• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    岩溶管道与裂隙介质间溶质交换研究进展

    罗明明 陈静 季怀松 万里 李成根 周宏

    罗明明, 陈静, 季怀松, 万里, 李成根, 周宏, 2023. 岩溶管道与裂隙介质间溶质交换研究进展. 地球科学, 48(11): 4202-4213. doi: 10.3799/dqkx.2022.003
    引用本文: 罗明明, 陈静, 季怀松, 万里, 李成根, 周宏, 2023. 岩溶管道与裂隙介质间溶质交换研究进展. 地球科学, 48(11): 4202-4213. doi: 10.3799/dqkx.2022.003
    Luo Mingming, Chen Jing, Ji Huaisong, Wan Li, Li Chenggen, Zhou Hong, 2023. Review of Solute Exchange between Karst Conduit and Matrix. Earth Science, 48(11): 4202-4213. doi: 10.3799/dqkx.2022.003
    Citation: Luo Mingming, Chen Jing, Ji Huaisong, Wan Li, Li Chenggen, Zhou Hong, 2023. Review of Solute Exchange between Karst Conduit and Matrix. Earth Science, 48(11): 4202-4213. doi: 10.3799/dqkx.2022.003

    岩溶管道与裂隙介质间溶质交换研究进展

    doi: 10.3799/dqkx.2022.003
    基金项目: 

    国家自然科学基金项目 42172276

    国家自然科学基金项目 41807199

    湖北省水利重点科研项目 HBSLKY202319

    详细信息
      作者简介:

      罗明明(1989-), 男, 副教授, 博士生导师, 主要从事水文地质环境地质方面的教学与科研工作.ORCID: 0000-0002-5192-6466.E-mail: luomingming@cug.edu.cn

    • 中图分类号: P641

    Review of Solute Exchange between Karst Conduit and Matrix

    • 摘要: 岩溶管道与裂隙介质间的溶质交换是岩溶地下水溶质运移过程中一种常见的现象,其对岩溶水系统中污染物的运移过程具有关键控制作用.我国南方岩溶区管道与裂隙介质间的溶质交换在灌入式集中补给条件下十分复杂,其物理过程刻画与模拟极具挑战.基于对国内外相关研究成果的归纳整理,总结分析了溶质交换过程的观测、试验、机理、控制因素和模拟方法,并指出了当前研究中存在的薄弱环节.进一步的研究应在结合野外实际条件的基础上,开展室内非稳定流条件下的溶质交换控制性试验,分析其影响控制因素,揭示管道与裂隙介质间溶质交换的物理机制;深入对溶质交换边界条件的刻画,建立耦合溶质交换过程的溶质运移数学模型,并利用野外场地尺度的人工示踪试验进行验证.

       

    • 图  1  丰水及枯水季节岩溶水的流动关系示意(据张人权等, 2018修改)

      Fig.  1.  Schematic diagram of karst water flow in wet and dry seasons (modified according to Zhang et al., 2018)

      图  2  颗粒在管道与裂隙中暂态存储示意

      Goeppert and Goldscheider(2019)修改. 大颗粒主要在管道中运移,具有较高的流速和较低的弥散度,并容易沉积;细小颗粒或溶质(绿色部分)分布于整个系统,可进入裂隙介质,具有较低的流速和较高的弥散度

      Fig.  2.  Schematic diagram of particle transient storage between conduit and fissures

      图  3  管道‒裂隙耦合物理模型结构示意(据文献Mohammadi et al., 2021修改)

      a.多个树杈型分支管道镶嵌于砂箱中,管道四周均可以发生交换;b.单个管道位于砂箱中部,管道四周均可以发生交换;c.单个管道位于砂箱底部,只有管道上方可发生交换;管道‒裂隙系统的补给和排泄均为定水头边界,两侧水槽与砂箱均有直接水力联系;管道流通常用一个管道或一系列交叉的管道来表示,一般把管道埋置在裂隙介质内部或外部边缘;裂隙介质一般用渗透性相对较低的细砂、玻璃珠、陶瓷土等来代替

