质意义. 岩石学报, 37(6): 1749-1764. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202106007.htm 王登红, 陈郑辉, 黄国成, 等, 2012. 华南"南钨北扩"、"东钨西扩"及其找矿方向探讨. 大地构造与成矿学, 36(3): 322-329. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201203005.htm 王登红, 陈振宇, 黄凡, 等, 2014. 南岭岩浆岩成矿专属性及相关问题探讨. 大地构造与成矿学, 38(2): 230-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402003.htm 王丽丽, 2015. 华南赣州地区早古生代晚期—中生代花岗岩类地球化学与岩石成因(博士学位论文). 北京: 中国地质大学. 伍光英, 潘仲芳, 李金冬, 等, 2005. 湘南大义山花岗岩地质地球化学特征及其与成矿的关系. 中国地质, 32(03): 434-442. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200503012.htm 袁顺达, 2017. 南岭钨锡成矿作用几个关键科学问题及其对区域找矿勘查的启示. 矿物岩石地球化学通报, 36(5): 736-749, 696. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201705006.htm 曾钦旺, 彭陆军, 田威武, 等, 2016. 湖南大义山岩体白沙子岭矿区钨锡矿深部找矿探索. 中国地质, 43(5): 1625-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201605012.htm 张晓军, 罗华, 吴志华, 等, 2014. 湖南大义山矿田白沙子岭锡矿床Rb-Sr同位素等时线年龄及其地质意义. 地球科学, 39(10): 1322-1332. doi: 10.3799/dqkx.2014.124 张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901033.htm 赵增霞, 徐兆文, 左昌虎, 等, 2017. 湖南桂阳大义山南体(太坪山单元)花岗岩形成时代及物质来源探讨. 地质论评, 63(2): 395-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201702014.htm -
dqkxzx-48-10-3707-附表1-3.doc
-