• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    渤海湾盆地辽中凹陷南洼超压发育特征及成因

    王冰洁 王德英 郭涛 王鑫 惠冠洲 薛明旺

    王冰洁, 王德英, 郭涛, 王鑫, 惠冠洲, 薛明旺, 2024. 渤海湾盆地辽中凹陷南洼超压发育特征及成因. 地球科学, 49(5): 1832-1843. doi: 10.3799/dqkx.2021.254
    引用本文: 王冰洁, 王德英, 郭涛, 王鑫, 惠冠洲, 薛明旺, 2024. 渤海湾盆地辽中凹陷南洼超压发育特征及成因. 地球科学, 49(5): 1832-1843. doi: 10.3799/dqkx.2021.254
    Wang Bingjie, Wang Deying, Guo Tao, Wang Xin, Hui Guanzhou, Xue Mingwang, 2024. Development Characteristics and Origin of Overpressure in South of Liaozhong Depression, Bohai Bay Basin. Earth Science, 49(5): 1832-1843. doi: 10.3799/dqkx.2021.254
    Citation: Wang Bingjie, Wang Deying, Guo Tao, Wang Xin, Hui Guanzhou, Xue Mingwang, 2024. Development Characteristics and Origin of Overpressure in South of Liaozhong Depression, Bohai Bay Basin. Earth Science, 49(5): 1832-1843. doi: 10.3799/dqkx.2021.254

    渤海湾盆地辽中凹陷南洼超压发育特征及成因

    doi: 10.3799/dqkx.2021.254
    基金项目: 

    国家科技重大专项 2016ZX05024-002-006

    详细信息
      作者简介:

      王冰洁(1984-),男,勘探地质工程师,博士,长期从事石油地质和勘探综合研究. ORCID:0000-0003-1067-9363. E-mail:wangbj6@cnooc.com.cn

    • 中图分类号: P54

    Development Characteristics and Origin of Overpressure in South of Liaozhong Depression, Bohai Bay Basin

    • 摘要: 针对渤海湾盆地辽中凹陷南洼古近系地层超压成因问题,通过对多种地质资料和研究方法综合应用,提出生烃作用是超压形成的主要机制,在局部地区(W-D构造)存在欠压实和生烃作用叠加形成的超压.主要证据如下:(1)测井曲线除W-D构造外,普遍不具备欠压实地层高孔隙度和低密度的典型特征;(2)沉积背景分析由欠压实作用形成超压的顶面深度与实际不符;(3)超压顶面发育在大套泥岩段内部,深度变化范围较大(2 200~3 100 m),与烃源岩生烃顶面基本一致;(4)地层有效应力和速度及密度关系表明,超压点均落在“卸载”曲线上,为生烃超压的特征;(5)超压段地层现今处于大量生烃阶段,持续为超压形成提供保证;(6)欠压实作用和生烃作用叠加形成的超压,导致了地层的高孔隙度和低密度,也使地层有效应力与地层速度和密度关系曲线表现出“卸载”现象.

       

    • 图  1  研究区构造位置和构造特征

      Fig.  1.  Structural location and characteristics of the study area

      图  2  实测地层压力垂向分布特征(a)和换算压力系数平面分布特征(b)

      Fig.  2.  The vertical characteristics of formation pressures (a) and the plane distribution characteristics of pressure coefficients (b) from measured values

      图  3  单井超压垂向分布特征(E-B-1井)

      Fig.  3.  Vertical distribution characteristics of overpressure in single well (Well E-B-1)

      图  4  辽中南洼超压测井响应特征

      Fig.  4.  The well logging characteristics of overpressure in South of Liaozhong depression

      图  5  地层沉积埋藏史和沉积速率

      Fig.  5.  The chart of sedimentary burial history and rate of stratigraphic sedimentation

      图  6  超压顶面发育的位置和岩性以及烃源岩段的对应关系(剖面位置见图 1

      Fig.  6.  Top of overpressure zone and distributions of mudstone, source rocks (location of cross section in Fig. 1)

      图  7  有效应力随深度变化及声波速度和密度的关系

      a,c,d中的有效应力值均为利用实测压力值计算;b中的有效应力值为利用声波测井计算;c和d中的声波速度和地层密度数据均来源于测井资料

      Fig.  7.  Relationship between effective stress, depth, acoustic velocity and formation density