      Fig.  3.  Schematic diagram of different configurations used as pipe and matrix coupling models (modified according to Mohammadi et al., 2021)

      图  4  裂隙‒管道介质物理模型(据牛子豪等, 2017修改)

      a.裂隙分散补给开关;b.管道集中补给开关;c.裂隙网络与管道补给系统之间的挡板;d.流量计;e.示踪剂添加装置;1~5.裂隙入口;裂隙介质用玻璃砖来模拟;裂隙分散补给和管道集中补给为恒定水头,只有底部管道出口可排泄,排泄无恒定水头控制

      Fig.  4.  Schematic diagram showing the physical model of matrix and conduit (modified according to Niu et al., 2017)

      图  5  暂态存储模型的主要功能原理(据Dewaide et al., 2016修改)

      溶质运移主要在主通道进行,同时与存储区发生交换

      Fig.  5.  Main functioning principles in transient storage model (OTIS) (modified according to Dewaide et al., 2016)

    • Bailly-Comte, V., Martin, J. B., Jourde, H., et al., 2010. Water Exchange and Pressure Transfer between Conduits and Matrix and Their Influence on Hydrodynamics of Two Karst Aquifers with Sinking Streams. Journal of Hydrology, 386(1/2/3/4): 55-66. https://doi.org/10.1016/j.jhydrol.2010.03.005
      Bauer, S., Liedl, R., Sauter, M., 2003. Modeling of Karst Aquifer Genesis: Influence of Exchange Flow. Water Resources Research, 39(10): 1285. https://doi.org/10.1029/2003wr002218
      Beavers, G. S., Joseph, D. D., 1967. Boundary Conditions at a Naturally Permeable Wall. Journal of Fluid Mechanics, 30(1): 197-207. https://doi.org/10.1017/s0022112067001375
      Bencala, K. E., 1983. Simulation of Solute Transport in a Mountain Pool-and-Riffle Stream with a Kinetic Mass Transfer Model for Sorption. Water Resources Research, 19(3): 732-738. https://doi.org/10.1029/wr019i003p00732
      Berkowitz, B., Cortis, A., Dentz, M., et al., 2006. Modeling Non-Fickian Transport in Geological Formations as a Continuous Time Random Walk. Reviews of Geophysics, 44(2): RG2003. https://doi.org/10.1029/2005rg000178
      Berkowitz, B., Dror, I., Hansen, S. K., et al., 2016. Measurements and Models of Reactive Transport in Geological Media. Reviews of Geophysics, 54(4): 930-986. https://doi.org/10.1002/2016rg000524
      Binet, S., Joigneaux, E., Pauwels, H., et al., 2017. Water Exchange, Mixing and Transient Storage between a Saturated Karstic Conduit and the Surrounding Aquifer: Groundwater Flow Modeling and Inputs from Stable Water Isotopes. Journal of Hydrology, 544: 278-289. https://doi.org/10.1016/j.jhydrol.2016.11.042
      Cao, J.H., Jiang, Z.C., Yuan, D.X., et al., 2017. The Progress in the Study of the Karst Dynamic System and Global Changes in the Past 30 Years. Geology in China, 44(5): 874-900 (in Chinese with English abstract).
      Chen, J., Luo, M.M., Liao, C.L., et al., 2019. Review of Eco-Hydrological Process in Karst Wetlands of China. Geological Science and Technology Information, 38(6): 221-230 (in Chinese with English abstract).
      Chen, J., Luo, M. M., Ma, R., et al., 2020. Nitrate Distribution under the Influence of Seasonal Hydrodynamic Changes and Human Activities in Huixian Karst Wetland, South China. Journal of Contaminant Hydrology, 234: 103700. https://doi.org/10.1016/j.jconhyd.2020.103700
      Chen, Y.D., Song, X.W., Jiang, Y.P., et al., 2014. Adsorption Kinetics and Thermodynamics of BTEX by Limestone Collected from a Karst Underground River System. Earth Science Frontiers, 21(4): 180-185 (in Chinese with English abstract).
      Cholet, C., Charlier, J. B., Moussa, R., et al., 2017. Assessing Lateral Flows and Solute Transport during Floods in a Conduit-Flow-Dominated Karst System Using the Inverse Problem for the Advection-Diffusion Equation. Hydrology and Earth System Sciences, 21(7): 3635-3653. https://doi.org/10.5194/hess-21-3635-2017
      Cortis, A., Berkowitz, B., 2005. Computing "Anomalous" Contaminant Transport in Porous Media: The CTRW MATLAB Toolbox. Groundwater, 43(6): 947-950. https://doi.org/10.1111/j.1745-6584.2005.00045.x
      Dewaide, L., Bonniver, I., Rochez, G., et al., 2016. Solute Transport in Heterogeneous Karst Systems: Dimensioning and Estimation of the Transport Parameters via Multi-Sampling Tracer-Tests Modelling Using the OTIS (One-Dimensional Transport with Inflow and Storage) Program. Journal of Hydrology, 534: 567-578. https://doi.org/10.1016/j.jhydrol.2016.01.049
      Faulkner, J., Hu, B. X., Kish, S., et al., 2009. Laboratory Analog and Numerical Study of Groundwater Flow and Solute Transport in a Karst Aquifer with Conduit and Matrix Domains. Journal of Contaminant Hydrology, 110(1/2): 34-44. https://doi.org/10.1016/j.jconhyd.2009.08.004
      Field, M. S., Leij, F. J., 2012. Solute Transport in Solution Conduits Exhibiting Multi-Peaked Breakthrough Curves. Journal of Hydrology, 440/441: 26-35. https://doi.org/10.1016/j.jhydrol.2012.03.018
      Field, M. S., Pinsky, P. F., 2000. A Two-Region Nonequilibrium Model for Solute Transport in Solution Conduits in Karstic Aquifers. Journal of Contaminant Hydrology, 44(3/4): 329-351. https://doi.org/10.1016/S0169-7722(00)00099-1
      Frank, S., Goeppert, N., Ohmer, M., et al., 2019. Sulfate Variations as a Natural Tracer for Conduit-Matrix Interaction in a Complex Karst Aquifer. Hydrological Processes, 33(9): 1292-1303. https://doi.org/10.1002/hyp.13400
      Gallegos, J. J., Hu, B. X., Davis, H., 2013. Simulating Flow in Karst Aquifers at Laboratory and Sub-Regional Scales Using MODFLOW-CFP. Hydrogeology Journal, 21(8): 1749-1760. https://doi.org/10.1007/s10040-013-1046-4
      Ghasemizadeh, R., Hellweger, F., Butscher, C., et al., 2012. Review: Groundwater Flow and Transport Modeling of Karst Aquifers, with Particular Reference to the North Coast Limestone Aquifer System of Puerto Rico. Hydrogeology Journal, 20(8): 1441-1461. https://doi.org/10.1007/s10040-012-0897-4
      Goeppert, N., Goldscheider, N., 2019. Improved Understanding of Particle Transport in Karst Groundwater Using Natural Sediments as Tracers. Water Research, 166: 115045. https://doi.org/10.1016/j.watres.2019.115045
      Goeppert, N., Goldscheider, N., Berkowitz, B., 2020. Experimental and Modeling Evidence of Kilometer-Scale Anomalous Tracer Transport in an Alpine Karst Aquifer. Water Research, 178: 115755. https://doi.org/10.1016/j.watres.2020.115755
      Goldscheider, N., Chen, Z., Auler, A. S., et al., 2020. Global Distribution of Carbonate Rocks and Karst Water Resources. Hydrogeology Journal, 28(5): 1661-1677. https://doi.org/10.1007/s10040-020-02139-5
      Göppert, N., Goldscheider, N., 2008. Solute and Colloid Transport in Karst Conduits under Low- and High-Flow Conditions. Ground Water, 46(1): 61-68. https://doi.org/10.1111/j.1745-6584.2007.00373.x