      图  8  烃源岩(W-A-1井)生烃模拟结果

      Fig.  8.  Hydrocarbon generation modelling results (Well W-A-1) for source rocks

      图  9  钻井生烃潜力和计算地层压力随深度变化关系

      Fig.  9.  Hydrocarbon potential and calculated formation pressure change with depth in wells

      图  10  孔隙度和地层温度与深度变化关系

      Fig.  10.  The relationship between porosity, formation temperature and depth

    • Bowers, G. L., 1995. Pore-Pressure Estimation from Velocity Data: Accounting for Overpressure Mechanisms Besides Undercompaction. SPE Drilling and Completion, 10(2): 89-95. https://doi.org/10.2118/27488-PA
      Dan, M., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821x(78)90071-7
      Eaton, B. A., 1972. Graphical Method Predicts Geopressure Worldwide. Word Oil, 51-56. https://doi.org/10.1016/0038-092X(76)90080-3
      Gong, Y. J., Zhang, K. H., Zeng, Z. P., et al., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600 (in Chinese with English abstract).
      Guo, X. W., He, S., Liu, K. Y., et al., 2010. Oil Generation as the Dominant Overpressure Mechanism in the Cenozoic Dongying Depression, Bohai Bay Basin, China. AAPG Bulletin, 94(12): 1859-1881. https://doi.org/10.1306/05191009179
      Guo, X. W., He, S., Zheng, L. J., et al., 2011. A Quantitative Model for the Overpressure Caused by Oil Generation and Its Influential Factors. Acta Petrolei Sinica, 32(4): 637-644 (in Chinese with English abstract).
      Guo, X. W., Liu, K. Y., He, S., et al., 2016. Quantitative Estimation of Overpressure Caused by Gas Generation and Application to the Baiyun Depression in the Pearl River Mouth Basin, South China Sea. Geofluids, 16(1): 129-148. https://doi.org/10.1111/gfl.12140
      He, S., Song, G. Q., Wang, Y. S., et al., 2012. Distribution and Major Control Factors of the Present-Day Large-Scale Overpressured System in Dongying Depression. Earth Science, 37(5): 1029-1042 (in Chinese with English abstract).
      Huang, X. B., Xu, C. G., Zhou, X. H., et al., 2013. Hydrocarbon Distribution Characteristics and Accumulation Period of Second Member of Dongying Formation in the South of Liaozhong Sag. Petroleum Geology and Engineering, 27(4): 16-19, 145 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2013.04.005
      Issler, D. R., 1992. A New Approach to Shale Compaction and Stratigraphic Restoration, Deaufort-Mackenzie Basin and Mackenzie Corridor, Northern Canada. AAPG Bulletin, 78: 1170-1189. https://doi.org/10.1306/BDFF8998-1718-11D7-8645000102C1865D
      Muggeridge, A., Abacioglu, Y., England, W., et al., 2005. The Rate of Pressure Dissipation from Abnormally Pressured Compartments. AAPG Bulletin, 89(1): 61-80. https://doi.org/10.1306/07300403002
      Peng, J. S., Xu, C. G., Wei, A. J., et al., 2016. Hydrocarbon Migration Caused by Rupture of Pressure Compartment in South Liaozhong Sag, Bohai Bay Basin, Offshore China. Petroleum Exploration and Development, 43(3): 386-395 (in Chinese with English abstract). doi: 10.1016/S1876-3804(16)30045-3
      Sweeney, J., Burnham, A. K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 74(10): 1559-1570.
      Teige, G. M. G., Hermanrud, C., Wensaas, L., et al., 1999. The Lack of Relationship between Overpressure and Porosity in North Sea and Haltenbanken Shales. Marine and Petroleum Geology, 16(4): 321-335. https://doi.org/10.1016/S0264-8172(98)00035-X
      Tingay, M. R. P., Hillis, R. R., Swarbrick, R. E., et al., 2009. Origin of Overpressure and Pore-Pressure Prediction in the Baram Province, Brunei. AAPG Bulletin, 93(1): 51-74. https://doi.org/10.1306/08080808016