      Guo, F., Jiang, G.H., Yu, S., et al., 2016. Parameters and Modeling of Solute Transport under Different Flow Conditions in Subterranean River. Journal of Nanjing University (Natural Sciences), 52(3): 496-502 (in Chinese with English abstract).
      Han, X.R., 2015. Karst Hydrogeology. Science Press, Beijing (in Chinese).
      Huang, P.Q., Chen, J.R., 2011. Nonconforming Element Methods and Preconditioning Techniques for Stokes-Darcy Model on Nonmatching Grids. Mathematica Numerica Sinica, 33(4): 397-408 (in Chinese with English abstract).
      Huang, Z.Q., Gao, B., Yao, J., 2014. On the Interface Boundary Conditions for the Stokes-Darcy Coupling Problem. Scientia Sinica (Physica, Mechanica & Astronomica), 44(2): 212-220 (in Chinese with English abstract).
      Hubbert, M. K., 1940. The Theory of Ground-Water Motion. The Journal of Geology, 48(8, Part 1): 785-944. https://doi.org/10.1086/624930
      Ji, H.S., Luo, M.M., Chu, X.W., et al., 2020. Laboratory Experiment and Simulation of Solute Transport Affected by Different Grades of Fissures and Water Storage of Waterlogging in Karst Depression. Bulletin of Geological Science and Technology, 39(5): 164-172 (in Chinese with English abstract).
      Ji, S.S., Liu, J.G., Wu, Y., et al., 2017. Comparative Study on Characteristics of Tracer Curve Laboratory Experiment of Karst Pipeline and Karst Fracture. Site Investigation Science and Technology, (4): 11-14, 25 (in Chinese with English abstract).
      Jiang, C.X., Zhao, J., Zhang, H.W., 2021. Numerical Simulation of Solute Transport Characteristics in Groundwater of Manganese Tailings Reservoir under Complex Karst Conditions. Environmental Monitoring in China, 37(1): 95-102 (in Chinese with English abstract).
      Li, G. Q., Loper, D. E., Kung, R., 2008. Contaminant Sequestration in Karstic Aquifers: Experiments and Quantification. Water Resources Research, 44(2): W02429. https://doi.org/10.1029/2006wr005797
      Li, Y., Wang, J.L., Jin, M.G., et al., 2021. Hydrodynamic Characteristics of Jinan Karst Spring System Identified by Hydrologic Time-Series Data. Earth Science, 46(7): 2583-2593 (in Chinese with English abstract).
      Luhmann, A. J., Covington, M. D., Alexander, S. C., et al., 2012. Comparing Conservative and Nonconservative Tracers in Karst and Using Them to Estimate Flow Path Geometry. Journal of Hydrology, 448/449: 201-211. https://doi.org/10.1016/j.jhydrol.2012.04.044
      Luo, M. M., Chen, Z. H., Criss, R. E., et al., 2016a. Dynamics and Anthropogenic Impacts of Multiple Karst Flow Systems in a Mountainous Area of South China. Hydrogeology Journal, 24(8): 1993-2002. https://doi.org/10.1007/s10040-016-1462-3
      Luo, M. M., Chen, Z. H., Criss, R. E., et al., 2016b. Method for Calibrating a Theoretical Model in Karst Springs: An Example for a Hydropower Station in South China. Hydrological Processes, 30(25): 4815-4825. https://doi.org/10.1002/hyp.10950
      Luo, M. M., Chen, Z. H., Zhou, H., et al., 2018a. Hydrological Response and Thermal Effect of Karst Springs Linked to Aquifer Geometry and Recharge Processes. Hydrogeology Journal, 26(2): 629-639. https://doi.org/10.1007/s10040-017-1664-3
      Luo, M. M., Zhou, H., Liang, Y. P., et al., 2018b. Horizontal and Vertical Zoning of Carbonate Dissolution in China. Geomorphology, 322: 66-75. https://doi.org/10.1016/j.geomorph.2018.08.039
      Luo, M.M., Ji, H.S., 2022. Mechanism of Solute Transient Storage between Karst Conduit and Fissures. Advances in Water Science, 33(1): 145-152 (in Chinese with English abstract).
      Luo, M.M., Xiao, T.Y., Chen, Z.H., et al., 2014. Geological Structure Characteristics of Several Karst Water Systems in the Xiangxi River Karst Basin. Hydrogeology & Engineering Geology, 41(6): 13-19, 25 (in Chinese with English abstract).
      Luo, M.M., Yin, D.C., Zhang, L., et al., 2015. Identifying Methods of Karst Aquifer System Structure in South China. Carsologica Sinica, 34(6): 543-550 (in Chinese with English abstract).
      Luo, M. M., Zhou, H., Chen, Z. H., 2018. Patterns of Karst Water Circulation in the Xiangxi River Basin. Science Press, Beijing (in Chinese).
      Martin, J. B., Dean, R. W., 2001. Exchange of Water between Conduits and Matrix in the Floridan Aquifer. Chemical Geology, 179(1/2/3/4): 145-165. https://doi.org/10.1016/S0009-2541(01)00320-5
      Mohammadi, Z., Gharaat, M. J., Field, M., 2019. The Effect of Hydraulic Gradient and Pattern of Conduit Systems on Tracing Tests: Bench-Scale Modeling. Ground Water, 57(1): 110-125. https://doi.org/10.1111/gwat.12659
      Mohammadi, Z., Illman, W. A., Field, M., 2021. Review of Laboratory Scale Models of Karst Aquifers: Approaches, Similitude, and Requirements. Ground Water, 59(2): 163-174. https://doi.org/10.1111/gwat.13052
      Mohammadi, Z., Illman, W. A., Karimi, M., 2018. Optimization of the Hydrodynamic Characteristics of a Karst Conduit with CFPv2 Coupled to OSTRICH. Journal of Hydrology, 567: 564-578. https://doi.org/10.1016/j.jhydrol.2018.10.050
      Morales, T., Uriarte, J. A., Olazar, M., et al., 2010. Solute Transport Modelling in Karst Conduits with Slow Zones during Different Hydrologic Conditions. Journal of Hydrology, 390(3-4): 182-189. https://doi.org/10.1016/j.jhydrol.2010.06.041
      Niu, Z.H., Shu, L.C., Lin, H., et al., 2017. Experimental Study of Water Quantity Exchange between Fissures and Sinkholes under Different Recharge Modes in the Fissure-Conduit Media. Hydrogeology & Engineering Geology, 44(3): 6-11 (in Chinese with English abstract).
      Reimann, T., Geyer, T., Shoemaker, W. B., et al., 2011. Effects of Dynamically Variable Saturation and Matrix-Conduit Coupling of Flow in Karst Aquifers. Water Resources Research, 47(11): W11503. https://doi.org/10.1029/2011wr010446
      Ronayne, M. J., 2013. Influence of Conduit Network Geometry on Solute Transport in Karst Aquifers with a Permeable Matrix. Advances in Water Resources, 56: 27-34. https://doi.org/10.1016/j.advwatres.2013.03.002
      Schmidt, S., Geyer, T., Guttman, J., et al., 2014. Characterisation and Modelling of Conduit Restricted Karst Aquifers-Example of the Auja Spring, Jordan Valley. Journal of Hydrology, 511: 750-763. https://doi.org/10.1016/j.jhydrol.2014.02.019