      Wang, B. J., He, S., Song, G. Q., et al., 2012. Effective Stress Characteristics of Different Overpressured Origins in Dongying Depression of the Bohai Bay Basin, China. Geological Science and Technology Information, 31(2): 72-79 (in Chinese with English abstract).
      Waples, D. W., Kamata, H., Suizu, M., 1992. The Art of Maturity Modeling. Part 1: Alternative Models and Sensitivity Analysis. AAPG Bulletin, 76(1): 47-66.
      Wei, A. J., 2015. Characteristics, Origin and Quantitative Evaluation of Overpressure in Strike-Slip and Compression-Shear Booster Zone of Tan-Lu Fault: A Case Study in JZ27 Section of Liaodong Bay, Bohai Sea. Petroleum Geology & Experiment, 37(1): 47-52 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-9603.2015.01.009
      van Ruth, P., Hillis, R., Tingate, P., 2004. The Origin of Overpressure in the Carnarvon Basin, Western Australia: Implications for Pore Pressure Prediction. Petroleum Geoscience, 10(3): 247-257. https://doi.org/10.1144/1354-079302-562
      Xie, X. N., Li, S. T., Liu, X. F., 2006. Basin Fluid Dynamics in Abnormally Pressured Environments. China University of Geosciences Press, Wuhan (in Chinese).
      Yang, J., He, S., Wang, B. J., 2009. Characteristics and Prediction Model of the Overpressures in the Niuzhuang Sag of Dongying Depression. Geological Science and Technology Information, 28(4): 34-40 (in Chinese with English abstract).
      Zhang, X., Chen, H. H., Kong, L. T., et al., 2020. The Coupling Relationship between Paleofluid Pressure Evolution and Hydrocarbon-Charging Events in the Deep of Biyang Depression, Central China. Earth Science, 45(5): 1769-1781 (in Chinese with English abstract).
      Zhao, J. Z., Li, J., Xu, Z. Y., 2017. Advances in the Origin of Overpressures in Sedimentary Basins. Acta Petrolei Sinica, 38(9): 973-998 (in Chinese with English abstract).
      Zhou, X. H., Liu, Z., Li, W. L., 2009. Hydrocarbon Accumulation Mechanism in Liaodong Bay Fault Depression. Petroleum Industry Press, Beijing (in Chinese).
      宫亚军, 张奎华, 曾治平, 等, 2021. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏. 地球科学, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366
      郭小文, 何生, 郑伦举, 等, 2011. 生油增压定量模型及影响因素. 石油学报, 32(4): 637-644. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104013.htm
      何生, 宋国奇, 王永诗, 等, 2012. 东营凹陷现今大规模超压系统整体分布特征及主控因素. 地球科学, 37(5): 1029-1042. doi: 10.3799/dqkx.2012.110
      黄晓波, 徐长贵, 周心怀, 等, 2013. 辽中南洼东二段油气分布特征与成藏期次. 石油地质与工程, 27(4): 16-19, 145. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201304006.htm
      彭靖淞, 徐长贵, 韦阿娟, 等, 2016. 渤海湾盆地辽中南洼压力封存箱的破裂与油气运移. 石油勘探与开发, 43(3): 386-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603009.htm
      王冰洁, 何生, 宋国奇, 等, 2012. 东营凹陷不同超压成因的有效应力特征. 地质科技情报, 31(2): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201202011.htm
      韦阿娟, 2015. 郯庐断裂增压带超压特征、成因及其定量评价——以渤海海域辽东湾锦州27段为例. 石油实验地质, 37(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201501009.htm
      解习农, 李思田, 刘晓峰, 2006. 异常压力盆地流体动力学. 武汉: 中国地质大学出版社.
      杨姣, 何生, 王冰洁, 2009. 东营凹陷牛庄洼陷超压特征及预测模型. 地质科技情报, 28(4): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200904007.htm
      张鑫, 陈红汉, 孔令涛, 等, 2020. 泌阳凹陷深凹区古流体压力演化与油气充注耦合关系. 地球科学, 45(5): 1769-1781. doi: 10.3799/dqkx.2019.187
      赵靖舟, 李军, 徐泽阳, 2017. 沉积盆地超压成因研究进展. 石油学报, 38(9): 973-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm
      周心怀, 刘震, 李潍莲, 2009. 辽东湾断陷油气成藏机理. 北京: 石油工业出版社.
    • 加载中
    图(10)
    计量
    • 文章访问数:  393
    • HTML全文浏览量:  167
    • PDF下载量:  60
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-12-13
    • 网络出版日期:  2024-06-04
    • 刊出日期:  2024-05-25

    目录

      /

      返回文章
      返回