      Shi, X.L., Zhou, Z.F., Zhang, H., et al., 2022. Sources of SO42- and NO3- and Their Disturbances to Water Rock Processes in Karst Cave System. Earth Science, 47(2): 607-621 (in Chinese with English abstract).
      Shu, L.C., Zhang, Y., Lu, C.P., 2013. Hydrologic Effects Caused by the Heterogeneity of Karstic Conduit-Fissure Medium. South-to-North Water Transfers and Water Science & Technology, 11(1): 115-121 (in Chinese with English abstract).
      Shu, L. C., Zou, Z. K., Li, F. L., et al., 2020. Laboratory and Numerical Simulations of Spatio-Temporal Variability of Water Exchange between the Fissures and Conduits in a Karstic Aquifer. Journal of Hydrology, 590: 125219. https://doi.org/10.1016/j.jhydrol.2020.125219
      Smith, D.I., Atkinson, T.C., Drew, D.P., 1976. The Hydrology of Limestone Terrains. In: Ford, T.D., Cullingford, C.H.D., eds., The Science of Speleology. Academic Press, London, 179-212.
      Sun, C., Shu, L.C., Lu, C.P., et al., 2014. Physical Experiment and Numerical Simulation of Spring Flow Attenuation Process in Fissure-Conduit Media. Journal of Hydraulic Engineering, 45(1): 50-57, 64 (in Chinese with English abstract).
      Sun, H., Liu, X.L., Wang, E.Z., et al., 2020. Experimental Study on Nonlinear Flow Properties of Pipe-Fissure Water in Carbonate Rocks during Failures. Carsologica Sinica, 39(4): 500-508 (in Chinese with English abstract).
      Teng, Q., Wang, M.Y., Wang, H.F., 2014. Experiments on Fluid Flow and Solute Transport in the Fracture Network Pipe Model. Journal of University of Chinese Academy of Sciences, 31(1): 54-60 (in Chinese with English abstract).
      Toride, N., Leij, F. J., van Genuchten, M. T., 1993. A Comprehensive Set of Analytical Solutions for Nonequilibrium Solute Transport with First-Order Decay and Zero-Order Production. Water Resources Research, 29(7): 2167-2182. https://doi.org/10.1029/93wr00496
      Wang, C. Q., Wang, X. G., Majdalani, S., et al., 2020. Influence of Dual Conduit Structure on Solute Transport in Karst Tracer Tests: An Experimental Laboratory Study. Journal of Hydrology, 590: 125255. https://doi.org/10.1016/j.jhydrol.2020.125255
      Wu, P.P., Shu, L.C., Li, F.L., et al., 2019. Impacts of Artificial Regulation on Karst Spring Hydrograph in Northern China: Laboratory Study and Numerical Simulations. Water, 11(4): 755. https://doi.org/10.3390/w11040755
      Wu, Y. X., Hunkeler, D., 2013. Hyporheic Exchange in a Karst Conduit and Sediment System-A Laboratory Analog Study. Journal of Hydrology, 501: 125-132. https://doi.org/10.1016/j.jhydrol.2013.07.040
      Xu, Z. X., Hu, B. X., Davis, H., et al., 2015. Simulating Long Term Nitrate-N Contamination Processes in the Woodville Karst Plain Using CFPv2 with UMT3D. Journal of Hydrology, 524: 72-88. https://doi.org/10.1016/j.jhydrol.2015.02.024
      Yang, P. H., Wang, Y. Y., Wu, X. Y., et al., 2020. Nitrate Sources and Biogeochemical Processes in Karst Underground Rivers Impacted by Different Anthropogenic Input Characteristics. Environmental Pollution, 265: 114835. https://doi.org/10.1016/j.envpol.2020.114835
      Yang, Y., Zhao, L.J., Su, C.T., et al., 2019. A Study of the Solute Transport Model for Karst Conduits Based on CFP. Hydrogeology & Engineering Geology, 46(4): 51-57 (in Chinese with English abstract).
      Yuan, D.X., 2015. Scientific Innovation in Karst Resources and Environment Research Field of China. Carsologica Sinica, 34(2): 98-100 (in Chinese with English abstract).
      Yuan, D.X., Jiang, Y.J., Shen, L.C., et al., 2016. Modern Karstology. Science Press, Beijing (in Chinese).
      Zhang, C.Y., Shu, L.C., Cheng, Y.H., et al., 2020. Experimental Study on the Responses of Groundwater Level Changes in the Sinkhole on Different Hydrology Scenarios. Yellow River, 42(6): 46-52 (in Chinese with English abstract).
      Zhang, L., Luo, M. M., Chen, Z. H., 2020. Identification and Estimation of Solute Storage and Release in Karst Water Systems, South China. International Journal of Environmental Research and Public Health, 17(19): 7219. https://doi.org/10.3390/ijerph17197219
      Zhang, R.Q., Liang, X., Jin, M.G., et al., 2018. Fundamentals of Hydrogeology (7th Ed.). Geological Publishing House, Beijing (in Chinese).
      Zhang, W.S., Jiao, Y.Y., Zhang, G.H., et al., 2022. Analysis of the Mechanism of Water Inrush Geohazards in Deep-Buried Tunnels under the Complex Geological Environment of Karst Cave-Fractured Zone. Journal of Earth Science, 33(5): 1204-1218. https://doi.org/10.1007/s12583-022-1619-z
      Zhang, X.M., 2019. Laboratory Simulation Study on Hydrodynamic Dispersion Characteristics of Karst Fracture and Conduits. Guizhou University, Guizhou (in Chinese with English abstract).
      Zhao, L.J., 2019. Study of Water Exchange Mechanism of Karst Matrix and Conduit Medium. China University of Geosciences, Beijing (in Chinese with English abstract).
      Zhao, X.E., 2018. Simulation Study on the Effect of Pools and Flow Rate on Solute Transport in Karst Conduits. Nanjing University, Nanjing (in Chinese with English abstract).
      Zhao, X.E., Chang, Y., Wu, J.C., 2020. A Comparative Study on Two Contaminant Transport Models Used in Karst Underground Rivers. Acta Scientiae Circumstantiae, 40(4): 1250-1259 (in Chinese with English abstract).
      Zhao, X. E., Chang, Y., Wu, J. C., et al., 2021. Investigating the Relationships between Parameters in the Transient Storage Model and the Pool Volume in Karst Conduits through Tracer Experiments. Journal of Hydrology, 593: 125825. https://doi.org/10.1016/j.jhydrol.2020.125825
      Zou, S.Z., Yang, M.Q., Chen, H.F., et al., 2019. Comparison and Optimization of Water Dynamic Monitoring Network for Underground River System: A Case Study of the Haiyang-Zhaidi Underground River System, Guilin City. Earth Science Frontiers, 26(1): 326-335 (in Chinese with English abstract).
      曹建华, 蒋忠诚, 袁道先, 等, 2017. 岩溶动力系统与全球变化研究进展. 中国地质, 44(5): 874-900. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705005.htm
      陈静, 罗明明, 廖春来, 等, 2019. 中国岩溶湿地生态水文过程研究进展. 地质科技情报, 38(6): 221-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906027.htm
      陈余道, 宋晓薇, 蒋亚萍, 等, 2014. 岩溶地下河系统石灰石对BTEX的吸附动力学和热力学. 地学前缘, 21(4): 180-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404025.htm
      郭芳, 姜光辉, 于奭, 等, 2016. 地下河不同流量状态下溶质运移的参数及模拟. 南京大学学报(自然科学版), 52(3): 496-502. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201603011.htm
      韩行瑞, 2015. 岩溶水文地质学. 北京: 科学出版社.
      黄佩奇, 陈金如, 2011. 非匹配网格上Stokes-Darcy模型的非协调元方法及其预条件技术. 计算数学, 33(4): 397-408. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX201104008.htm
      黄朝琴, 高博, 姚军, 2014. Stokes-Darcy耦合流动问题的交界面条件研究. 中国科学: 物理学 力学 天文学, 44(2): 212-220. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201402012.htm
      季怀松, 罗明明, 褚学伟, 等, 2020. 岩溶洼地内涝蓄水量与不同级次裂隙对溶质迁移影响的室内实验与模拟. 地质科技通报, 39(5): 164-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202005020.htm
      计顺顺, 刘建刚, 吴悦, 等, 2017. 岩溶管道和溶蚀裂隙示踪曲线特征室内实验对比研究. 勘察科学技术, (4): 11-14, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX201704003.htm
      江成鑫, 赵江, 张洪文, 2021. 复杂岩溶条件下锰矿尾矿库地下水溶质运移特征数值模拟研究. 中国环境监测, 37(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202101017.htm
      李严, 王家乐, 靳孟贵, 等, 2021. 运用水文时间序列分析识别济南泉域岩溶发育特征. 地球科学, 46(7): 2583-2593. doi: 10.3799/dqkx.2020.236
      罗明明, 季怀松, 2022. 岩溶管道与裂隙介质间溶质暂态存储机制. 水科学进展, 33(1): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202201014.htm
      罗明明, 肖天昀, 陈植华, 等, 2014. 香溪河岩溶流域几种岩溶水系统的地质结构特征. 水文地质工程地质, 41(6): 13-19, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201406005.htm
      罗明明, 尹德超, 张亮, 等, 2015. 南方岩溶含水系统结构识别方法初探. 中国岩溶, 34(6): 543-550. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201506002.htm
      罗明明, 周宏, 陈植华, 2018. 香溪河流域岩溶水循环规律. 北京: 科学出版社.
      牛子豪, 束龙仓, 林欢, 等, 2017. 不同补给条件下裂隙–管道介质间水流交换的示踪试验研究. 水文地质工程地质, 44(3): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201703002.htm
      石亮星, 周忠发, 张恒等, 2022. 岩溶洞穴系统SO42-、NO3-来源及其对水岩作用的影响. 地球科学, 47(2): 607-621. doi: 10.3799/dqkx.2021.115
      束龙仓, 张颖, 鲁程鹏, 2013. 管道–裂隙岩溶含水介质非均质性的水文效应. 南水北调与水利科技, 11(1): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201301025.htm
      孙晨, 束龙仓, 鲁程鹏, 等, 2014. 裂隙–管道介质泉流量衰减过程试验研究及数值模拟. 水利学报, 45(1): 50-57, 64. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201401007.htm
      孙欢, 刘晓丽, 王恩志, 等, 2020. 碳酸盐岩破裂过程中管道–裂隙水非线性流动特性试验研究. 中国岩溶, 39(4): 500-508. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202004005.htm
      腾强, 王明玉, 王慧芳, 2014. 裂隙管道网络物理模型水流与溶质运移模拟试验. 中国科学院大学学报, 31(1): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201401010.htm
      杨杨, 赵良杰, 苏春田, 等, 2019. 基于CFP的岩溶管道流溶质运移数值模拟研究. 水文地质工程地质, 46(4): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904008.htm
      袁道先, 2015. 我国岩溶资源环境领域的创新问题. 中国岩溶, 34(2): 98-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201502002.htm
      袁道先, 蒋勇军, 沈立成, 2016. 现代岩溶学. 北京: 科学出版社.
      张春艳, 束龙仓, 程艳红, 等, 2020. 落水洞水位对水文情景响应变化的试验研究. 人民黄河, 42(6): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202006011.htm
      张人权, 梁杏, 靳孟贵, 等, 2018. 水文地质学基础(第七版). 北京: 地质出版社.
      张雪梅, 2019. 岩溶裂隙–管道水动力弥散特征室内模拟研究. 贵州: 贵州大学.
      赵良杰, 2019. 岩溶裂隙–管道双重含水介质水流交换机理研究. 北京: 中国地质大学.
      赵小二, 2018. 溶潭和流速对岩溶管道溶质运移的影响模拟研究. 南京: 南京大学.
      赵小二, 常勇, 吴吉春, 2020. 岩溶地下河污染物运移模型对比研究. 环境科学学报, 40(4): 1250-1259. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202004012.htm
      邹胜章, 杨苗清, 陈宏峰, 等, 2019. 地下河系统水动态监测网络优化对比分析: 以桂林海洋–寨底地下河系统为例. 地学前缘, 26(1): 326-335. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901032.htm
    • 加载中
    图(5)
    计量
    • 文章访问数:  1106
    • HTML全文浏览量:  481
    • PDF下载量:  90
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-12-27
    • 网络出版日期:  2023-11-30
    • 刊出日期:  2023-11-25

    目录

      /

      返回文章
      返回